Defining parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(75))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 10 | 26 |
Cusp forms | 24 | 10 | 14 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(4\) |
Plus space | \(+\) | \(7\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(75))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
75.4.a.a | $1$ | $4.425$ | \(\Q\) | None | \(-3\) | \(3\) | \(0\) | \(-20\) | $-$ | $+$ | \(q-3q^{2}+3q^{3}+q^{4}-9q^{6}-20q^{7}+\cdots\) | |
75.4.a.b | $1$ | $4.425$ | \(\Q\) | None | \(-1\) | \(-3\) | \(0\) | \(24\) | $+$ | $+$ | \(q-q^{2}-3q^{3}-7q^{4}+3q^{6}+24q^{7}+\cdots\) | |
75.4.a.c | $2$ | $4.425$ | \(\Q(\sqrt{41}) \) | None | \(-3\) | \(-6\) | \(0\) | \(-6\) | $+$ | $-$ | \(q+(-1-\beta )q^{2}-3q^{3}+(3+3\beta )q^{4}+\cdots\) | |
75.4.a.d | $2$ | $4.425$ | \(\Q(\sqrt{19}) \) | None | \(-2\) | \(6\) | \(0\) | \(26\) | $-$ | $-$ | \(q+(-1+\beta )q^{2}+3q^{3}+(12-2\beta )q^{4}+\cdots\) | |
75.4.a.e | $2$ | $4.425$ | \(\Q(\sqrt{19}) \) | None | \(2\) | \(-6\) | \(0\) | \(-26\) | $+$ | $+$ | \(q+(1+\beta )q^{2}-3q^{3}+(12+2\beta )q^{4}+(-3+\cdots)q^{6}+\cdots\) | |
75.4.a.f | $2$ | $4.425$ | \(\Q(\sqrt{41}) \) | None | \(3\) | \(6\) | \(0\) | \(6\) | $-$ | $-$ | \(q+(1+\beta )q^{2}+3q^{3}+(3+3\beta )q^{4}+(3+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(75))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(75)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)