Properties

Label 75.3.h.a.14.9
Level $75$
Weight $3$
Character 75.14
Analytic conductor $2.044$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(14,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 14.9
Character \(\chi\) \(=\) 75.14
Dual form 75.3.h.a.59.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.624639 + 0.453826i) q^{2} +(2.99063 - 0.236895i) q^{3} +(-1.05185 + 3.23727i) q^{4} +(-2.07515 + 4.54904i) q^{5} +(-1.76055 + 1.50520i) q^{6} +1.71117i q^{7} +(-1.76649 - 5.43671i) q^{8} +(8.88776 - 1.41693i) q^{9} +(-0.768257 - 3.78326i) q^{10} +(3.68799 + 5.07609i) q^{11} +(-2.37881 + 9.93067i) q^{12} +(7.16998 - 9.86863i) q^{13} +(-0.776575 - 1.06886i) q^{14} +(-5.12836 + 14.0961i) q^{15} +(-7.44441 - 5.40868i) q^{16} +(4.51198 + 13.8864i) q^{17} +(-4.90860 + 4.91857i) q^{18} +(-4.19666 - 12.9160i) q^{19} +(-12.5437 - 11.5027i) q^{20} +(0.405369 + 5.11749i) q^{21} +(-4.60733 - 1.49701i) q^{22} +(31.0498 - 22.5590i) q^{23} +(-6.57086 - 15.8407i) q^{24} +(-16.3875 - 18.8799i) q^{25} +9.41826i q^{26} +(26.2444 - 6.34300i) q^{27} +(-5.53953 - 1.79990i) q^{28} +(-38.1684 - 12.4017i) q^{29} +(-3.19381 - 11.1323i) q^{30} +(-8.30364 - 25.5560i) q^{31} +29.9706 q^{32} +(12.2319 + 14.3070i) q^{33} +(-9.12039 - 6.62635i) q^{34} +(-7.78419 - 3.55093i) q^{35} +(-4.76162 + 30.2625i) q^{36} +(-1.16967 + 1.60991i) q^{37} +(8.48302 + 6.16327i) q^{38} +(19.1049 - 31.2120i) q^{39} +(28.3975 + 3.24612i) q^{40} +(-20.7006 + 28.4920i) q^{41} +(-2.57566 - 3.01261i) q^{42} +73.2513i q^{43} +(-20.3119 + 6.59974i) q^{44} +(-11.9977 + 43.3711i) q^{45} +(-9.15703 + 28.1824i) q^{46} +(-5.42185 + 16.6867i) q^{47} +(-23.5448 - 14.4118i) q^{48} +46.0719 q^{49} +(18.8045 + 4.35599i) q^{50} +(16.7833 + 40.4604i) q^{51} +(24.4057 + 33.5915i) q^{52} +(25.7997 - 79.4032i) q^{53} +(-13.5146 + 15.8725i) q^{54} +(-30.7445 + 6.24320i) q^{55} +(9.30315 - 3.02278i) q^{56} +(-15.6104 - 37.6328i) q^{57} +(29.4696 - 9.57527i) q^{58} +(-5.62764 + 7.74578i) q^{59} +(-40.2386 - 31.4289i) q^{60} +(-1.66280 + 1.20810i) q^{61} +(16.7847 + 12.1948i) q^{62} +(2.42462 + 15.2085i) q^{63} +(11.0568 - 8.03324i) q^{64} +(30.0140 + 53.0954i) q^{65} +(-14.1334 - 3.38555i) q^{66} +(25.3218 - 8.22755i) q^{67} -49.7001 q^{68} +(87.5144 - 74.8212i) q^{69} +(6.47381 - 1.31462i) q^{70} +(-81.8447 - 26.5930i) q^{71} +(-23.4036 - 45.8172i) q^{72} +(-5.68457 - 7.82414i) q^{73} -1.53644i q^{74} +(-53.4816 - 52.5806i) q^{75} +46.2269 q^{76} +(-8.68606 + 6.31079i) q^{77} +(2.23114 + 28.1665i) q^{78} +(-41.5338 + 127.828i) q^{79} +(40.0525 - 22.6411i) q^{80} +(76.9846 - 25.1867i) q^{81} -27.1917i q^{82} +(0.618811 + 1.90451i) q^{83} +(-16.9931 - 4.07056i) q^{84} +(-72.5330 - 8.29125i) q^{85} +(-33.2434 - 45.7556i) q^{86} +(-117.085 - 28.0469i) q^{87} +(21.0824 - 29.0174i) q^{88} +(62.4318 + 85.9300i) q^{89} +(-12.1887 - 32.5362i) q^{90} +(16.8869 + 12.2691i) q^{91} +(40.3698 + 124.245i) q^{92} +(-30.8872 - 74.4614i) q^{93} +(-4.18619 - 12.8838i) q^{94} +(67.4641 + 7.71182i) q^{95} +(89.6312 - 7.09990i) q^{96} +(-85.9955 - 27.9416i) q^{97} +(-28.7783 + 20.9086i) q^{98} +(39.9705 + 39.8894i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 5 q^{3} - 38 q^{4} + 5 q^{6} - 13 q^{9} - 20 q^{10} - 45 q^{12} - 10 q^{13} - 15 q^{15} + 22 q^{16} - 36 q^{19} + 54 q^{21} - 50 q^{22} - 20 q^{24} - 100 q^{25} + 100 q^{27} + 270 q^{28} - 5 q^{30}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.624639 + 0.453826i −0.312319 + 0.226913i −0.732891 0.680346i \(-0.761829\pi\)
0.420572 + 0.907259i \(0.361829\pi\)
\(3\) 2.99063 0.236895i 0.996877 0.0789651i
\(4\) −1.05185 + 3.23727i −0.262963 + 0.809318i
\(5\) −2.07515 + 4.54904i −0.415030 + 0.909808i
\(6\) −1.76055 + 1.50520i −0.293426 + 0.250867i
\(7\) 1.71117i 0.244453i 0.992502 + 0.122227i \(0.0390035\pi\)
−0.992502 + 0.122227i \(0.960997\pi\)
\(8\) −1.76649 5.43671i −0.220812 0.679589i
\(9\) 8.88776 1.41693i 0.987529 0.157437i
\(10\) −0.768257 3.78326i −0.0768257 0.378326i
\(11\) 3.68799 + 5.07609i 0.335272 + 0.461462i 0.943053 0.332642i \(-0.107940\pi\)
−0.607781 + 0.794105i \(0.707940\pi\)
\(12\) −2.37881 + 9.93067i −0.198234 + 0.827556i
\(13\) 7.16998 9.86863i 0.551537 0.759126i −0.438683 0.898642i \(-0.644555\pi\)
0.990220 + 0.139516i \(0.0445548\pi\)
\(14\) −0.776575 1.06886i −0.0554697 0.0763474i
\(15\) −5.12836 + 14.0961i −0.341890 + 0.939740i
\(16\) −7.44441 5.40868i −0.465275 0.338042i
\(17\) 4.51198 + 13.8864i 0.265411 + 0.816850i 0.991599 + 0.129353i \(0.0412902\pi\)
−0.726188 + 0.687496i \(0.758710\pi\)
\(18\) −4.90860 + 4.91857i −0.272700 + 0.273254i
\(19\) −4.19666 12.9160i −0.220877 0.679790i −0.998684 0.0512863i \(-0.983668\pi\)
0.777807 0.628503i \(-0.216332\pi\)
\(20\) −12.5437 11.5027i −0.627186 0.575137i
\(21\) 0.405369 + 5.11749i 0.0193033 + 0.243690i
\(22\) −4.60733 1.49701i −0.209424 0.0680459i
\(23\) 31.0498 22.5590i 1.34999 0.980826i 0.350979 0.936383i \(-0.385849\pi\)
0.999012 0.0444426i \(-0.0141512\pi\)
\(24\) −6.57086 15.8407i −0.273786 0.660030i
\(25\) −16.3875 18.8799i −0.655501 0.755194i
\(26\) 9.41826i 0.362241i
\(27\) 26.2444 6.34300i 0.972013 0.234926i
\(28\) −5.53953 1.79990i −0.197840 0.0642822i
\(29\) −38.1684 12.4017i −1.31615 0.427643i −0.434980 0.900440i \(-0.643244\pi\)
−0.881171 + 0.472797i \(0.843244\pi\)
\(30\) −3.19381 11.1323i −0.106460 0.371078i
\(31\) −8.30364 25.5560i −0.267859 0.824386i −0.991021 0.133707i \(-0.957312\pi\)
0.723162 0.690679i \(-0.242688\pi\)
\(32\) 29.9706 0.936583
\(33\) 12.2319 + 14.3070i 0.370665 + 0.433547i
\(34\) −9.12039 6.62635i −0.268247 0.194893i
\(35\) −7.78419 3.55093i −0.222405 0.101455i
\(36\) −4.76162 + 30.2625i −0.132267 + 0.840625i
\(37\) −1.16967 + 1.60991i −0.0316126 + 0.0435110i −0.824531 0.565817i \(-0.808561\pi\)
0.792918 + 0.609328i \(0.208561\pi\)
\(38\) 8.48302 + 6.16327i 0.223237 + 0.162191i
\(39\) 19.1049 31.2120i 0.489870 0.800307i
\(40\) 28.3975 + 3.24612i 0.709939 + 0.0811531i
\(41\) −20.7006 + 28.4920i −0.504893 + 0.694926i −0.983048 0.183350i \(-0.941306\pi\)
0.478155 + 0.878276i \(0.341306\pi\)
\(42\) −2.57566 3.01261i −0.0613252 0.0717289i
\(43\) 73.2513i 1.70352i 0.523934 + 0.851759i \(0.324464\pi\)
−0.523934 + 0.851759i \(0.675536\pi\)
\(44\) −20.3119 + 6.59974i −0.461634 + 0.149994i
\(45\) −11.9977 + 43.3711i −0.266616 + 0.963803i
\(46\) −9.15703 + 28.1824i −0.199066 + 0.612662i
\(47\) −5.42185 + 16.6867i −0.115359 + 0.355037i −0.992022 0.126068i \(-0.959764\pi\)
0.876663 + 0.481105i \(0.159764\pi\)
\(48\) −23.5448 14.4118i −0.490516 0.300246i
\(49\) 46.0719 0.940243
\(50\) 18.8045 + 4.35599i 0.376089 + 0.0871199i
\(51\) 16.7833 + 40.4604i 0.329084 + 0.793341i
\(52\) 24.4057 + 33.5915i 0.469340 + 0.645991i
\(53\) 25.7997 79.4032i 0.486786 1.49817i −0.342591 0.939485i \(-0.611304\pi\)
0.829377 0.558689i \(-0.188696\pi\)
\(54\) −13.5146 + 15.8725i −0.250271 + 0.293935i
\(55\) −30.7445 + 6.24320i −0.558990 + 0.113513i
\(56\) 9.30315 3.02278i 0.166128 0.0539781i
\(57\) −15.6104 37.6328i −0.273867 0.660225i
\(58\) 29.4696 9.57527i 0.508097 0.165091i
\(59\) −5.62764 + 7.74578i −0.0953837 + 0.131284i −0.854041 0.520205i \(-0.825856\pi\)
0.758658 + 0.651489i \(0.225856\pi\)
\(60\) −40.2386 31.4289i −0.670644 0.523815i
\(61\) −1.66280 + 1.20810i −0.0272591 + 0.0198049i −0.601331 0.799000i \(-0.705363\pi\)
0.574072 + 0.818805i \(0.305363\pi\)
\(62\) 16.7847 + 12.1948i 0.270722 + 0.196691i
\(63\) 2.42462 + 15.2085i 0.0384860 + 0.241405i
\(64\) 11.0568 8.03324i 0.172763 0.125519i
\(65\) 30.0140 + 53.0954i 0.461754 + 0.816852i
\(66\) −14.1334 3.38555i −0.214143 0.0512963i
\(67\) 25.3218 8.22755i 0.377937 0.122799i −0.113887 0.993494i \(-0.536330\pi\)
0.491824 + 0.870694i \(0.336330\pi\)
\(68\) −49.7001 −0.730884
\(69\) 87.5144 74.8212i 1.26832 1.08437i
\(70\) 6.47381 1.31462i 0.0924830 0.0187803i
