Properties

Label 75.3.h.a.14.7
Level $75$
Weight $3$
Character 75.14
Analytic conductor $2.044$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(14,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 14.7
Character \(\chi\) \(=\) 75.14
Dual form 75.3.h.a.59.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.949573 + 0.689905i) q^{2} +(-0.131165 + 2.99713i) q^{3} +(-0.810348 + 2.49399i) q^{4} +(-4.82831 - 1.29902i) q^{5} +(-1.94319 - 2.93649i) q^{6} -4.52613i q^{7} +(-2.40195 - 7.39246i) q^{8} +(-8.96559 - 0.786239i) q^{9} +(5.48103 - 2.09756i) q^{10} +(9.16255 + 12.6112i) q^{11} +(-7.36854 - 2.75584i) q^{12} +(-11.4738 + 15.7924i) q^{13} +(3.12260 + 4.29789i) q^{14} +(4.52663 - 14.3007i) q^{15} +(-1.10515 - 0.802935i) q^{16} +(-2.55369 - 7.85945i) q^{17} +(9.05592 - 5.43882i) q^{18} +(10.2547 + 31.5607i) q^{19} +(7.15235 - 10.9891i) q^{20} +(13.5654 + 0.593671i) q^{21} +(-17.4010 - 5.65394i) q^{22} +(-10.6402 + 7.73056i) q^{23} +(22.4712 - 6.22934i) q^{24} +(21.6251 + 12.5441i) q^{25} -22.9119i q^{26} +(3.53244 - 26.7679i) q^{27} +(11.2881 + 3.66774i) q^{28} +(29.2705 + 9.51056i) q^{29} +(5.56775 + 16.7025i) q^{30} +(-11.2815 - 34.7209i) q^{31} +32.6949 q^{32} +(-38.9992 + 25.8072i) q^{33} +(7.84719 + 5.70132i) q^{34} +(-5.87952 + 21.8535i) q^{35} +(9.22612 - 21.7230i) q^{36} +(-9.54112 + 13.1322i) q^{37} +(-31.5115 - 22.8945i) q^{38} +(-45.8269 - 36.4600i) q^{39} +(1.99445 + 38.8132i) q^{40} +(-17.3303 + 23.8531i) q^{41} +(-13.2909 + 8.79511i) q^{42} -12.8584i q^{43} +(-38.8771 + 12.6319i) q^{44} +(42.2673 + 15.4427i) q^{45} +(4.77030 - 14.6815i) q^{46} +(-1.51095 + 4.65021i) q^{47} +(2.55146 - 3.20695i) q^{48} +28.5142 q^{49} +(-29.1889 + 3.00773i) q^{50} +(23.8908 - 6.62286i) q^{51} +(-30.0883 - 41.4131i) q^{52} +(-0.118940 + 0.366060i) q^{53} +(15.1130 + 27.8552i) q^{54} +(-27.8575 - 72.7929i) q^{55} +(-33.4592 + 10.8716i) q^{56} +(-95.9367 + 26.5950i) q^{57} +(-34.3559 + 11.1629i) q^{58} +(-24.3125 + 33.4633i) q^{59} +(31.9977 + 22.8779i) q^{60} +(21.8684 - 15.8883i) q^{61} +(34.6668 + 25.1869i) q^{62} +(-3.55862 + 40.5794i) q^{63} +(-26.6256 + 19.3447i) q^{64} +(75.9139 - 61.3458i) q^{65} +(19.2280 - 51.4116i) q^{66} +(55.6316 - 18.0758i) q^{67} +21.6708 q^{68} +(-21.7739 - 32.9041i) q^{69} +(-9.49384 - 24.8079i) q^{70} +(-15.6979 - 5.10057i) q^{71} +(15.7227 + 68.1662i) q^{72} +(37.5788 + 51.7228i) q^{73} -19.0525i q^{74} +(-40.4328 + 63.1679i) q^{75} -87.0222 q^{76} +(57.0798 - 41.4709i) q^{77} +(68.6700 + 3.00525i) q^{78} +(11.5206 - 35.4568i) q^{79} +(4.29296 + 5.31242i) q^{80} +(79.7637 + 14.0982i) q^{81} -34.6066i q^{82} +(-24.5328 - 75.5041i) q^{83} +(-12.4733 + 33.3510i) q^{84} +(2.12044 + 41.2651i) q^{85} +(8.87106 + 12.2100i) q^{86} +(-32.3437 + 86.4800i) q^{87} +(71.2195 - 98.0252i) q^{88} +(37.7114 + 51.9054i) q^{89} +(-50.7899 + 14.4965i) q^{90} +(71.4784 + 51.9321i) q^{91} +(-10.6577 - 32.8011i) q^{92} +(105.543 - 29.2580i) q^{93} +(-1.77345 - 5.45813i) q^{94} +(-8.51493 - 165.706i) q^{95} +(-4.28844 + 97.9910i) q^{96} +(8.05793 + 2.61818i) q^{97} +(-27.0763 + 19.6721i) q^{98} +(-72.2323 - 120.271i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 5 q^{3} - 38 q^{4} + 5 q^{6} - 13 q^{9} - 20 q^{10} - 45 q^{12} - 10 q^{13} - 15 q^{15} + 22 q^{16} - 36 q^{19} + 54 q^{21} - 50 q^{22} - 20 q^{24} - 100 q^{25} + 100 q^{27} + 270 q^{28} - 5 q^{30}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.949573 + 0.689905i −0.474787 + 0.344953i −0.799304 0.600927i \(-0.794798\pi\)
0.324517 + 0.945880i \(0.394798\pi\)
\(3\) −0.131165 + 2.99713i −0.0437218 + 0.999044i
\(4\) −0.810348 + 2.49399i −0.202587 + 0.623499i
\(5\) −4.82831 1.29902i −0.965662 0.259803i
\(6\) −1.94319 2.93649i −0.323864 0.489415i
\(7\) 4.52613i 0.646590i −0.946298 0.323295i \(-0.895209\pi\)
0.946298 0.323295i \(-0.104791\pi\)
\(8\) −2.40195 7.39246i −0.300244 0.924057i
\(9\) −8.96559 0.786239i −0.996177 0.0873599i
\(10\) 5.48103 2.09756i 0.548103 0.209756i
\(11\) 9.16255 + 12.6112i 0.832960 + 1.14647i 0.987365 + 0.158463i \(0.0506538\pi\)
−0.154405 + 0.988008i \(0.549346\pi\)
\(12\) −7.36854 2.75584i −0.614045 0.229654i
\(13\) −11.4738 + 15.7924i −0.882604 + 1.21480i 0.0930891 + 0.995658i \(0.470326\pi\)
−0.975693 + 0.219142i \(0.929674\pi\)
\(14\) 3.12260 + 4.29789i 0.223043 + 0.306992i
\(15\) 4.52663 14.3007i 0.301775 0.953379i
\(16\) −1.10515 0.802935i −0.0690716 0.0501834i
\(17\) −2.55369 7.85945i −0.150217 0.462320i 0.847428 0.530910i \(-0.178150\pi\)
−0.997645 + 0.0685900i \(0.978150\pi\)
\(18\) 9.05592 5.43882i 0.503107 0.302157i
\(19\) 10.2547 + 31.5607i 0.539721 + 1.66109i 0.733220 + 0.679991i \(0.238016\pi\)
−0.193499 + 0.981100i \(0.561984\pi\)
\(20\) 7.15235 10.9891i 0.357618 0.549456i
\(21\) 13.5654 + 0.593671i 0.645972 + 0.0282700i
\(22\) −17.4010 5.65394i −0.790956 0.256997i
\(23\) −10.6402 + 7.73056i −0.462618 + 0.336111i −0.794557 0.607189i \(-0.792297\pi\)
0.331940 + 0.943301i \(0.392297\pi\)
\(24\) 22.4712 6.22934i 0.936301 0.259556i
\(25\) 21.6251 + 12.5441i 0.865004 + 0.501764i
\(26\) 22.9119i 0.881227i
\(27\) 3.53244 26.7679i 0.130831 0.991405i
\(28\) 11.2881 + 3.66774i 0.403148 + 0.130991i
\(29\) 29.2705 + 9.51056i 1.00933 + 0.327950i 0.766586 0.642141i \(-0.221954\pi\)
0.242740 + 0.970091i \(0.421954\pi\)
\(30\) 5.56775 + 16.7025i 0.185592 + 0.556750i
\(31\) −11.2815 34.7209i −0.363920 1.12003i −0.950655 0.310251i \(-0.899587\pi\)
0.586735 0.809779i \(-0.300413\pi\)
\(32\) 32.6949 1.02172
\(33\) −38.9992 + 25.8072i −1.18179 + 0.782037i
\(34\) 7.84719 + 5.70132i 0.230800 + 0.167686i
\(35\) −5.87952 + 21.8535i −0.167986 + 0.624387i
\(36\) 9.22612 21.7230i 0.256281 0.603417i
\(37\) −9.54112 + 13.1322i −0.257868 + 0.354925i −0.918247 0.396007i \(-0.870396\pi\)
