Defining parameters
| Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 75.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(40\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(75))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 36 | 10 | 26 |
| Cusp forms | 24 | 10 | 14 |
| Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(10\) | \(3\) | \(7\) | \(7\) | \(3\) | \(4\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(8\) | \(2\) | \(6\) | \(5\) | \(2\) | \(3\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(8\) | \(1\) | \(7\) | \(5\) | \(1\) | \(4\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(10\) | \(4\) | \(6\) | \(7\) | \(4\) | \(3\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(20\) | \(7\) | \(13\) | \(14\) | \(7\) | \(7\) | \(6\) | \(0\) | \(6\) | ||||
| Minus space | \(-\) | \(16\) | \(3\) | \(13\) | \(10\) | \(3\) | \(7\) | \(6\) | \(0\) | \(6\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(75))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
| 75.4.a.a | $1$ | $4.425$ | \(\Q\) | None | \(-3\) | \(3\) | \(0\) | \(-20\) | $-$ | $+$ | \(q-3q^{2}+3q^{3}+q^{4}-9q^{6}-20q^{7}+\cdots\) | |
| 75.4.a.b | $1$ | $4.425$ | \(\Q\) | None | \(-1\) | \(-3\) | \(0\) | \(24\) | $+$ | $+$ | \(q-q^{2}-3q^{3}-7q^{4}+3q^{6}+24q^{7}+\cdots\) | |
| 75.4.a.c | $2$ | $4.425$ | \(\Q(\sqrt{41}) \) | None | \(-3\) | \(-6\) | \(0\) | \(-6\) | $+$ | $-$ | \(q+(-1-\beta )q^{2}-3q^{3}+(3+3\beta )q^{4}+\cdots\) | |
| 75.4.a.d | $2$ | $4.425$ | \(\Q(\sqrt{19}) \) | None | \(-2\) | \(6\) | \(0\) | \(26\) | $-$ | $-$ | \(q+(-1+\beta )q^{2}+3q^{3}+(12-2\beta )q^{4}+\cdots\) | |
| 75.4.a.e | $2$ | $4.425$ | \(\Q(\sqrt{19}) \) | None | \(2\) | \(-6\) | \(0\) | \(-26\) | $+$ | $+$ | \(q+(1+\beta )q^{2}-3q^{3}+(12+2\beta )q^{4}+(-3+\cdots)q^{6}+\cdots\) | |
| 75.4.a.f | $2$ | $4.425$ | \(\Q(\sqrt{41}) \) | None | \(3\) | \(6\) | \(0\) | \(6\) | $-$ | $-$ | \(q+(1+\beta )q^{2}+3q^{3}+(3+3\beta )q^{4}+(3+\cdots)q^{6}+\cdots\) | |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(75))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(75)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)