\(71\) −81.8447 26.5930i −1.15274 0.374549i −0.330567 0.943783i \(-0.607240\pi\)
−0.822176 + 0.569234i \(0.807240\pi\)
\(72\) −23.4036 45.8172i −0.325050 0.636350i
\(73\) −5.68457 7.82414i −0.0778709 0.107180i 0.768305 0.640084i \(-0.221101\pi\)
−0.846176 + 0.532904i \(0.821101\pi\)
\(74\) 1.53644i 0.0207626i
\(75\) −53.4816 52.5806i −0.713088 0.701074i
\(76\) 46.2269 0.608248
\(77\) −8.68606 + 6.31079i −0.112806 + 0.0819583i
\(78\) 2.23114 + 28.1665i 0.0286044 + 0.361109i
\(79\) −41.5338 + 127.828i −0.525744 + 1.61807i 0.237096 + 0.971486i \(0.423805\pi\)
−0.762840 + 0.646588i \(0.776195\pi\)
\(80\) 40.0525 22.6411i 0.500657 0.283014i
\(81\) 76.9846 25.1867i 0.950427 0.310947i
\(82\) 27.1917i 0.331606i
\(83\) 0.618811 + 1.90451i 0.00745556 + 0.0229459i 0.954715 0.297522i \(-0.0961600\pi\)
−0.947260 + 0.320467i \(0.896160\pi\)
\(84\) −16.9931 4.07056i −0.202299 0.0484590i
\(85\) −72.5330 8.29125i −0.853329 0.0975441i
\(86\) −33.2434 45.7556i −0.386551 0.532041i
\(87\) −117.085 28.0469i −1.34581 0.322378i
\(88\) 21.0824 29.0174i 0.239573 0.329743i
\(89\) 62.4318 + 85.9300i 0.701481 + 0.965505i 0.999939 + 0.0110825i \(0.00352775\pi\)
−0.298458 + 0.954423i \(0.596472\pi\)
\(90\) −12.1887 32.5362i −0.135430 0.361513i
\(91\) 16.8869 + 12.2691i 0.185571 + 0.134825i
\(92\) 40.3698 + 124.245i 0.438802 + 1.35049i
\(93\) −30.8872 74.4614i −0.332121 0.800660i
\(94\) −4.18619 12.8838i −0.0445339 0.137061i
\(95\) 67.4641 + 7.71182i 0.710148 + 0.0811771i
\(96\) 89.6312 7.09990i 0.933658 0.0739573i
\(97\) −85.9955 27.9416i −0.886552 0.288058i −0.169877 0.985465i \(-0.554337\pi\)
−0.716675 + 0.697407i \(0.754337\pi\)
\(98\) −28.7783 + 20.9086i −0.293656 + 0.213353i
\(99\) 39.9705 + 39.8894i 0.403742 + 0.402923i
\(100\) 78.3565 33.1920i 0.783565 0.331920i
\(101\) 157.223i 1.55666i −0.627856 0.778329i \(-0.716067\pi\)
0.627856 0.778329i \(-0.283933\pi\)
\(102\) −28.8455 17.6564i −0.282799 0.173102i
\(103\) −87.8915 28.5577i −0.853315 0.277259i −0.150481 0.988613i \(-0.548082\pi\)
−0.702834 + 0.711354i \(0.748082\pi\)
\(104\) −66.3186 21.5482i −0.637679 0.207194i
\(105\) −24.1208 8.77550i −0.229722 0.0835762i
\(106\) 19.9198 + 61.3069i 0.187923 + 0.578367i
\(107\) −4.26071 −0.0398198 −0.0199099 0.999802i \(-0.506338\pi\)
−0.0199099 + 0.999802i \(0.506338\pi\)
\(108\) −7.07122 + 91.6320i −0.0654742 + 0.848445i
\(109\) −124.599 90.5264i −1.14311 0.830518i −0.155560 0.987826i \(-0.549718\pi\)
−0.987550 + 0.157309i \(0.949718\pi\)
\(110\) 16.3708 17.8524i 0.148826 0.162294i
\(111\) −3.11666 + 5.09173i −0.0280780 + 0.0458714i
\(112\) 9.25518 12.7387i 0.0826355 0.113738i
\(113\) −18.2003 13.2233i −0.161064 0.117020i 0.504334 0.863509i \(-0.331738\pi\)
−0.665398 + 0.746489i \(0.731738\pi\)
\(114\) 26.8296 + 16.4225i 0.235348 + 0.144057i
\(115\) 38.1889 + 188.060i 0.332077 + 1.63530i
\(116\) 80.2951 110.517i 0.692199 0.952730i
\(117\) 49.7419 97.8694i 0.425144 0.836491i
\(118\) 7.39228i 0.0626464i
\(119\) −23.7621 + 7.72077i −0.199681 + 0.0648804i
\(120\) 85.6956 + 2.98071i 0.714130 + 0.0248393i
\(121\) 25.2257 77.6367i 0.208477 0.641626i
\(122\) 0.490384 1.50925i 0.00401954 0.0123709i
\(123\) −55.1583 + 90.1128i −0.448442 + 0.732625i
\(124\) 91.4658 0.737627
\(125\) 119.892 35.3690i 0.959134 0.282952i
\(126\) −8.41652 8.39945i −0.0667978 0.0666623i
\(127\) 90.4421 + 124.483i 0.712143 + 0.980180i 0.999748 + 0.0224315i \(0.00714076\pi\)
−0.287606 + 0.957749i \(0.592859\pi\)
\(128\) −40.3066 + 124.051i −0.314895 + 0.969147i
\(129\) 17.3529 + 219.068i 0.134518 + 1.69820i
\(130\) −42.8440 19.5443i −0.329569 0.150341i
\(131\) −159.091 + 51.6917i −1.21443 + 0.394593i −0.845052 0.534685i \(-0.820430\pi\)
−0.369381 + 0.929278i \(0.620430\pi\)
\(132\) −59.1820 + 24.5492i −0.448348 + 0.185979i
\(133\) 22.1015 7.18121i 0.166177 0.0539941i
\(134\) −12.0831 + 16.6310i −0.0901724 + 0.124112i
\(135\) −25.6064 + 132.549i −0.189677 + 0.981847i
\(136\) 67.5262 49.0606i 0.496516 0.360740i
\(137\) −154.827 112.488i −1.13012 0.821081i −0.144409 0.989518i \(-0.546128\pi\)
−0.985712 + 0.168437i \(0.946128\pi\)
\(138\) −20.7090 + 86.4526i −0.150065 + 0.626468i
\(139\) −6.70525 + 4.87165i −0.0482392 + 0.0350478i −0.611644 0.791133i \(-0.709491\pi\)
0.563404 + 0.826181i \(0.309491\pi\)
\(140\) 19.6832 21.4645i 0.140594 0.153318i
\(141\) −12.2618 + 51.1883i −0.0869628 + 0.363038i
\(142\) 63.1920 20.5323i 0.445014 0.144594i
\(143\) 76.5369 0.535223
\(144\) −73.8278 37.5228i −0.512693 0.260575i
\(145\) 135.621 147.894i 0.935315 1.01996i
\(146\) 7.10161 + 2.30745i 0.0486411 + 0.0158045i
\(147\) 137.784 10.9142i 0.937307 0.0742464i
\(148\) −3.98139 5.47991i −0.0269013 0.0370264i
\(149\) 266.284i 1.78714i 0.448921 + 0.893571i \(0.351808\pi\)
−0.448921 + 0.893571i \(0.648192\pi\)
\(150\) 57.2691 + 8.57249i 0.381794 + 0.0571499i
\(151\) −209.240 −1.38570 −0.692849 0.721083i \(-0.743645\pi\)
−0.692849 + 0.721083i \(0.743645\pi\)
\(152\) −62.8072 + 45.6321i −0.413205 + 0.300211i
\(153\) 59.7776 + 117.026i 0.390703 + 0.764877i
\(154\) 2.56164 7.88393i 0.0166340 0.0511943i
\(155\) 133.486 + 15.2588i 0.861202 + 0.0984440i
\(156\) 80.9461 + 94.6783i 0.518885 + 0.606912i
\(157\) 216.981i 1.38204i −0.722835 0.691021i \(-0.757161\pi\)
0.722835 0.691021i \(-0.242839\pi\)
\(158\) −32.0681 98.6953i −0.202962 0.624654i
\(159\) 58.3471 243.578i 0.366963 1.53193i
\(160\) −62.1935 + 136.338i −0.388709 + 0.852110i
\(161\) 38.6023 + 53.1315i 0.239766 + 0.330010i
\(162\) −36.6571 + 50.6703i −0.226279 + 0.312779i
\(163\) 8.35407 11.4984i 0.0512519 0.0705422i −0.782622 0.622497i \(-0.786118\pi\)
0.833874 + 0.551955i \(0.186118\pi\)
\(164\) −70.4622 96.9829i −0.429647 0.591359i
\(165\) −90.4664 + 25.9543i −0.548281 + 0.157299i
\(166\) −1.25085 0.908795i −0.00753523 0.00547467i
\(167\) −4.56813 14.0593i −0.0273541 0.0841871i 0.936448 0.350808i \(-0.114093\pi\)
−0.963802 + 0.266621i \(0.914093\pi\)
\(168\) 27.1062 11.2439i 0.161346 0.0669279i
\(169\) 6.24259 + 19.2127i 0.0369384 + 0.113685i
\(170\) 49.0697 27.7384i 0.288645 0.163167i
\(171\) −55.6001 108.848i −0.325146 0.636538i
\(172\) −237.134 77.0496i −1.37869 0.447963i
\(173\) 114.125 82.9168i 0.659683 0.479288i −0.206873 0.978368i \(-0.566329\pi\)
0.866556 + 0.499080i \(0.166329\pi\)
\(174\) 85.8645 35.6173i 0.493474 0.204697i
\(175\) 32.3067 28.0419i 0.184610 0.160239i
\(176\) 57.7356i 0.328043i
\(177\) −14.9953 + 24.4979i −0.0847189 + 0.138406i
\(178\) −77.9946 25.3420i −0.438172 0.142371i
\(179\) 18.8274 + 6.11739i 0.105181 + 0.0341754i 0.361135 0.932514i \(-0.382389\pi\)
−0.255954 + 0.966689i \(0.582389\pi\)
\(180\) −127.784 84.4600i −0.709912 0.469222i
\(181\) −24.7103 76.0504i −0.136521 0.420168i 0.859303 0.511467i \(-0.170898\pi\)
−0.995823 + 0.0912996i \(0.970898\pi\)
\(182\) −16.1163 −0.0885509
\(183\) −4.68664 + 4.00688i −0.0256101 + 0.0218955i
\(184\) −177.496 128.958i −0.964652 0.700861i
\(185\) −4.89630 8.66165i −0.0264665 0.0468197i
\(186\) 53.0859 + 32.4940i 0.285408 + 0.174699i
\(187\) −53.8486 + 74.1163i −0.287961 + 0.396344i
\(188\) −48.3165 35.1040i −0.257003 0.186723i
\(189\) 10.8540 + 44.9086i 0.0574283 + 0.237612i
\(190\) −45.6405 + 25.7999i −0.240213 + 0.135789i
\(191\) −82.2359 + 113.188i −0.430554 + 0.592607i −0.968080 0.250640i \(-0.919359\pi\)
0.537526 + 0.843247i \(0.319359\pi\)
\(192\) 31.1638 26.6438i 0.162311 0.138770i
\(193\) 179.383i 0.929445i −0.885456 0.464723i \(-0.846154\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(194\) 66.3968 21.5736i 0.342251 0.111204i
\(195\) 102.339 + 151.679i 0.524815 + 0.777839i
\(196\) −48.4609 + 149.147i −0.247249 + 0.760955i
\(197\) −4.98853 + 15.3531i −0.0253225 + 0.0779346i −0.962919 0.269790i \(-0.913046\pi\)
0.937597 + 0.347725i \(0.113046\pi\)
\(198\) −43.0700 6.77680i −0.217525 0.0342263i
\(199\) 344.397 1.73064 0.865318 0.501223i \(-0.167116\pi\)