0.660379 + 0.750932i \(0.270396\pi\)
\(38\) −31.5115 22.8945i −0.829251 0.602486i
\(39\) −45.8269 36.4600i −1.17505 0.934873i
\(40\) 1.99445 + 38.8132i 0.0498612 + 0.970331i
\(41\) −17.3303 + 23.8531i −0.422691 + 0.581784i −0.966256 0.257583i \(-0.917074\pi\)
0.543565 + 0.839367i \(0.317074\pi\)
\(42\) −13.2909 + 8.79511i −0.316451 + 0.209407i
\(43\) 12.8584i 0.299032i −0.988759 0.149516i \(-0.952228\pi\)
0.988759 0.149516i \(-0.0477715\pi\)
\(44\) −38.8771 + 12.6319i −0.883569 + 0.287089i
\(45\) 42.2673 + 15.4427i 0.939273 + 0.343170i
\(46\) 4.77030 14.6815i 0.103702 0.319163i
\(47\) −1.51095 + 4.65021i −0.0321478 + 0.0989407i −0.965843 0.259128i \(-0.916565\pi\)
0.933695 + 0.358069i \(0.116565\pi\)
\(48\) 2.55146 3.20695i 0.0531554 0.0668114i
\(49\) 28.5142 0.581921
\(50\) −29.1889 + 3.00773i −0.583778 + 0.0601545i
\(51\) 23.8908 6.62286i 0.468446 0.129860i
\(52\) −30.0883 41.4131i −0.578622 0.796405i
\(53\) −0.118940 + 0.366060i −0.00224415 + 0.00690679i −0.952172 0.305562i \(-0.901156\pi\)
0.949928 + 0.312468i \(0.101156\pi\)
\(54\) 15.1130 + 27.8552i 0.279871 + 0.515836i
\(55\) −27.8575 72.7929i −0.506500 1.32351i
\(56\) −33.4592 + 10.8716i −0.597486 + 0.194135i
\(57\) −95.9367 + 26.5950i −1.68310 + 0.466579i
\(58\) −34.3559 + 11.1629i −0.592342 + 0.192464i
\(59\) −24.3125 + 33.4633i −0.412076 + 0.567174i −0.963723 0.266903i \(-0.914000\pi\)
0.551647 + 0.834078i \(0.314000\pi\)
\(60\) 31.9977 + 22.8779i 0.533295 + 0.381299i
\(61\) 21.8684 15.8883i 0.358498 0.260464i −0.393927 0.919142i \(-0.628884\pi\)
0.752425 + 0.658677i \(0.228884\pi\)
\(62\) 34.6668 + 25.1869i 0.559142 + 0.406240i
\(63\) −3.55862 + 40.5794i −0.0564860 + 0.644118i
\(64\) −26.6256 + 19.3447i −0.416026 + 0.302260i
\(65\) 75.9139 61.3458i 1.16791 0.943782i
\(66\) 19.2280 51.4116i 0.291333 0.778963i
\(67\) 55.6316 18.0758i 0.830322 0.269788i 0.137141 0.990552i \(-0.456209\pi\)
0.693181 + 0.720764i \(0.256209\pi\)
\(68\) 21.6708 0.318688
\(69\) −21.7739 32.9041i −0.315564 0.476871i
\(70\) −9.49384 24.8079i −0.135626 0.354398i
\(71\) −15.6979 5.10057i −0.221098 0.0718390i 0.196373 0.980529i \(-0.437084\pi\)
−0.417471 + 0.908690i \(0.637084\pi\)
\(72\) 15.7227 + 68.1662i 0.218371 + 0.946753i
\(73\) 37.5788 + 51.7228i 0.514778 + 0.708531i 0.984716 0.174168i \(-0.0557237\pi\)
−0.469938 + 0.882700i \(0.655724\pi\)
\(74\) 19.0525i 0.257466i
\(75\) −40.4328 + 63.1679i −0.539104 + 0.842239i
\(76\) −87.0222 −1.14503
\(77\) 57.0798 41.4709i 0.741296 0.538583i
\(78\) 68.6700 + 3.00525i 0.880385 + 0.0385288i
\(79\) 11.5206 35.4568i 0.145830 0.448820i −0.851286 0.524701i \(-0.824177\pi\)
0.997117 + 0.0758813i \(0.0241770\pi\)
\(80\) 4.29296 + 5.31242i 0.0536619 + 0.0664053i
\(81\) 79.7637 + 14.0982i 0.984737 + 0.174052i
\(82\) 34.6066i 0.422032i
\(83\) −24.5328 75.5041i −0.295575 0.909688i −0.983028 0.183458i \(-0.941271\pi\)