0.865318 + 0.501223i \(0.167116\pi\)
\(200\) −73.6958 + 122.445i −0.368479 + 0.612227i
\(201\) 73.7791 30.6042i 0.367060 0.152260i
\(202\) 71.3517 + 98.2072i 0.353226 + 0.486174i
\(203\) 21.2214 65.3127i 0.104539 0.321737i
\(204\) −148.635 + 11.7737i −0.728602 + 0.0577143i
\(205\) −86.6542 153.293i −0.422703 0.747770i
\(206\) 67.8606 22.0493i 0.329421 0.107035i
\(207\) 243.999 244.494i 1.17874 1.18113i
\(208\) −106.753 + 34.6860i −0.513233 + 0.166760i
\(209\) 50.0855 68.9367i 0.239643 0.329841i
\(210\) 19.0494 5.46516i 0.0907113 0.0260246i
\(211\) 30.9857 22.5124i 0.146852 0.106694i −0.511934 0.859025i \(-0.671071\pi\)
0.658785 + 0.752331i \(0.271071\pi\)
\(212\) 229.912 + 167.041i 1.08449 + 0.787930i
\(213\) −251.067 60.1411i −1.17872 0.282353i
\(214\) 2.66141 1.93362i 0.0124365 0.00903563i
\(215\) −333.223 152.007i −1.54987 0.707010i
\(216\) −80.8455 131.478i −0.374285 0.608695i
\(217\) 43.7307 14.2090i 0.201524 0.0654790i
\(218\) 118.913 0.545471
\(219\) −18.8540 22.0525i −0.0860912 0.100696i
\(220\) 12.1277 106.095i 0.0551260 0.482250i
\(221\) 169.391 + 55.0385i 0.766475 + 0.249043i
\(222\) −0.363974 4.59491i −0.00163952 0.0206978i
\(223\) 147.749 + 203.359i 0.662550 + 0.911922i 0.999562 0.0295784i \(-0.00941647\pi\)
−0.337013 + 0.941500i \(0.609416\pi\)
\(224\) 51.2849i 0.228951i
\(225\) −172.400 144.580i −0.766222 0.642576i
\(226\) 17.3697 0.0768570
\(227\) 28.4124 20.6428i 0.125165 0.0909376i −0.523442 0.852062i \(-0.675352\pi\)
0.648606 + 0.761124i \(0.275352\pi\)
\(228\) 138.248 10.9509i 0.606349 0.0480304i
\(229\) −45.0741 + 138.724i −0.196830 + 0.605781i 0.803120 + 0.595817i \(0.203172\pi\)
−0.999950 + 0.00996408i \(0.996828\pi\)
\(230\) −109.201 100.138i −0.474786 0.435384i
\(231\) −24.4818 + 20.9309i −0.105982 + 0.0906101i
\(232\) 229.418i 0.988870i
\(233\) −40.5672 124.853i −0.174108 0.535849i 0.825484 0.564426i \(-0.190902\pi\)
−0.999592 + 0.0285768i \(0.990902\pi\)
\(234\) 13.3450 + 83.7072i 0.0570301 + 0.357723i
\(235\) −64.6575 59.2917i −0.275138 0.252305i
\(236\) −19.1557 26.3656i −0.0811684 0.111719i
\(237\) −93.9305 + 392.125i −0.396331 + 1.65454i
\(238\) 11.3388 15.6066i 0.0476421 0.0655738i
\(239\) −100.919 138.903i −0.422255 0.581185i 0.543899 0.839151i \(-0.316948\pi\)
−0.966154 + 0.257966i \(0.916948\pi\)
\(240\) 114.419 77.1994i 0.476745 0.321664i
\(241\) 324.422 + 235.706i 1.34615 + 0.978034i 0.999194 + 0.0401521i \(0.0127843\pi\)
0.346955 + 0.937882i \(0.387216\pi\)
\(242\) 19.4766 + 59.9430i 0.0804820 + 0.247698i
\(243\) 224.266 93.5615i 0.922905 0.385027i
\(244\) −2.16191 6.65368i −0.00886030 0.0272692i
\(245\) −95.6060 + 209.583i −0.390228 + 0.855440i
\(246\) −6.44158 81.3202i −0.0261853 0.330570i
\(247\) −157.553 51.1922i −0.637867 0.207256i
\(248\) −124.272 + 90.2889i −0.501097 + 0.364068i
\(249\) 2.30181 + 5.54908i 0.00924420 + 0.0222855i
\(250\) −58.8376 + 76.5029i −0.235350 + 0.306012i
\(251\) 365.146i 1.45476i 0.686233 + 0.727382i \(0.259263\pi\)
−0.686233 + 0.727382i \(0.740737\pi\)
\(252\) −51.7843 8.14795i −0.205493 0.0323332i
\(253\) 229.023 + 74.4140i 0.905229 + 0.294127i
\(254\) −112.987 36.7118i −0.444832 0.144535i
\(255\) −218.884 7.61334i −0.858367 0.0298562i
\(256\) −14.2272 43.7869i −0.0555751 0.171043i
\(257\) 142.469 0.554354 0.277177 0.960819i \(-0.410601\pi\)
0.277177 + 0.960819i \(0.410601\pi\)
\(258\) −110.258 128.963i −0.427356 0.499856i
\(259\) −2.75483 2.00150i −0.0106364 0.00772780i
\(260\) −203.455 + 41.3150i −0.782518 + 0.158904i
\(261\) −356.804 56.1409i −1.36706 0.215099i
\(262\) 75.9151 104.488i 0.289752 0.398810i
\(263\) 198.261 + 144.045i 0.753843 + 0.547699i 0.897016 0.441998i \(-0.145730\pi\)
−0.143172 + 0.989698i \(0.545730\pi\)
\(264\) 56.1756 91.7748i 0.212786 0.347632i
\(265\) 307.670 + 282.137i 1.16102 + 1.06467i
\(266\) −10.5464 + 14.5159i −0.0396482 + 0.0545711i
\(267\) 207.067 + 242.195i 0.775531 + 0.907098i
\(268\) 90.6277i 0.338163i
\(269\) −110.951 + 36.0503i −0.412459 + 0.134016i −0.507894 0.861420i \(-0.669576\pi\)
0.0954349 + 0.995436i \(0.469576\pi\)
\(270\) −44.1596 94.4162i −0.163554 0.349690i
\(271\) −53.8737 + 165.806i −0.198796 + 0.611831i 0.801115 + 0.598510i \(0.204240\pi\)
−0.999911 + 0.0133212i \(0.995760\pi\)
\(272\) 41.5183 127.780i 0.152641 0.469780i
\(273\) 53.4091 + 32.6918i 0.195638 + 0.119750i
\(274\) 147.761 0.539273
\(275\) 35.3987 152.813i 0.128723 0.555685i
\(276\) 150.164 + 362.009i 0.544073 + 1.31163i
\(277\) 107.330 + 147.728i 0.387475 + 0.533313i 0.957545 0.288282i \(-0.0930842\pi\)
−0.570071 + 0.821596i \(0.693084\pi\)
\(278\) 1.97747 6.08604i 0.00711322 0.0218922i
\(279\) −110.012 215.370i −0.394308 0.771934i
\(280\) −5.55468 + 48.5931i −0.0198381 + 0.173547i
\(281\) 17.1449 5.57070i 0.0610137 0.0198246i −0.278351 0.960479i \(-0.589788\pi\)
0.339365 + 0.940655i \(0.389788\pi\)
\(282\) −15.5715 37.5389i −0.0552179 0.133117i
\(283\) 19.2974 6.27010i 0.0681887 0.0221558i −0.274724 0.961523i \(-0.588586\pi\)
0.342913 + 0.939367i \(0.388586\pi\)
\(284\) 172.177 236.982i 0.606258 0.834443i
\(285\) 203.587 + 7.08129i 0.714341 + 0.0248466i
\(286\) −47.8079 + 34.7345i −0.167160 + 0.121449i
\(287\) −48.7546 35.4223i −0.169877 0.123423i
\(288\) 266.372 42.4664i 0.924902 0.147453i
\(289\) 61.3306 44.5593i 0.212217 0.154184i
\(290\) −17.5956 + 153.929i −0.0606744 + 0.530788i
\(291\) −263.800 63.1912i −0.906530 0.217152i
\(292\) 31.3082 10.1727i 0.107220 0.0348379i
\(293\) −121.001 −0.412971 −0.206486 0.978450i \(-0.566203\pi\)
−0.206486 + 0.978450i \(0.566203\pi\)
\(294\) −81.1121 + 69.3475i −0.275891 + 0.235876i
\(295\) −23.5577 41.6740i −0.0798565 0.141268i
\(296\) 10.8188 + 3.51524i 0.0365500 + 0.0118758i
\(297\) 128.987 + 109.826i 0.434298 + 0.369784i
\(298\) −120.847 166.331i −0.405526 0.558159i
\(299\) 468.167i 1.56577i
\(300\) 226.472 117.827i 0.754908 0.392758i
\(301\) −125.346 −0.416430
\(302\) 130.700 94.9588i 0.432780 0.314433i
\(303\) −37.2453 470.195i −0.122922 1.55180i
\(304\) −38.6168 + 118.850i −0.127029 + 0.390955i
\(305\) −2.04512 10.0711i −0.00670531 0.0330201i
\(306\) −90.4490 45.9704i −0.295585 0.150230i
\(307\) 186.483i 0.607435i 0.952762 + 0.303718i \(0.0982279\pi\)
−0.952762 + 0.303718i \(0.901772\pi\)
\(308\) −11.2933 34.7572i −0.0366665 0.112848i
\(309\) −269.616 64.5844i −0.872545 0.209011i
\(310\) −90.3056 + 51.0484i −0.291308 + 0.164672i
\(311\) 188.941 + 260.055i 0.607526 + 0.836188i 0.996371 0.0851150i \(-0.0271258\pi\)
−0.388845 + 0.921303i \(0.627126\pi\)
\(312\) −203.439 48.7322i −0.652049 0.156193i
\(313\) −117.969 + 162.371i −0.376899 + 0.518757i −0.954760 0.297378i \(-0.903888\pi\)
0.577861 + 0.816135i \(0.303888\pi\)
\(314\) 98.4715 + 135.534i 0.313603 + 0.431638i
\(315\) −74.2155 20.5302i −0.235605 0.0651752i
\(316\) −370.126 268.912i −1.17128 0.850988i
\(317\) −124.913 384.444i −0.394048 1.21276i −0.929700 0.368317i \(-0.879934\pi\)
0.535652 0.844439i \(-0.320066\pi\)
\(318\) 74.0962 + 178.627i 0.233007 + 0.561721i
\(319\) −77.8128 239.483i −0.243927 0.750731i
\(320\) 13.5990 + 66.9680i 0.0424970 + 0.209275i
\(321\) −12.7422 + 1.00934i −0.0396954 + 0.00314437i
\(322\) −48.2250 15.6693i −0.149767 0.0486623i
\(323\) 160.422 116.553i 0.496663 0.360847i
\(324\) 0.559787 + 275.713i 0.00172774 + 0.850965i
\(325\) −303.817 + 26.3542i −0.934820 + 0.0810900i
\(326\) 10.9736i 0.0336614i
\(327\) −394.075 241.214i −1.20512 0.737659i
\(328\) 191.470 + 62.2124i 0.583750 + 0.189672i
\(329\) −28.5539 9.27772i −0.0867900 0.0281998i
\(330\) 44.7300 57.2681i 0.135545 0.173540i
\(331\) −162.219 499.260i −0.490089 1.50834i −0.824473 0.565902i \(-0.808528\pi\)
0.334384 0.942437i \(-0.391472\pi\)
\(332\) −6.81630 −0.0205310
\(333\) −8.11458 + 15.9658i −0.0243681 + 0.0479454i
\(334\) 9.23389 + 6.70881i 0.0276464 + 0.0200863i
\(335\) −15.1190 + 132.263i −0.0451314 + 0.394816i
\(336\) 24.6611 40.2892i 0.0733962 0.119908i
\(337\) 216.442 297.907i 0.642261 0.883996i −0.356473 0.934306i \(-0.616021\pi\)
0.998734 + 0.0503096i \(0.0160208\pi\)
\(338\) −12.6186 9.16795i −0.0373331 0.0271241i
\(339\) −57.5629 35.2344i −0.169802 0.103936i
\(340\) 103.135 226.088i 0.303338 0.664964i
\(341\) 99.1005 136.400i 0.290617 0.400001i
\(342\) 84.1280 + 42.7578i 0.245988 + 0.125023i
\(343\) 162.684i 0.474298i
\(344\) 398.246 129.398i 1.15769 0.376157i
\(345\) 158.759 + 553.371i 0.460172 + 1.60398i
\(346\) −33.6571 + 103.586i −0.0972750 + 0.299382i
\(347\) 59.4858 183.079i 0.171429 0.527604i −0.828024 0.560693i \(-0.810535\pi\)
0.999452 + 0.0330896i \(0.0105347\pi\)
\(348\) 213.952 349.536i 0.614805 1.00441i
\(349\) −293.490 −0.840945 −0.420473 0.907305i \(-0.638136\pi\)
−0.420473 + 0.907305i \(0.638136\pi\)
\(350\) −7.45386 + 32.1777i −0.0212967 + 0.0919362i
\(351\) 125.575 304.475i 0.357763 0.867450i
\(352\) 110.532 + 152.134i 0.314010 + 0.432198i
\(353\) −171.108 + 526.617i −0.484726 + 1.49183i 0.347652 + 0.937624i \(0.386979\pi\)
−0.832378 + 0.554209i \(0.813021\pi\)
\(354\) −1.75120 22.1076i −0.00494688 0.0624508i
\(355\) 290.812 317.131i 0.819190 0.893326i
\(356\) −343.848 + 111.723i −0.965864 + 0.313828i
\(357\) −69.2347 + 28.7191i −0.193935 + 0.0804457i
\(358\) −14.5366 + 4.72321i −0.0406049 + 0.0131933i
\(359\) −85.3501 + 117.474i −0.237744 + 0.327227i −0.911172 0.412026i \(-0.864821\pi\)
0.673428 + 0.739253i \(0.264821\pi\)
\(360\) 256.990 11.3867i 0.713861 0.0316296i
\(361\) 142.844 103.782i 0.395690 0.287486i
\(362\) 49.9487 + 36.2898i 0.137980 + 0.100248i
\(363\) 57.0490 238.159i 0.157160 0.656084i
\(364\) −57.4809 + 41.7623i −0.157915 + 0.114732i
\(365\) 47.3887 9.62310i 0.129832 0.0263646i
\(366\) 1.10903 4.62977i 0.00303012 0.0126497i
\(367\) −224.988 + 73.1032i −0.613047 + 0.199191i −0.599051 0.800711i \(-0.704455\pi\)
−0.0139964 + 0.999902i \(0.504455\pi\)
\(368\) −353.162 −0.959678
\(369\) −143.611 + 282.561i −0.389190 + 0.765748i
\(370\) 6.98931 + 3.18833i 0.0188900 + 0.00861711i
\(371\) 135.873 + 44.1477i 0.366233 + 0.118996i
\(372\) 273.541 21.6678i 0.735324 0.0582468i
\(373\) −168.516 231.942i −0.451784 0.621828i 0.520995 0.853559i \(-0.325561\pi\)
−0.972780 + 0.231732i \(0.925561\pi\)
\(374\) 70.7338i 0.189128i
\(375\) 350.173 134.178i 0.933796 0.357807i
\(376\) 100.299 0.266752
\(377\) −396.054 + 287.750i −1.05054 + 0.763263i
\(378\) −27.1605 23.1258i −0.0718532 0.0611795i
\(379\) −38.5235 + 118.563i −0.101645 + 0.312831i −0.988928 0.148393i \(-0.952590\pi\)
0.887283 + 0.461225i \(0.152590\pi\)
\(380\) −95.9276 + 210.288i −0.252441 + 0.553389i
\(381\) 299.969 + 350.857i 0.787319 + 0.920885i
\(382\) 108.022i 0.282781i
\(383\) 210.811 + 648.811i 0.550422 + 1.69402i 0.707738 + 0.706475i \(0.249716\pi\)
−0.157316 + 0.987548i \(0.550284\pi\)
\(384\) −91.1550 + 380.539i −0.237383 + 0.990987i
\(385\) −10.6832 52.6090i −0.0277485 0.136647i
\(386\) 81.4087 + 112.050i 0.210903 + 0.290284i
\(387\) 103.792 + 651.040i 0.268197 + 1.68227i
\(388\) 180.909 249.000i 0.466261 0.641753i
\(389\) −16.7972 23.1194i −0.0431805 0.0594329i 0.786881 0.617105i \(-0.211695\pi\)
−0.830061 + 0.557672i \(0.811695\pi\)
\(390\) −132.761 48.3002i −0.340412 0.123847i
\(391\) 453.360 + 329.385i 1.15949 + 0.842418i
\(392\) −81.3857 250.479i −0.207617 0.638978i
\(393\) −463.536 + 192.279i −1.17948 + 0.489259i
\(394\) −3.85162 11.8541i −0.00977569 0.0300865i
\(395\) −495.305 454.200i −1.25394 1.14987i
\(396\) −171.176 + 87.4375i −0.432262 + 0.220802i
\(397\) −195.376 63.4815i −0.492131 0.159903i 0.0524297 0.998625i \(-0.483303\pi\)
−0.544560 + 0.838722i \(0.683303\pi\)
\(398\) −215.123 + 156.296i −0.540511 + 0.392704i
\(399\) 64.3963 26.7121i 0.161394 0.0669476i
\(400\) 19.8803 + 229.184i 0.0497008 + 0.572960i
\(401\) 396.678i 0.989222i −0.869115 0.494611i \(-0.835311\pi\)
0.869115 0.494611i \(-0.164689\pi\)
\(402\) −32.1963 + 52.5995i −0.0800903 + 0.130845i
\(403\) −311.739 101.290i −0.773547 0.251341i
\(404\) 508.972 + 165.375i 1.25983 + 0.409344i
\(405\) −45.1790 + 402.472i −0.111553 + 0.993758i
\(406\) 16.3849 + 50.4276i 0.0403570 + 0.124206i
\(407\) −12.4858 −0.0306775
\(408\) 190.324 162.719i 0.466480 0.398821i
\(409\) 279.949 + 203.395i 0.684472 + 0.497298i 0.874838 0.484415i \(-0.160968\pi\)
−0.190366 + 0.981713i \(0.560968\pi\)
\(410\) 123.696 + 56.4267i 0.301697 + 0.137626i
\(411\) −489.677 299.733i −1.19143 0.729277i
\(412\) 184.898 254.490i 0.448781 0.617694i
\(413\) −13.2544 9.62985i −0.0320929 0.0233168i
\(414\) −41.4528 + 263.454i −0.100128 + 0.636361i
\(415\) −9.94780 1.13713i −0.0239706 0.00274008i
\(416\) 214.889 295.769i 0.516560 0.710984i
\(417\) −18.8989 + 16.1578i −0.0453210 + 0.0387476i
\(418\) 65.7907i 0.157394i
\(419\) 158.769 51.5871i 0.378923 0.123120i −0.113362 0.993554i \(-0.536162\pi\)
0.492285 + 0.870434i \(0.336162\pi\)
\(420\) 53.7803 68.8552i 0.128048 0.163941i
\(421\) 10.2098 31.4226i 0.0242514 0.0746380i −0.938198 0.346098i \(-0.887506\pi\)
0.962450 + 0.271460i \(0.0875065\pi\)
\(422\) −9.13812 + 28.1242i −0.0216543 + 0.0666451i
\(423\) −24.5441 + 155.990i −0.0580239 + 0.368771i
\(424\) −477.267 −1.12563
\(425\) 188.234 312.750i 0.442903 0.735882i
\(426\) 184.120 76.3745i 0.432206 0.179283i
\(427\) −2.06726 2.84534i −0.00484136 0.00666356i
\(428\) 4.48165 13.7931i 0.0104711 0.0322268i
\(429\) 228.894 18.1312i 0.533552 0.0422639i
\(430\) 277.129 56.2758i 0.644485 0.130874i
\(431\) 570.239 185.282i 1.32306 0.429888i 0.439516 0.898235i \(-0.355150\pi\)
0.883545 + 0.468347i \(0.155150\pi\)
\(432\) −229.681 94.7274i −0.531669 0.219277i
\(433\) 265.335 86.2124i 0.612782 0.199105i 0.0138489 0.999904i \(-0.495592\pi\)
0.598933 + 0.800799i \(0.295592\pi\)
\(434\) −20.8675 + 28.7216i −0.0480817 + 0.0661788i
\(435\) 370.556 474.425i 0.851853 1.09063i
\(436\) 424.118 308.140i 0.972749 0.706743i
\(437\) −421.678 306.367i −0.964937 0.701068i
\(438\) 21.7849 + 5.21840i 0.0497373 + 0.0119142i
\(439\) 243.371 176.819i 0.554376 0.402778i −0.275020 0.961438i \(-0.588685\pi\)
0.829396 + 0.558661i \(0.188685\pi\)
\(440\) 88.2523 + 156.120i 0.200574 + 0.354818i
\(441\) 409.476 65.2808i 0.928517 0.148029i
\(442\) −130.786 + 42.4950i −0.295896 + 0.0961425i
\(443\) −225.255 −0.508477 −0.254239 0.967142i \(-0.581825\pi\)
−0.254239 + 0.967142i \(0.581825\pi\)
\(444\) −13.2050 15.4452i −0.0297411 0.0347866i
\(445\) −520.454 + 105.687i −1.16956 + 0.237500i
\(446\) −184.579 59.9733i −0.413854 0.134469i
\(447\) 63.0815 + 796.358i 0.141122 + 1.78156i
\(448\) 13.7463 + 18.9201i 0.0306836 + 0.0422324i
\(449\) 544.155i 1.21193i 0.795493 + 0.605963i \(0.207212\pi\)
−0.795493 + 0.605963i \(0.792788\pi\)
\(450\) 173.302 + 12.0704i 0.385115 + 0.0268230i
\(451\) −220.971 −0.489959
\(452\) 61.9514 45.0103i 0.137061 0.0995803i
\(453\) −625.761 + 49.5681i −1.38137 + 0.109422i
\(454\) −8.37923 + 25.7886i −0.0184565 + 0.0568031i
\(455\) −90.8554 + 51.3592i −0.199682 + 0.112877i
\(456\) −177.023 + 151.347i −0.388209 + 0.331902i
\(457\) 166.755i 0.364890i 0.983216 + 0.182445i \(0.0584012\pi\)
−0.983216 + 0.182445i \(0.941599\pi\)
\(458\) −34.8015 107.108i −0.0759859 0.233861i
\(459\) 206.496 + 335.821i 0.449882 + 0.731637i
\(460\) −648.970 74.1838i −1.41080 0.161269i
\(461\) −82.9803 114.213i −0.180001 0.247750i 0.709477 0.704729i \(-0.248931\pi\)
−0.889477 + 0.456979i \(0.848931\pi\)
\(462\) 5.79327 24.1848i 0.0125395 0.0523480i
\(463\) −275.071 + 378.603i −0.594106 + 0.817717i −0.995153 0.0983404i \(-0.968647\pi\)
0.401046 + 0.916058i \(0.368647\pi\)
\(464\) 217.064 + 298.763i 0.467811 + 0.643887i
\(465\) 402.823 + 14.0112i 0.866287 + 0.0301317i
\(466\) 82.0014 + 59.5775i 0.175969 + 0.127849i
\(467\) 36.4887 + 112.301i 0.0781342 + 0.240472i 0.982493 0.186301i \(-0.0596501\pi\)
−0.904358 + 0.426774i \(0.859650\pi\)