0.687452 0.726230i \(-0.258729\pi\)
\(84\) −12.4733 + 33.3510i −0.148492 + 0.397035i
\(85\) 2.12044 + 41.2651i 0.0249463 + 0.485472i
\(86\) 8.87106 + 12.2100i 0.103152 + 0.141976i
\(87\) −32.3437 + 86.4800i −0.371766 + 0.994023i
\(88\) 71.2195 98.0252i 0.809313 1.11392i
\(89\) 37.7114 + 51.9054i 0.423724 + 0.583206i 0.966498 0.256672i \(-0.0826261\pi\)
−0.542774 + 0.839879i \(0.682626\pi\)
\(90\) −50.7899 + 14.4965i −0.564332 + 0.161072i
\(91\) 71.4784 + 51.9321i 0.785477 + 0.570683i
\(92\) −10.6577 32.8011i −0.115845 0.356533i
\(93\) 105.543 29.2580i 1.13487 0.314602i
\(94\) −1.77345 5.45813i −0.0188665 0.0580652i
\(95\) −8.51493 165.706i −0.0896308 1.74427i
\(96\) −4.28844 + 97.9910i −0.0446712 + 1.02074i
\(97\) 8.05793 + 2.61818i 0.0830715 + 0.0269916i 0.350258 0.936653i \(-0.386094\pi\)
−0.267186 + 0.963645i \(0.586094\pi\)
\(98\) −27.0763 + 19.6721i −0.276289 + 0.200735i
\(99\) −72.2323 120.271i −0.729619 1.21485i
\(100\) −48.8088 + 43.7678i −0.488088 + 0.437678i
\(101\) 71.0307i 0.703274i 0.936136 + 0.351637i \(0.114375\pi\)
−0.936136 + 0.351637i \(0.885625\pi\)
\(102\) −18.1169 + 22.7712i −0.177616 + 0.223248i
\(103\) −53.5433 17.3973i −0.519838 0.168906i 0.0373339 0.999303i \(-0.488113\pi\)
−0.557172 + 0.830397i \(0.688113\pi\)
\(104\) 144.304 + 46.8873i 1.38754 + 0.450839i
\(105\) −64.7268 20.4881i −0.616445 0.195125i
\(106\) −0.139604 0.429658i −0.00131702 0.00405338i
\(107\) −66.8812 −0.625058 −0.312529 0.949908i \(-0.601176\pi\)
−0.312529 + 0.949908i \(0.601176\pi\)
\(108\) 63.8966 + 30.5012i 0.591635 + 0.282419i
\(109\) −147.061 106.846i −1.34919 0.980240i −0.999052 0.0435407i \(-0.986136\pi\)
−0.350134 0.936700i \(-0.613864\pi\)
\(110\) 76.6730 + 49.9032i 0.697027 + 0.453665i
\(111\) −38.1076 30.3185i −0.343311 0.273140i
\(112\) −3.63419 + 5.00203i −0.0324481 + 0.0446610i
\(113\) 29.0363 + 21.0961i 0.256958 + 0.186691i 0.708805 0.705405i \(-0.249235\pi\)
−0.451847 + 0.892096i \(0.649235\pi\)
\(114\) 72.7509 91.4412i 0.638166 0.802116i
\(115\) 61.4163 23.5037i 0.534055 0.204380i
\(116\) −47.4385 + 65.2936i −0.408953 + 0.562875i
\(117\) 115.286 132.567i 0.985354 1.13305i
\(118\) 48.5492i 0.411434i
\(119\) −35.5729 + 11.5583i −0.298932 + 0.0971288i
\(120\) −116.590 + 0.886673i −0.971583 + 0.00738894i
\(121\) −37.6983 + 116.023i −0.311556 + 0.958870i
\(122\) −9.80421 + 30.1742i −0.0803623 + 0.247330i
\(123\) −69.2179 55.0700i −0.562747 0.447723i
\(124\) 95.7358 0.772063
\(125\) −88.1177 88.6582i −0.704941 0.709266i
\(126\) −24.6168 40.9883i −0.195371 0.325304i
\(127\) 109.767 + 151.081i 0.864304 + 1.18961i 0.980526 + 0.196389i \(0.0629216\pi\)
−0.116222 + 0.993223i \(0.537078\pi\)
\(128\) −28.4761 + 87.6405i −0.222470 + 0.684691i
\(129\) 38.5382 + 1.68657i 0.298746 + 0.0130742i
\(130\) −29.7630 + 110.626i −0.228946 + 0.850967i
\(131\) −130.052 + 42.2566i −0.992766 + 0.322569i −0.759971 0.649957i \(-0.774787\pi\)
−0.232794 + 0.972526i \(0.574787\pi\)
\(132\) −32.7602 118.177i −0.248183 0.895277i
\(133\) 142.848 46.4141i 1.07405 0.348978i
\(134\) −40.3557 + 55.5448i −0.301162 + 0.414514i
\(135\) −51.8277 + 124.655i −0.383909 + 0.923371i
\(136\) −51.9668 + 37.7561i −0.382109 + 0.277618i
\(137\) 117.368 + 85.2728i 0.856700 + 0.622429i 0.926985 0.375098i \(-0.122391\pi\)
−0.0702850 + 0.997527i \(0.522391\pi\)
\(138\) 43.3766 + 16.2229i 0.314323 + 0.117557i
\(139\) −3.34482 + 2.43015i −0.0240635 + 0.0174831i −0.599752 0.800186i \(-0.704734\pi\)
0.575689 + 0.817669i \(0.304734\pi\)
\(140\) −49.7382 32.3725i −0.355273 0.231232i
\(141\) −13.7391 5.13845i −0.0974405 0.0364429i
\(142\) 18.4253 5.98673i 0.129755 0.0421601i
\(143\) −304.290 −2.12791
\(144\) 9.27698 + 8.06770i 0.0644235 + 0.0560257i
\(145\) −128.973 83.9427i −0.889466 0.578916i
\(146\) −71.3677 23.1888i −0.488820 0.158827i
\(147\) −3.74007 + 85.4607i −0.0254426 + 0.581365i
\(148\) −25.0201 34.4372i −0.169055 0.232684i
\(149\) 157.266i 1.05547i −0.849408 0.527737i \(-0.823041\pi\)
0.849408 0.527737i \(-0.176959\pi\)
\(150\) −5.18599 87.8774i −0.0345732 0.585849i
\(151\) 47.4259 0.314079 0.157039 0.987592i \(-0.449805\pi\)
0.157039 + 0.987592i \(0.449805\pi\)
\(152\) 208.680 151.615i 1.37290 0.997467i
\(153\) 16.7159 + 72.4724i 0.109254 + 0.473676i
\(154\) −25.5905 + 78.7593i −0.166172 + 0.511424i
\(155\) 9.36754 + 182.298i 0.0604357 + 1.17612i
\(156\) 128.067 84.7468i 0.820942 0.543248i
\(157\) 247.875i 1.57882i 0.613867 + 0.789410i \(0.289613\pi\)
−0.613867 + 0.789410i \(0.710387\pi\)
\(158\) 13.5222 + 41.6170i 0.0855833 + 0.263398i
\(159\) −1.08153 0.404493i −0.00680206 0.00254398i
\(160\) −157.861 42.4713i −0.986632 0.265445i
\(161\) 34.9895 + 48.1590i 0.217326 + 0.299124i
\(162\) −85.4679 + 41.6421i −0.527579 + 0.257050i
\(163\) −74.1290 + 102.030i −0.454779 + 0.625950i −0.973416 0.229045i \(-0.926440\pi\)
0.518637 + 0.854995i \(0.326440\pi\)
\(164\) −45.4460 62.5511i −0.277110 0.381409i
\(165\) 221.824 73.9447i 1.34439 0.448150i
\(166\) 75.3863 + 54.7714i 0.454135 + 0.329948i
\(167\) −3.00294 9.24211i −0.0179817 0.0553420i 0.941663 0.336557i \(-0.109263\pi\)
−0.959645 + 0.281215i \(0.909263\pi\)
\(168\) −28.1948 101.708i −0.167826 0.605403i
\(169\) −65.5268 201.671i −0.387732 1.19332i
\(170\) −30.4825 37.7214i −0.179309 0.221890i
\(171\) −67.1252 291.023i −0.392545 1.70189i
\(172\) 32.0687 + 10.4198i 0.186446 + 0.0605799i
\(173\) 205.101 149.015i 1.18555 0.861356i 0.192767 0.981245i \(-0.438254\pi\)
0.992787 + 0.119889i \(0.0382538\pi\)
\(174\) −28.9504 104.433i −0.166381 0.600191i
\(175\) 56.7763 97.8780i 0.324436 0.559303i
\(176\) 21.2941i 0.120989i
\(177\) −97.1049 77.2570i −0.548615 0.436480i
\(178\) −71.6196 23.2706i −0.402357 0.130734i
\(179\) 337.748 + 109.741i 1.88686 + 0.613077i 0.982487 + 0.186331i \(0.0596598\pi\)