\(468\) 264.509 + 263.972i 0.565190 + 0.564043i
\(469\) 14.0788 + 43.3300i 0.0300187 + 0.0923880i
\(470\) 67.2957 + 7.69257i 0.143182 + 0.0163672i
\(471\) −51.4017 648.909i −0.109133 1.37773i
\(472\) 52.0527 + 16.9130i 0.110281 + 0.0358325i
\(473\) −371.830 + 270.150i −0.786110 + 0.571142i
\(474\) −119.284 287.565i −0.251654 0.606676i
\(475\) −175.079 + 290.894i −0.368588 + 0.612408i
\(476\) 85.0455i 0.178667i
\(477\) 116.792 742.273i 0.244847 1.55613i
\(478\) 126.076 + 40.9645i 0.263757 + 0.0856998i
\(479\) 3.93806 + 1.27955i 0.00822141 + 0.00267130i 0.313125 0.949712i \(-0.398624\pi\)
−0.304903 + 0.952383i \(0.598624\pi\)
\(480\) −153.700 + 422.469i −0.320209 + 0.880144i
\(481\) 7.50110 + 23.0860i 0.0155948 + 0.0479959i
\(482\) −309.616 −0.642357
\(483\) 128.032 + 149.752i 0.265077 + 0.310046i
\(484\) 224.797 + 163.325i 0.464457 + 0.337448i
\(485\) 305.561 333.214i 0.630023 0.687039i
\(486\) −97.6245 + 160.220i −0.200873 + 0.329671i
\(487\) 481.749 663.071i 0.989218 1.36154i 0.0575051 0.998345i \(-0.481685\pi\)
0.931713 0.363196i \(-0.118315\pi\)
\(488\) 9.50540 + 6.90608i 0.0194783 + 0.0141518i
\(489\) 22.2600 36.3665i 0.0455215 0.0743691i
\(490\) −35.3951 174.302i −0.0722348 0.355718i
\(491\) −229.669 + 316.113i −0.467758 + 0.643814i −0.976095 0.217344i \(-0.930261\pi\)
0.508337 + 0.861158i \(0.330261\pi\)
\(492\) −233.701 273.348i −0.475002 0.555585i
\(493\) 585.979i 1.18860i
\(494\) 121.646 39.5252i 0.246247 0.0800106i
\(495\) −264.403 + 99.0509i −0.534148 + 0.200103i
\(496\) −76.4083 + 235.161i −0.154049 + 0.474114i
\(497\) 45.5051 140.050i 0.0915596 0.281792i
\(498\) −3.95612 2.42155i −0.00794401 0.00486255i
\(499\) −901.118 −1.80585 −0.902923 0.429801i \(-0.858584\pi\)
−0.902923 + 0.429801i \(0.858584\pi\)
\(500\) −11.6094 + 425.325i −0.0232189 + 0.850650i
\(501\) −16.9922 40.9639i −0.0339165 0.0817642i
\(502\) −165.713 228.084i −0.330105 0.454351i
\(503\) 158.993 489.331i 0.316090 0.972825i −0.659213 0.751956i \(-0.729111\pi\)
0.975303 0.220869i \(-0.0708894\pi\)
\(504\) 78.4011 40.0476i 0.155558 0.0794596i
\(505\) 715.212 + 326.260i 1.41626 + 0.646059i
\(506\) −176.828 + 57.4548i −0.349462 + 0.113547i
\(507\) 23.2207 + 55.9793i 0.0458002 + 0.110413i
\(508\) −498.117 + 161.848i −0.980545 + 0.318598i
\(509\) −91.7524 + 126.286i −0.180260 + 0.248107i −0.889579 0.456781i \(-0.849002\pi\)
0.709319 + 0.704887i \(0.249002\pi\)
\(510\) 140.178 94.5796i 0.274859 0.185450i
\(511\) 13.3885 9.72728i 0.0262005 0.0190358i
\(512\) −393.337 285.776i −0.768237 0.558157i
\(513\) −192.065 312.353i −0.374395 0.608875i
\(514\) −88.9917 + 64.6562i −0.173136 + 0.125790i
\(515\) 312.298 340.560i 0.606403 0.661282i
\(516\) −727.434 174.251i −1.40976 0.337696i
\(517\) −104.699 + 34.0188i −0.202513 + 0.0658004i
\(518\) 2.62911 0.00507549
\(519\) 321.664 275.009i 0.619776 0.529883i
\(520\) 235.645 256.970i 0.453163 0.494174i
\(521\) 749.697 + 243.591i 1.43896 + 0.467546i 0.921573 0.388206i \(-0.126905\pi\)
0.517386 + 0.855752i \(0.326905\pi\)
\(522\) 248.352 126.859i 0.475769 0.243025i
\(523\) 106.206 + 146.180i 0.203070 + 0.279503i 0.898390 0.439198i \(-0.144737\pi\)
−0.695320 + 0.718700i \(0.744737\pi\)
\(524\) 569.392i 1.08663i
\(525\) 89.9744 91.5162i 0.171380 0.174317i
\(526\) −189.213 −0.359720
\(527\) 317.416 230.616i 0.602307 0.437601i
\(528\) −13.6773 172.666i −0.0259040 0.327019i
\(529\) 291.711 897.795i 0.551439 1.69716i
\(530\) −320.224 36.6048i −0.604196 0.0690657i
\(531\) −39.0418 + 76.8166i −0.0735251 + 0.144664i
\(532\) 79.1021i 0.148688i
\(533\) 132.754 + 408.574i 0.249069 + 0.766555i
\(534\) −239.257 57.3120i −0.448046 0.107326i
\(535\) 8.84161 19.3822i 0.0165264 0.0362283i
\(536\) −89.4616 123.133i −0.166906 0.229726i
\(537\) 57.7550 + 13.8348i 0.107551 + 0.0257630i
\(538\) 52.9440 72.8711i 0.0984089 0.135448i
\(539\) 169.913 + 233.865i 0.315237 + 0.433887i
\(540\) −402.164 222.317i −0.744748 0.411698i
\(541\) 107.419 + 78.0448i 0.198557 + 0.144260i 0.682621 0.730772i \(-0.260840\pi\)
−0.484064 + 0.875033i \(0.660840\pi\)
\(542\) −41.5957 128.018i −0.0767448 0.236196i
\(543\) −91.9153 221.585i −0.169273 0.408075i
\(544\) 135.227 + 416.186i 0.248579 + 0.765047i
\(545\) 670.370 378.950i 1.23004 0.695321i
\(546\) −48.1978 + 3.81787i −0.0882744 + 0.00699243i
\(547\) −113.633 36.9217i −0.207739 0.0674986i 0.203299 0.979117i \(-0.434834\pi\)
−0.411038 + 0.911618i \(0.634834\pi\)
\(548\) 527.009 382.895i 0.961696 0.698713i
\(549\) −13.0668 + 13.0934i −0.0238011 + 0.0238495i
\(550\) 47.2393 + 111.518i 0.0858897 + 0.202760i
\(551\) 545.028i 0.989162i
\(552\) −561.375 343.619i −1.01698 0.622498i
\(553\) −218.735 71.0715i −0.395543 0.128520i
\(554\) −134.086 43.5670i −0.242032 0.0786408i
\(555\) −16.6949 24.7439i −0.0300810 0.0445836i
\(556\) −8.71791 26.8310i −0.0156797 0.0482571i
\(557\) −619.206 −1.11168 −0.555841 0.831289i \(-0.687603\pi\)
−0.555841 + 0.831289i \(0.687603\pi\)
\(558\) 166.458 + 84.6019i 0.298312 + 0.151616i
\(559\) 722.890 + 525.210i 1.29318 + 0.939553i
\(560\) 38.7428 + 68.5368i 0.0691836 + 0.122387i
\(561\) −143.484 + 234.411i −0.255764 + 0.417845i
\(562\) −8.18121 + 11.2605i −0.0145573 + 0.0200364i
\(563\) 102.281 + 74.3113i 0.181671 + 0.131992i 0.674904 0.737906i \(-0.264185\pi\)
−0.493233 + 0.869897i \(0.664185\pi\)
\(564\) −152.813 93.5372i −0.270945 0.165846i
\(565\) 97.9215 55.3536i 0.173312 0.0979709i
\(566\) −9.20836 + 12.6742i −0.0162692 + 0.0223926i
\(567\) 43.0988 + 131.734i 0.0760121 + 0.232335i
\(568\) 491.942i 0.866096i
\(569\) −937.859 + 304.729i −1.64826 + 0.535552i −0.978362 0.206903i \(-0.933662\pi\)
−0.669897 + 0.742454i \(0.733662\pi\)
\(570\) −130.382 + 87.9700i −0.228740 + 0.154333i
\(571\) −12.9513 + 39.8601i −0.0226819 + 0.0698076i −0.961757 0.273905i \(-0.911685\pi\)
0.939075 + 0.343713i \(0.111685\pi\)
\(572\) −80.5056 + 247.771i −0.140744 + 0.433165i
\(573\) −219.124 + 357.985i −0.382415 + 0.624756i
\(574\) 46.5296 0.0810620
\(575\) −934.740 216.530i −1.62563 0.376573i
\(576\) 86.8877 87.0643i 0.150847 0.151153i
\(577\) 520.698 + 716.679i 0.902423 + 1.24208i 0.969689 + 0.244343i \(0.0785723\pi\)
−0.0672662 + 0.997735i \(0.521428\pi\)
\(578\) −18.0873 + 55.6669i −0.0312928 + 0.0963095i
\(579\) −42.4950 536.468i −0.0733938 0.926543i
\(580\) 336.121 + 594.604i 0.579518 + 1.02518i
\(581\) −3.25894 + 1.05889i −0.00560919 + 0.00182254i
\(582\) 193.458 80.2479i 0.332401 0.137883i
\(583\) 498.207 161.877i 0.854557 0.277662i
\(584\) −32.4958 + 44.7267i −0.0556435 + 0.0765868i
\(585\) 341.990 + 429.371i 0.584599 + 0.733968i
\(586\) 75.5817 54.9133i 0.128979 0.0937087i
\(587\) 806.259 + 585.781i 1.37352 + 0.997924i 0.997453 + 0.0713330i \(0.0227253\pi\)
0.376071 + 0.926591i \(0.377275\pi\)
\(588\) −109.596 + 457.525i −0.186388 + 0.778103i
\(589\) −295.233 + 214.500i −0.501245 + 0.364176i
\(590\) 33.6278 + 15.3401i 0.0569962 + 0.0260001i
\(591\) −11.2818 + 47.0973i −0.0190893 + 0.0796908i
\(592\) 17.4149 5.65846i 0.0294171 0.00955820i
\(593\) 507.055 0.855068 0.427534 0.903999i \(-0.359382\pi\)
0.427534 + 0.903999i \(0.359382\pi\)
\(594\) −130.412 10.0638i −0.219549 0.0169425i
\(595\) 14.1878 124.116i 0.0238450 0.208599i
\(596\) −862.034 280.092i −1.44637 0.469953i
\(597\) 1029.96 81.5859i 1.72523 0.136660i
\(598\) 212.466 + 292.435i 0.355295 + 0.489022i
\(599\) 675.422i 1.12758i −0.825917 0.563791i \(-0.809342\pi\)
0.825917 0.563791i \(-0.190658\pi\)
\(600\) −191.390 + 383.647i −0.318984 + 0.639412i
\(601\) −659.654 −1.09759 −0.548797 0.835956i \(-0.684914\pi\)
−0.548797 + 0.835956i \(0.684914\pi\)
\(602\) 78.2956 56.8851i 0.130059 0.0944935i
\(603\) 213.396 109.004i 0.353891 0.180769i
\(604\) 220.090 677.368i 0.364388 1.12147i
\(605\) 300.825 + 275.860i 0.497232 + 0.455967i
\(606\) 236.652 + 276.799i 0.390514 + 0.456764i
\(607\) 1147.75i 1.89085i 0.325837 + 0.945426i \(0.394354\pi\)