0.904371 + 0.426746i \(0.140340\pi\)
\(180\) −72.7651 + 92.9005i −0.404251 + 0.516114i
\(181\) 14.7839 + 45.5002i 0.0816791 + 0.251383i 0.983554 0.180615i \(-0.0578089\pi\)
−0.901875 + 0.431998i \(0.857809\pi\)
\(182\) −103.702 −0.569793
\(183\) 44.7510 + 67.6264i 0.244541 + 0.369543i
\(184\) 82.7052 + 60.0888i 0.449485 + 0.326570i
\(185\) 63.1265 51.0124i 0.341224 0.275742i
\(186\) −80.0355 + 100.597i −0.430299 + 0.540846i
\(187\) 75.7185 104.218i 0.404912 0.557314i
\(188\) −10.3732 7.53658i −0.0551766 0.0400882i
\(189\) −121.155 15.9883i −0.641032 0.0845940i
\(190\) 122.407 + 151.476i 0.644248 + 0.797240i
\(191\) 146.083 201.066i 0.764832 1.05270i −0.231965 0.972724i \(-0.574515\pi\)
0.996797 0.0799766i \(-0.0254845\pi\)
\(192\) −54.4861 82.3379i −0.283782 0.428843i
\(193\) 314.212i 1.62804i 0.580835 + 0.814021i \(0.302726\pi\)
−0.580835 + 0.814021i \(0.697274\pi\)
\(194\) −9.45789 + 3.07306i −0.0487520 + 0.0158405i
\(195\) 173.904 + 235.570i 0.891817 + 1.20805i
\(196\) −23.1064 + 71.1141i −0.117890 + 0.362827i
\(197\) −71.6978 + 220.663i −0.363948 + 1.12012i 0.586689 + 0.809813i \(0.300431\pi\)
−0.950637 + 0.310305i \(0.899569\pi\)
\(198\) 151.565 + 64.3723i 0.765481 + 0.325113i
\(199\) −14.9368 −0.0750595 −0.0375297 0.999296i \(-0.511949\pi\)
−0.0375297 + 0.999296i \(0.511949\pi\)
\(200\) 40.7893 189.993i 0.203946 0.949965i
\(201\) 46.8786 + 169.106i 0.233227 + 0.841324i
\(202\) −49.0045 67.4488i −0.242596 0.333905i
\(203\) 43.0460 132.482i 0.212049 0.652621i
\(204\) −2.84246 + 64.9502i −0.0139336 + 0.318383i
\(205\) 114.662 92.6579i 0.559326 0.451990i
\(206\) 62.8458 20.4198i 0.305077 0.0991254i
\(207\) 101.474 60.9433i 0.490212 0.294412i
\(208\) 25.3605 8.24014i 0.121926 0.0396161i
\(209\) −304.059 + 418.501i −1.45483 + 2.00240i
\(210\) 75.5977 25.2004i 0.359989 0.120002i
\(211\) 194.813 141.540i 0.923286 0.670807i −0.0210536 0.999778i \(-0.506702\pi\)
0.944340 + 0.328972i \(0.106702\pi\)
\(212\) −0.816568 0.593271i −0.00385174 0.00279845i
\(213\) 17.3461 46.3798i 0.0814371 0.217745i
\(214\) 63.5086 46.1417i 0.296769 0.215615i
\(215\) −16.7032 + 62.0842i −0.0776895 + 0.288763i
\(216\) −206.365 + 38.1820i −0.955396 + 0.176768i
\(217\) −157.152 + 51.0616i −0.724200 + 0.235307i
\(218\) 213.359 0.978712
\(219\) −159.949 + 105.844i −0.730361 + 0.483308i
\(220\) 204.119 10.4888i 0.927816 0.0476765i
\(221\) 153.420 + 49.8492i 0.694209 + 0.225562i
\(222\) 57.1028 + 2.49902i 0.257220 + 0.0112569i
\(223\) −130.399 179.479i −0.584750 0.804840i 0.409456 0.912330i \(-0.365719\pi\)
−0.994206 + 0.107490i \(0.965719\pi\)
\(224\) 147.981i 0.660631i
\(225\) −184.019 129.468i −0.817863 0.575413i
\(226\) −42.1264 −0.186400
\(227\) −23.8507 + 17.3285i −0.105069 + 0.0763371i −0.639079 0.769141i \(-0.720684\pi\)
0.534010 + 0.845478i \(0.320684\pi\)
\(228\) 11.4143 260.817i 0.0500627 1.14393i
\(229\) −64.2078 + 197.611i −0.280383 + 0.862932i 0.707361 + 0.706852i \(0.249886\pi\)
−0.987745 + 0.156079i \(0.950114\pi\)
\(230\) −42.1040 + 64.6900i −0.183061 + 0.281261i
\(231\) 116.807 + 176.515i 0.505657 + 0.764135i
\(232\) 239.225i 1.03114i
\(233\) −37.4986 115.409i −0.160938 0.495316i 0.837776 0.546014i \(-0.183855\pi\)
−0.998714 + 0.0506978i \(0.983855\pi\)
\(234\) −18.0142 + 205.419i −0.0769839 + 0.877858i
\(235\) 13.3360 20.4899i 0.0567490 0.0871911i
\(236\) −63.7557 87.7521i −0.270151 0.371831i
\(237\) 104.758 + 39.1795i 0.442015 + 0.165314i
\(238\) 25.8049 35.5174i 0.108424 0.149233i
\(239\) −64.3700 88.5977i −0.269331 0.370702i 0.652833 0.757502i \(-0.273580\pi\)
−0.922164 + 0.386800i \(0.873580\pi\)
\(240\) −16.4851 + 12.1697i −0.0686880 + 0.0507073i
\(241\) −175.497 127.506i −0.728203 0.529070i 0.160791 0.986988i \(-0.448595\pi\)
−0.888994 + 0.457918i \(0.848595\pi\)
\(242\) −44.2479 136.181i −0.182842 0.562731i
\(243\) −52.7164 + 237.213i −0.216940 + 0.976185i
\(244\) 21.9044 + 67.4147i 0.0897720 + 0.276290i
\(245\) −137.675 37.0404i −0.561939 0.151185i
\(246\) 103.721 + 4.53918i 0.421628 + 0.0184520i
\(247\) −616.081 200.177i −2.49425 0.810432i
\(248\) −229.575 + 166.796i −0.925707 + 0.672566i
\(249\) 229.514 63.6244i 0.921741 0.255520i
\(250\) 144.840 + 23.3946i 0.579360 + 0.0935785i
\(251\) 163.018i 0.649476i −0.945804 0.324738i \(-0.894724\pi\)
0.945804 0.324738i \(-0.105276\pi\)
\(252\) −98.3211 41.7586i −0.390163 0.165709i
\(253\) −194.983 63.3538i −0.770684 0.250410i
\(254\) −208.463 67.7337i −0.820720 0.266668i
\(255\) −123.955 + 0.942685i −0.486098 + 0.00369680i
\(256\) −74.1039 228.068i −0.289468 0.890891i
\(257\) −236.058 −0.918512 −0.459256 0.888304i \(-0.651884\pi\)
−0.459256 + 0.888304i \(0.651884\pi\)
\(258\) −37.7584 + 24.9862i −0.146351 + 0.0968457i
\(259\) 59.4382 + 43.1844i 0.229491 + 0.166735i
\(260\) 91.4795 + 239.040i 0.351844 + 0.919386i
\(261\) −254.950 108.281i −0.976818 0.414871i
\(262\) 94.3412 129.849i 0.360081 0.495609i
\(263\) 71.2176 + 51.7426i 0.270789 + 0.196740i 0.714890 0.699237i \(-0.246477\pi\)
−0.444101 + 0.895977i \(0.646477\pi\)
\(264\) 284.453 + 226.312i 1.07747 + 0.857241i
\(265\) 1.04980 1.61294i 0.00396150 0.00608658i
\(266\) −103.623 + 142.625i −0.389561 + 0.536185i
\(267\) −160.514 + 106.218i −0.601174 + 0.397820i
\(268\) 153.393i 0.572360i
\(269\) 114.500 37.2032i 0.425650 0.138302i −0.0883556 0.996089i \(-0.528161\pi\)
0.514005 + 0.857787i \(0.328161\pi\)
\(270\) −36.7860 154.125i −0.136245 0.570835i
\(271\) 82.4311 253.697i 0.304174 0.936151i −0.675810 0.737076i \(-0.736206\pi\)
0.979984 0.199075i \(-0.0637938\pi\)
\(272\) −3.48843 + 10.7363i −0.0128251 + 0.0394716i
\(273\) −165.023 + 207.419i −0.604479 + 0.759775i
\(274\) −170.280 −0.621459
\(275\) 39.9453 + 387.654i 0.145256 + 1.40965i