−0.325837 + 0.945426i \(0.605646\pi\)
\(608\) −125.777 387.101i −0.206870 0.636679i
\(609\) 47.9931 200.353i 0.0788063 0.328988i
\(610\) 5.84801 + 5.36269i 0.00958690 + 0.00879129i
\(611\) 125.801 + 173.150i 0.205893 + 0.283388i
\(612\) −441.723 + 70.4218i −0.721769 + 0.115068i
\(613\) −346.355 + 476.717i −0.565016 + 0.777678i −0.991953 0.126603i \(-0.959593\pi\)
0.426937 + 0.904281i \(0.359593\pi\)
\(614\) −84.6307 116.484i −0.137835 0.189714i
\(615\) −295.465 437.915i −0.480431 0.712057i
\(616\) 49.6538 + 36.0756i 0.0806068 + 0.0585643i
\(617\) 160.785 + 494.845i 0.260591 + 0.802017i 0.992676 + 0.120804i \(0.0385473\pi\)
−0.732085 + 0.681213i \(0.761453\pi\)
\(618\) 197.723 82.0171i 0.319940 0.132714i
\(619\) 25.3157 + 77.9139i 0.0408978 + 0.125871i 0.969421 0.245404i \(-0.0789207\pi\)
−0.928523 + 0.371275i \(0.878921\pi\)
\(620\) −189.805 + 416.082i −0.306137 + 0.671099i
\(621\) 671.790 788.995i 1.08179 1.27052i
\(622\) −236.039 76.6938i −0.379484 0.123302i
\(623\) −147.041 + 106.832i −0.236021 + 0.171479i
\(624\) −311.041 + 129.022i −0.498462 + 0.206766i
\(625\) −87.8980 + 618.788i −0.140637 + 0.990061i
\(626\) 154.961i 0.247541i
\(627\) 133.456 218.029i 0.212849 0.347734i
\(628\) 702.425 + 228.232i 1.11851 + 0.363426i
\(629\) −27.6334 8.97863i −0.0439323 0.0142745i
\(630\) 55.6750 20.8570i 0.0883730 0.0331063i
\(631\) 80.8343 + 248.782i 0.128105 + 0.394267i 0.994454 0.105172i \(-0.0335394\pi\)
−0.866349 + 0.499439i \(0.833539\pi\)
\(632\) 768.332 1.21572
\(633\) 87.3337 74.6667i 0.137968 0.117957i
\(634\) 252.496 + 183.449i 0.398259 + 0.289352i
\(635\) −753.958 + 153.104i −1.18734 + 0.241109i
\(636\) 727.154 + 445.093i 1.14332 + 0.699832i
\(637\) 330.335 454.667i 0.518579 0.713762i
\(638\) 157.289 + 114.277i 0.246534 + 0.179117i
\(639\) −765.097 120.383i −1.19733 0.188393i
\(640\) −480.670 440.780i −0.751047 0.688719i
\(641\) −225.134 + 309.870i −0.351222 + 0.483416i −0.947677 0.319231i \(-0.896576\pi\)
0.596455 + 0.802647i \(0.296576\pi\)
\(642\) 7.50122 6.41323i 0.0116841 0.00998946i
\(643\) 657.068i 1.02188i −0.859617 0.510940i \(-0.829298\pi\)
0.859617 0.510940i \(-0.170702\pi\)
\(644\) −212.605 + 69.0796i −0.330132 + 0.107266i
\(645\) −1032.56 375.659i −1.60086 0.582416i
\(646\) −47.3108 + 145.608i −0.0732365 + 0.225399i
\(647\) −228.875 + 704.403i −0.353747 + 1.08872i 0.602985 + 0.797753i \(0.293978\pi\)
−0.956732 + 0.290970i \(0.906022\pi\)
\(648\) −272.926 374.051i −0.421182 0.577239i
\(649\) −60.0729 −0.0925623
\(650\) 177.815 154.342i 0.273562 0.237449i
\(651\) 127.416 52.8533i 0.195724 0.0811879i
\(652\) 28.4361 + 39.1390i 0.0436137 + 0.0600291i
\(653\) 51.5318 158.599i 0.0789155 0.242877i −0.903814 0.427926i \(-0.859244\pi\)
0.982729 + 0.185049i \(0.0592444\pi\)
\(654\) 355.624 28.1698i 0.543767 0.0430731i
\(655\) 94.9891 830.978i 0.145022 1.26867i
\(656\) 308.208 100.143i 0.469829 0.152657i
\(657\) −61.6094 61.4845i −0.0937739 0.0935837i
\(658\) 22.0463 7.16329i 0.0335051 0.0108865i
\(659\) −93.6473 + 128.894i −0.142105 + 0.195591i −0.874137 0.485679i \(-0.838572\pi\)
0.732032 + 0.681270i \(0.238572\pi\)
\(660\) 11.1361 320.164i 0.0168729 0.485097i
\(661\) −302.488 + 219.770i −0.457621 + 0.332481i −0.792597 0.609745i \(-0.791272\pi\)
0.334976 + 0.942227i \(0.391272\pi\)
\(662\) 327.906 + 238.238i 0.495326 + 0.359876i
\(663\) 519.625 + 124.472i 0.783747 + 0.187740i
\(664\) 9.26112 6.72860i 0.0139475 0.0101334i
\(665\) −13.1963 + 115.443i −0.0198440 + 0.173598i
\(666\) −2.17703 13.6555i −0.00326881 0.0205037i
\(667\) −1464.89 + 475.971i −2.19624 + 0.713600i
\(668\) 50.3186 0.0753273
\(669\) 490.037 + 573.170i 0.732491 + 0.856756i
\(670\) −50.5807 89.4782i −0.0754935 0.133549i
\(671\) −12.2648 3.98508i −0.0182784 0.00593901i
\(672\) 12.1492 + 153.374i 0.0180791 + 0.228236i
\(673\) −238.217 327.877i −0.353962 0.487187i 0.594492 0.804102i \(-0.297353\pi\)
−0.948454 + 0.316914i \(0.897353\pi\)
\(674\) 284.311i 0.421826i
\(675\) −549.835 391.544i −0.814570 0.580065i
\(676\) −68.7631 −0.101721
\(677\) 707.402 513.958i 1.04491 0.759169i 0.0736694 0.997283i \(-0.476529\pi\)
0.971237 + 0.238114i \(0.0765290\pi\)
\(678\) 51.9463 4.11479i 0.0766170 0.00606902i
\(679\) 47.8130 147.153i 0.0704167 0.216720i
\(680\) 83.0520 + 408.987i 0.122135 + 0.601452i
\(681\) 80.0809 68.4659i 0.117593 0.100537i
\(682\) 130.175i 0.190873i
\(683\) −409.220 1259.45i −0.599150 1.84399i −0.532876 0.846193i \(-0.678889\pi\)
−0.0662740 0.997801i \(-0.521111\pi\)
\(684\) 410.853 65.5004i 0.600663 0.0957608i
\(685\) 833.001 470.883i 1.21606 0.687420i
\(686\) −73.8305 101.619i −0.107625 0.148133i
\(687\) −101.937 + 425.550i −0.148380 + 0.619432i
\(688\) 396.193 545.312i 0.575861 0.792605i
\(689\) −598.618 823.927i −0.868822 1.19583i
\(690\) −350.302 273.608i −0.507684 0.396533i
\(691\) 131.537 + 95.5669i 0.190357 + 0.138302i 0.678882 0.734248i \(-0.262465\pi\)
−0.488525 + 0.872550i \(0.662465\pi\)
\(692\) 148.381 + 456.670i 0.214424 + 0.659928i
\(693\) −68.2576 + 68.3964i −0.0984959 + 0.0986961i
\(694\) 45.9287 + 141.354i 0.0661797 + 0.203680i
\(695\) −8.24694 40.6118i −0.0118661 0.0584343i
\(696\) 54.3480 + 686.104i 0.0780862 + 0.985782i
\(697\) −489.053 158.903i −0.701654 0.227981i
\(698\) 183.325 133.193i 0.262643 0.190822i
\(699\) −150.899 363.779i −0.215878 0.520428i
\(700\) 56.7973 + 134.081i 0.0811390 + 0.191545i
\(701\) 556.658i 0.794091i −0.917799 0.397046i \(-0.870035\pi\)
0.917799 0.397046i \(-0.129965\pi\)
\(702\) 59.7400 + 247.176i 0.0850996 + 0.352103i
\(703\) 25.7023 + 8.35117i 0.0365608 + 0.0118793i
\(704\) 81.5549 + 26.4988i 0.115845 + 0.0376403i
\(705\) −207.413 162.003i −0.294203 0.229791i
\(706\) −132.112 406.599i −0.187127 0.575919i
\(707\) 269.035 0.380530
\(708\) −63.5336 74.3119i −0.0897368 0.104960i
\(709\) −427.692 310.736i −0.603233 0.438274i 0.243792 0.969828i \(-0.421609\pi\)
−0.847025 + 0.531553i \(0.821609\pi\)
\(710\) −37.7303 + 330.070i −0.0531413 + 0.464888i
\(711\) −188.019 + 1194.95i −0.264443 + 1.68067i
\(712\) 356.891 491.218i 0.501251 0.689913i
\(713\) −834.343 606.186i −1.17019 0.850190i
\(714\) 30.2131 49.3596i 0.0423153 0.0691311i
\(715\) −158.825 + 348.169i −0.222133 + 0.486950i
\(716\) −39.6073 + 54.5148i −0.0553175 + 0.0761380i
\(717\) −334.717 391.501i −0.466830 0.546026i
\(718\) 112.113i 0.156146i
\(719\) 41.8379 13.5940i 0.0581890 0.0189068i −0.279778 0.960065i \(-0.590261\pi\)
0.337967 + 0.941158i \(0.390261\pi\)
\(720\) 323.896 257.980i 0.449856 0.358306i
\(721\) 48.8671 150.397i 0.0677768 0.208596i
\(722\) −42.1268 + 129.653i −0.0583473 + 0.179575i
\(723\) 1026.06 + 628.057i 1.41918 + 0.868681i
\(724\) 272.187 0.375949
\(725\) 391.344 + 923.846i 0.539784 + 1.27427i
\(726\) 72.4477 + 174.653i 0.0997902 + 0.240569i
\(727\) −498.452 686.060i −0.685628 0.943686i 0.314356 0.949305i \(-0.398211\pi\)
−0.999984 + 0.00561920i \(0.998211\pi\)
\(728\) 36.8727 113.483i 0.0506493 0.155883i
\(729\) 648.533 332.936i 0.889620 0.456702i
\(730\) −25.2336 + 27.5172i −0.0345665 + 0.0376948i
\(731\) −1017.20 + 330.508i −1.39152 + 0.452132i
\(732\) −8.04171 19.3866i −0.0109859 0.0264844i
\(733\) −447.807 + 145.501i −0.610924 + 0.198501i −0.598107 0.801417i \(-0.704080\pi\)
−0.0128176 + 0.999918i \(0.504080\pi\)
\(734\) 107.360 147.769i 0.146267 0.201320i
\(735\) −236.273 + 649.434i −0.321460 + 0.883583i
\(736\) 930.582 676.108i 1.26438 0.918624i
\(737\) 135.150 + 98.1925i 0.183379 + 0.133233i
\(738\) −38.5288 241.673i −0.0522070 0.327470i
\(739\) 30.1447 21.9014i 0.0407912 0.0296366i −0.567203 0.823578i \(-0.691974\pi\)
0.607994 + 0.793942i \(0.291974\pi\)
\(740\) 33.1903 6.73987i 0.0448518 0.00910794i
\(741\) −483.311 115.773i −0.652242 0.156239i
\(742\) −104.907 + 34.0862i −0.141384 + 0.0459383i
\(743\) 977.642 1.31580 0.657902 0.753104i \(-0.271444\pi\)
0.657902 + 0.753104i \(0.271444\pi\)
\(744\) −350.263 + 299.460i −0.470783 + 0.402501i
\(745\) −1211.34 552.579i −1.62596 0.741717i
\(746\) 210.523 + 68.4029i 0.282202 + 0.0916930i
\(747\) 8.19841 + 16.0500i 0.0109751 + 0.0214859i
\(748\) −183.294 252.282i −0.245045 0.337276i
\(749\) 7.29081i 0.00973407i
\(750\) −157.838 + 242.730i −0.210451 + 0.323641i
\(751\) 110.601 0.147271 0.0736355 0.997285i \(-0.476540\pi\)
0.0736355 + 0.997285i \(0.476540\pi\)
\(752\) 130.616 94.8979i 0.173691 0.126194i
\(753\) 86.5013 + 1092.02i 0.114876 + 1.45022i
\(754\) 116.802 359.480i 0.154910 0.476763i
\(755\) 434.205 951.843i 0.575105 1.26072i
\(756\) −156.798 12.1001i −0.207405 0.0160054i
\(757\) 193.534i 0.255659i 0.991796 + 0.127830i \(0.0408010\pi\)
−0.991796 + 0.127830i \(0.959199\pi\)
\(758\) −29.7438 91.5421i −0.0392399 0.120768i
\(759\) 702.551 + 168.291i 0.925628 + 0.221727i
\(760\) −77.2480 380.406i −0.101642 0.500534i
\(761\) −369.468 508.529i −0.485503 0.668238i 0.494047 0.869435i \(-0.335517\pi\)
−0.979551 + 0.201197i \(0.935517\pi\)
\(762\) −346.600 83.0253i −0.454856 0.108957i
\(763\) 154.906 213.210i 0.203023 0.279437i
\(764\) −279.920 385.277i −0.366388 0.504289i
\(765\) −656.404 + 29.0838i −0.858045 + 0.0380181i
\(766\) −426.129 309.601i −0.556304 0.404178i
\(767\) 36.0902 + 111.074i 0.0470537 + 0.144816i
\(768\) −52.9213 127.580i −0.0689079 0.166120i
\(769\) −17.4647 53.7507i −0.0227109 0.0698969i 0.939059 0.343757i \(-0.111700\pi\)
−0.961770 + 0.273860i \(0.911700\pi\)
\(770\) 30.5485 + 28.0133i 0.0396734 + 0.0363809i
\(771\) 426.073 33.7503i 0.552623 0.0437746i
\(772\) 580.711 + 188.685i 0.752217 + 0.244410i
\(773\) 714.283 518.957i 0.924040 0.671354i −0.0204865 0.999790i \(-0.506522\pi\)
0.944526 + 0.328436i \(0.106522\pi\)
\(774\) −360.292 359.561i −0.465493 0.464549i
\(775\) −346.417 + 575.570i −0.446990 + 0.742672i
\(776\) 516.891i 0.666097i
\(777\) −8.71283 5.33314i −0.0112134 0.00686376i
\(778\) 20.9844 + 6.81824i 0.0269722 + 0.00876381i
\(779\) 454.876 + 147.798i 0.583922 + 0.189728i
\(780\) −598.670 + 171.755i −0.767526 + 0.220199i
\(781\) −166.855 513.526i −0.213642 0.657523i
\(782\) −432.670 −0.553287
\(783\) −1080.37 83.3717i −1.37978 0.106477i
\(784\) −342.978 249.188i −0.437472 0.317842i
\(785\) 987.053 + 450.267i 1.25739 + 0.573588i
\(786\) 202.281 330.470i 0.257356 0.420445i
\(787\) 476.013 655.176i 0.604845 0.832498i −0.391296 0.920265i \(-0.627973\pi\)
0.996141 + 0.0877672i \(0.0279732\pi\)
\(788\) −44.4550 32.2984i −0.0564149 0.0409879i
\(789\) 627.049 + 383.818i 0.794739 + 0.486462i
\(790\) 515.515 + 58.9285i 0.652551 + 0.0745930i
\(791\) 22.6273 31.1438i 0.0286060 0.0393727i
\(792\) 146.260 287.772i 0.184671 0.363349i
\(793\) 25.0716i 0.0316162i
\(794\) 150.849 49.0138i 0.189986 0.0617302i
\(795\) 986.966 + 770.883i 1.24147 + 0.969664i
\(796\) −362.255 + 1114.91i −0.455094 + 1.40063i
\(797\) 71.4536 219.912i 0.0896532 0.275924i −0.896170 0.443710i \(-0.853662\pi\)
0.985823 + 0.167786i \(0.0536619\pi\)
\(798\) −28.1017 + 45.9101i −0.0352152 + 0.0575315i
\(799\) −256.183 −0.320629
\(800\) −491.145 565.841i −0.613931 0.707302i
\(801\) 676.636 + 675.263i 0.844739 + 0.843025i
\(802\) 180.023 + 247.780i 0.224468 + 0.308953i
\(803\) 18.7514 57.7108i 0.0233516 0.0718690i
\(804\) 21.4693 + 271.034i 0.0267031 + 0.337107i
\(805\) −321.803 + 65.3477i −0.399755 + 0.0811773i
\(806\) 240.693 78.2058i 0.298626 0.0970295i
\(807\) −323.275 + 134.097i −0.400588 + 0.166167i
\(808\) −854.773 + 277.733i −1.05789 + 0.343729i
\(809\) −607.858 + 836.645i −0.751370 + 1.03417i 0.246513 + 0.969139i \(0.420715\pi\)
−0.997883 + 0.0650327i \(0.979285\pi\)
\(810\) −154.432 271.903i −0.190657 0.335683i
\(811\) −946.582 + 687.732i −1.16718 + 0.848005i −0.990669 0.136293i \(-0.956481\pi\)
−0.176511 + 0.984299i \(0.556481\pi\)
\(812\) 189.113 + 137.399i 0.232898 + 0.169210i
\(813\) −121.838 + 508.628i −0.149862 + 0.625619i
\(814\) 7.79908 5.66636i 0.00958118 0.00696113i
\(815\) 34.9707 + 61.8638i 0.0429088 + 0.0759065i
\(816\) 93.8954 391.979i 0.115068 0.480366i
\(817\) 946.113 307.411i 1.15803 0.376268i
\(818\) −267.173 −0.326617
\(819\) 167.471 + 85.1169i 0.204483 + 0.103928i
\(820\) 587.398 119.281i 0.716339 0.145465i
\(821\) −1378.21 447.806i −1.67869 0.545440i −0.694035 0.719941i \(-0.744169\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(822\) 441.898 35.0038i 0.537589 0.0425837i
\(823\) 413.581 + 569.246i 0.502529 + 0.691672i 0.982637 0.185537i \(-0.0594026\pi\)
−0.480108 + 0.877209i \(0.659403\pi\)
\(824\) 528.287i 0.641126i
\(825\) 69.6638 465.394i 0.0844410 0.564114i
\(826\) 12.6495 0.0153141
\(827\) −701.706 + 509.820i −0.848496 + 0.616469i −0.924731 0.380621i \(-0.875710\pi\)
0.0762348 + 0.997090i \(0.475710\pi\)
\(828\) 534.844 + 1047.06i 0.645947 + 1.26457i
\(829\) 59.4524 182.976i 0.0717158 0.220718i −0.908774 0.417289i \(-0.862980\pi\)
0.980490 + 0.196570i \(0.0629804\pi\)
\(830\) 6.72984 3.80428i 0.00810824 0.00458347i
\(831\) 355.982 + 416.373i 0.428378 + 0.501051i
\(832\) 166.714i 0.200377i
\(833\) 207.875 + 639.775i 0.249550 + 0.768037i
\(834\) 4.47214 18.6696i 0.00536228 0.0223856i
\(835\) 73.4356 + 8.39443i 0.0879469 + 0.0100532i
\(836\) 170.484 + 234.652i 0.203929 + 0.280684i
\(837\) −380.025 618.030i −0.454032 0.738387i
\(838\) −75.7615 + 104.277i −0.0904075 + 0.124435i
\(839\) −218.610 300.892i −0.260561 0.358631i 0.658614 0.752481i \(-0.271143\pi\)
−0.919175 + 0.393850i \(0.871143\pi\)
\(840\) −5.10052 + 146.640i −0.00607204 + 0.174571i
\(841\) 622.641 + 452.375i 0.740358 + 0.537901i
\(842\) 7.88296 + 24.2613i 0.00936219 + 0.0288138i
\(843\) 49.9543 20.7215i 0.0592578 0.0245806i
\(844\) 40.2864 + 123.989i 0.0477327 + 0.146906i
\(845\) −100.354 11.4714i −0.118762 0.0135757i
\(846\) −55.4613 108.576i −0.0655571 0.128341i
\(847\) 132.850 + 43.1655i 0.156847 + 0.0509628i
\(848\) −621.530 + 451.568i −0.732936 + 0.532509i
\(849\) 56.2261 23.3230i 0.0662262 0.0274712i
\(850\) 24.3561 + 280.781i 0.0286542 + 0.330331i
\(851\) 76.3738i 0.0897459i
\(852\) 458.779 749.513i 0.538473 0.879710i
\(853\) −0.0190880 0.00620206i −2.23775e−5 7.27088e-6i 0.309006 0.951060i \(-0.400004\pi\)
−0.309028 + 0.951053i \(0.600004\pi\)
\(854\) 2.58258 + 0.839132i 0.00302410 + 0.000982590i
\(855\) 610.532 27.0513i 0.714072 0.0316390i
\(856\) 7.52653 + 23.1643i 0.00879267 + 0.0270611i
\(857\) −56.5546 −0.0659913 −0.0329957 0.999455i \(-0.510505\pi\)
−0.0329957 + 0.999455i \(0.510505\pi\)
\(858\) −134.747 + 115.203i −0.157048 + 0.134270i
\(859\) 482.719 + 350.716i 0.561955 + 0.408284i 0.832174 0.554515i \(-0.187096\pi\)
−0.270219 + 0.962799i \(0.587096\pi\)
\(860\) 842.590 918.844i 0.979756 1.06842i
\(861\) −154.199 94.3854i −0.179092 0.109623i
\(862\) −272.107 + 374.524i −0.315670 + 0.434482i
\(863\) 206.837 + 150.276i 0.239672 + 0.174132i 0.701137 0.713027i \(-0.252676\pi\)
−0.461465 + 0.887158i \(0.652676\pi\)
\(864\) 786.560 190.104i 0.910371 0.220027i
\(865\) 140.365 + 691.224i 0.162272 + 0.799103i
\(866\) −126.613 + 174.267i −0.146204 + 0.201233i
\(867\) 172.861 147.789i 0.199379 0.170461i
\(868\) 156.514i 0.180315i
\(869\) −802.042 + 260.599i −0.922948 + 0.299884i
\(870\) −16.1569 + 464.512i −0.0185712 + 0.533922i
\(871\) 100.362 308.883i 0.115226 0.354630i
\(872\) −272.063 + 837.323i −0.311998 + 0.960233i
\(873\) −803.899 126.489i −0.920847 0.144890i
\(874\) 402.433 0.460450
\(875\) 60.5225 + 205.155i 0.0691685 + 0.234463i
\(876\) 91.2215 37.8394i 0.104134 0.0431957i
\(877\) −146.721 201.945i −0.167299 0.230267i 0.717133 0.696936i \(-0.245454\pi\)
−0.884432 + 0.466669i \(0.845454\pi\)
\(878\) −71.7736 + 220.897i −0.0817467 + 0.251591i
\(879\) −361.868 + 28.6645i −0.411682 + 0.0326103i
\(880\) 262.642 + 119.810i 0.298456 + 0.136148i
\(881\) 1039.28 337.681i 1.17966 0.383293i 0.347417 0.937711i \(-0.387059\pi\)
0.832239 + 0.554418i \(0.187059\pi\)
\(882\) −226.148 + 226.608i −0.256404 + 0.256925i
\(883\) 598.455 194.450i 0.677752 0.220215i 0.0501409 0.998742i \(-0.484033\pi\)
0.627611 + 0.778527i \(0.284033\pi\)
\(884\) −356.349 + 490.472i −0.403110 + 0.554833i
\(885\) −80.3247 119.051i −0.0907624 0.134521i
\(886\) 140.703 102.227i 0.158807 0.115380i
\(887\) −436.537 317.163i −0.492150 0.357568i 0.313861 0.949469i \(-0.398377\pi\)
−0.806010 + 0.591901i \(0.798377\pi\)
\(888\) 33.1878 + 7.94988i 0.0373737 + 0.00895256i
\(889\) −213.012 + 154.762i −0.239608 + 0.174086i
\(890\) 277.132 302.212i 0.311384 0.339564i
\(891\) 411.769 + 297.892i 0.462142 + 0.334334i
\(892\) −813.737 + 264.399i −0.912261 + 0.296412i
\(893\) 238.280 0.266831
\(894\) −400.812 468.808i −0.448335 0.524394i
\(895\) −66.8979 + 72.9521i −0.0747463 + 0.0815107i
\(896\) −212.272 68.9715i −0.236911 0.0769771i
\(897\) −110.906 1400.11i −0.123642 1.56089i
\(898\) −246.952 339.900i −0.275002 0.378508i
\(899\) 1078.41i 1.19956i
\(900\) 649.383 406.029i 0.721537 0.451143i
\(901\) 1219.04 1.35298
\(902\) 138.027 100.283i 0.153024 0.111178i
\(903\) −374.862 + 29.6938i −0.415130 + 0.0328835i
\(904\) −39.7404 + 122.309i −0.0439607 + 0.135297i
\(905\) 397.234 + 45.4078i 0.438932 + 0.0501743i
\(906\) 368.379 314.949i 0.406599 0.347626i
\(907\) 286.442i 0.315812i −0.987454 0.157906i \(-0.949526\pi\)
0.987454 0.157906i \(-0.0504744\pi\)
\(908\) 36.9408 + 113.692i 0.0406837 + 0.125211i
\(909\) −222.774 1397.36i −0.245076 1.53725i
\(910\) 33.4436 73.3135i 0.0367512 0.0805643i
\(911\) −828.429 1140.23i −0.909362 1.25163i −0.967384 0.253314i \(-0.918479\pi\)
0.0580217 0.998315i \(-0.481521\pi\)
\(912\) −87.3336 + 364.586i −0.0957605 + 0.399765i
\(913\) −7.38526 + 10.1649i −0.00808901 + 0.0111336i
\(914\) −75.6777 104.161i −0.0827984 0.113962i
\(915\) −8.50201 29.6346i −0.00929181 0.0323875i
\(916\) −401.676 291.834i −0.438510 0.318596i
\(917\) −88.4534 272.232i −0.0964596 0.296872i
\(918\) −281.390 116.054i −0.306525 0.126420i
\(919\) −9.97272 30.6929i −0.0108517 0.0333981i 0.945484 0.325668i \(-0.105589\pi\)
−0.956336 + 0.292270i \(0.905589\pi\)
\(920\) 954.967 539.829i 1.03801 0.586770i
\(921\) 44.1768 + 557.701i 0.0479662 + 0.605538i
\(922\) 103.665 + 33.6829i 0.112435 + 0.0365325i
\(923\) −849.261 + 617.025i −0.920110 + 0.668499i
\(924\) −42.0079 101.271i −0.0454631 0.109600i
\(925\) 49.5628 4.29927i 0.0535814 0.00464786i
\(926\) 361.325i 0.390199i
\(927\) −821.623 129.277i −0.886325 0.139458i
\(928\) −1143.93 371.686i −1.23268 0.400523i
\(929\) 477.883 + 155.274i 0.514406 + 0.167141i 0.554705 0.832047i \(-0.312831\pi\)
−0.0402991 + 0.999188i \(0.512831\pi\)
\(930\) −257.978 + 174.060i −0.277395 + 0.187161i
\(931\) −193.348 595.065i −0.207678 0.639167i
\(932\) 446.853 0.479456
\(933\) 626.658 + 732.968i 0.671659 + 0.785604i
\(934\) −73.7572 53.5878i −0.0789692 0.0573745i
\(935\) −225.414 398.762i −0.241085 0.426483i
\(936\) −619.956 97.5464i −0.662347 0.104216i
\(937\) 40.3942 55.5978i 0.0431101 0.0593360i −0.786918 0.617058i \(-0.788324\pi\)
0.830028 + 0.557722i \(0.188324\pi\)
\(938\) −28.4584 20.6763i −0.0303395 0.0220429i
\(939\) −314.338 + 513.538i −0.334758 + 0.546899i
\(940\) 259.954 146.948i 0.276546 0.156327i
\(941\) 503.452 692.942i 0.535018 0.736389i −0.452867 0.891578i \(-0.649599\pi\)
0.987885 + 0.155189i \(0.0495988\pi\)
\(942\) 326.599 + 382.006i 0.346709 + 0.405527i
\(943\) 1351.65i 1.43336i
\(944\) 83.7888 27.2246i 0.0887593 0.0288397i
\(945\) −226.815 43.8169i −0.240016 0.0463671i
\(946\) 109.658 337.492i 0.115917 0.356757i
\(947\) 220.744 679.381i 0.233098 0.717403i −0.764270 0.644897i \(-0.776900\pi\)
0.997368 0.0725062i \(-0.0230997\pi\)
\(948\) −1170.61 716.537i −1.23483 0.755840i
\(949\) −117.972 −0.124312
\(950\) −22.6540 261.159i −0.0238463 0.274904i
\(951\) −464.643 1120.14i −0.488583 1.17785i
\(952\) 83.9512 + 115.549i 0.0881840 + 0.121375i
\(953\) 319.010 981.811i 0.334743 1.03023i −0.632106 0.774882i \(-0.717809\pi\)
0.966849 0.255350i \(-0.0821908\pi\)
\(954\) 263.910 + 516.656i 0.276636 + 0.541568i
\(955\) −344.245 608.976i −0.360466 0.637671i
\(956\) 555.819 180.597i 0.581401 0.188909i
\(957\) −289.442 697.773i −0.302447 0.729125i
\(958\) −3.04056 + 0.987937i −0.00317386 + 0.00103125i
\(959\) 192.487 264.935i 0.200716 0.276262i
\(960\) 56.5341 + 197.055i 0.0588897 + 0.205266i
\(961\) 193.308 140.447i 0.201153 0.146146i
\(962\) −15.1625 11.0162i −0.0157615 0.0114514i
\(963\) −37.8682 + 6.03715i −0.0393232 + 0.00626910i
\(964\) −1104.29 + 802.313i −1.14553 + 0.832275i
\(965\) 816.020 + 372.246i 0.845617 + 0.385747i
\(966\) −147.935 35.4367i −0.153142 0.0366839i
\(967\) 956.592 310.815i 0.989236 0.321422i 0.230680 0.973030i \(-0.425905\pi\)
0.758556 + 0.651607i \(0.225905\pi\)
\(968\) −466.649 −0.482076
\(969\) 452.152 386.572i 0.466618 0.398939i
\(970\) −39.6439 + 346.810i −0.0408700 + 0.357536i
\(971\) 756.006 + 245.641i 0.778585 + 0.252977i 0.671236 0.741244i \(-0.265764\pi\)
0.107349 + 0.994221i \(0.465764\pi\)
\(972\) 66.9892 + 824.423i 0.0689189 + 0.848172i
\(973\) −8.33623 11.4738i −0.00856756 0.0117922i
\(974\) 632.810i 0.649702i
\(975\) −902.361 + 150.789i −0.925498 + 0.154655i
\(976\) 18.9128 0.0193779
\(977\) −1195.65 + 868.690i −1.22380 + 0.889140i −0.996410 0.0846646i \(-0.973018\pi\)
−0.227387 + 0.973805i \(0.573018\pi\)
\(978\) 2.59960 + 32.8181i 0.00265808 + 0.0335563i
\(979\) −205.940 + 633.818i −0.210358 + 0.647414i
\(980\) −577.913 529.953i −0.589707 0.540768i
\(981\) −1235.68 628.029i −1.25961 0.640193i
\(982\) 301.686i 0.307216i
\(983\) 32.7514 + 100.798i 0.0333178 + 0.102542i 0.966332 0.257297i \(-0.0828318\pi\)
−0.933015 + 0.359838i \(0.882832\pi\)
\(984\) 587.354 + 140.696i 0.596905 + 0.142984i
\(985\) −59.4900 54.5530i −0.0603959 0.0553837i
\(986\) 265.933 + 366.025i 0.269709 + 0.371222i
\(987\) −87.5921 20.9820i −0.0887458 0.0212583i
\(988\) 331.446 456.196i 0.335471 0.461737i
\(989\) 1652.47 + 2274.44i 1.67085 + 2.29973i
\(990\) 120.204 181.864i 0.121419 0.183701i
\(991\) 763.591 + 554.781i 0.770525 + 0.559819i 0.902121 0.431484i \(-0.142010\pi\)
−0.131595 + 0.991304i \(0.542010\pi\)
\(992\) −248.865 765.929i −0.250872 0.772106i
\(993\) −603.411 1454.67i −0.607665 1.46493i
\(994\) 35.1343 + 108.132i 0.0353464 + 0.108785i
\(995\) −714.674 + 1566.67i −0.718265 + 1.57455i
\(996\) −20.3850 + 1.61475i −0.0204669 + 0.00162123i
\(997\) −560.352 182.069i −0.562038 0.182617i 0.0142002 0.999899i \(-0.495480\pi\)
−0.576238 + 0.817282i \(0.695480\pi\)
\(998\) 562.873 408.951i 0.564001 0.409771i
\(999\) −20.4855 + 49.6702i −0.0205060 + 0.0497199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.h.a.14.9 72
3.2 odd 2 inner 75.3.h.a.14.10 yes 72
5.2 odd 4 375.3.j.b.176.18 144
5.3 odd 4 375.3.j.b.176.19 144
5.4 even 2 375.3.h.a.74.10 72
15.2 even 4 375.3.j.b.176.20 144
15.8 even 4 375.3.j.b.176.17 144
15.14 odd 2 375.3.h.a.74.9 72
25.9 even 10 inner 75.3.h.a.59.10 yes 72
25.12 odd 20 375.3.j.b.326.20 144
25.13 odd 20 375.3.j.b.326.17 144
25.16 even 5 375.3.h.a.299.9 72
75.38 even 20 375.3.j.b.326.19 144
75.41 odd 10 375.3.h.a.299.10 72
75.59 odd 10 inner 75.3.h.a.59.9 yes 72
75.62 even 20 375.3.j.b.326.18 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.h.a.14.9 72 1.1 even 1 trivial
75.3.h.a.14.10 yes 72 3.2 odd 2 inner
75.3.h.a.59.9 yes 72 75.59 odd 10 inner
75.3.h.a.59.10 yes 72 25.9 even 10 inner
375.3.h.a.74.9 72 15.14 odd 2
375.3.h.a.74.10 72 5.4 even 2
375.3.h.a.299.9 72 25.16 even 5
375.3.h.a.299.10 72 75.41 odd 10
375.3.j.b.176.17 144 15.8 even 4
375.3.j.b.176.18 144 5.2 odd 4
375.3.j.b.176.19 144 5.3 odd 4
375.3.j.b.176.20 144 15.2 even 4
375.3.j.b.326.17 144 25.13 odd 20
375.3.j.b.326.18 144 75.62 even 20
375.3.j.b.326.19 144 75.38 even 20
375.3.j.b.326.20 144 25.12 odd 20