\(276\) 99.7070 27.6402i 0.361257 0.100146i
\(277\) 244.274 + 336.215i 0.881857 + 1.21377i 0.975903 + 0.218204i \(0.0700199\pi\)
−0.0940459 + 0.995568i \(0.529980\pi\)
\(278\) 1.49958 4.61522i 0.00539416 0.0166015i
\(279\) 73.8465 + 320.164i 0.264683 + 1.14754i
\(280\) 175.674 9.02713i 0.627406 0.0322397i
\(281\) −134.339 + 43.6494i −0.478075 + 0.155336i −0.538135 0.842859i \(-0.680871\pi\)
0.0600598 + 0.998195i \(0.480871\pi\)
\(282\) 16.5913 4.59935i 0.0588345 0.0163098i
\(283\) −188.219 + 61.1562i −0.665086 + 0.216100i −0.622054 0.782974i \(-0.713702\pi\)
−0.0430320 + 0.999074i \(0.513702\pi\)
\(284\) 25.4416 35.0173i 0.0895830 0.123300i
\(285\) 497.760 3.78549i 1.74652 0.0132824i
\(286\) 288.946 209.932i 1.01030 0.734027i
\(287\) 107.962 + 78.4393i 0.376176 + 0.273308i
\(288\) −293.129 25.7060i −1.01781 0.0892570i
\(289\) 178.556 129.729i 0.617842 0.448888i
\(290\) 180.381 9.26904i 0.622005 0.0319622i
\(291\) −8.90395 + 23.8073i −0.0305978 + 0.0818119i
\(292\) −159.448 + 51.8079i −0.546056 + 0.177424i
\(293\) −68.8382 −0.234943 −0.117471 0.993076i \(-0.537479\pi\)
−0.117471 + 0.993076i \(0.537479\pi\)
\(294\) −55.4083 83.7315i −0.188464 0.284801i
\(295\) 160.858 129.989i 0.545280 0.440640i
\(296\) 119.997 + 38.9893i 0.405395 + 0.131721i
\(297\) 369.941 200.714i 1.24559 0.675806i
\(298\) 108.498 + 149.335i 0.364089 + 0.501125i
\(299\) 256.734i 0.858641i
\(300\) −124.776 152.027i −0.415919 0.506757i
\(301\) −58.1986 −0.193351
\(302\) −45.0343 + 32.7194i −0.149120 + 0.108342i
\(303\) −212.888 9.31676i −0.702602 0.0307484i
\(304\) 14.0083 43.1131i 0.0460799 0.141819i
\(305\) −126.227 + 48.3063i −0.413857 + 0.158381i
\(306\) −65.8721 57.2855i −0.215268 0.187207i
\(307\) 141.263i 0.460138i −0.973174 0.230069i \(-0.926105\pi\)
0.973174 0.230069i \(-0.0738953\pi\)
\(308\) 57.1737 + 175.963i 0.185629 + 0.571307i
\(309\) 59.1649 158.194i 0.191472 0.511956i
\(310\) −134.664 166.643i −0.434399 0.537558i
\(311\) 317.649 + 437.206i 1.02138 + 1.40581i 0.911233 + 0.411892i \(0.135132\pi\)
0.110146 + 0.993915i \(0.464868\pi\)
\(312\) −159.455 + 426.349i −0.511074 + 1.36650i
\(313\) 80.5178 110.823i 0.257245 0.354068i −0.660787 0.750574i \(-0.729777\pi\)
0.918032 + 0.396506i \(0.129777\pi\)
\(314\) −171.010 235.375i −0.544618 0.749603i
\(315\) 69.8955 191.307i 0.221890 0.607325i
\(316\) 79.0933 + 57.4647i 0.250295 + 0.181850i
\(317\) −84.7017 260.685i −0.267198 0.822350i −0.991179 0.132530i \(-0.957690\pi\)
0.723981 0.689820i \(-0.242310\pi\)
\(318\) 1.30605 0.362056i 0.00410708 0.00113854i
\(319\) 148.253 + 456.276i 0.464743 + 1.43033i
\(320\) 153.686 58.8148i 0.480268 0.183796i
\(321\) 8.77248 200.452i 0.0273286 0.624460i
\(322\) −66.4503 21.5910i −0.206367 0.0670528i
\(323\) 221.863 161.193i 0.686881 0.499048i
\(324\) −99.7971 + 187.506i −0.308016 + 0.578721i
\(325\) −446.225 + 197.583i −1.37300 + 0.607948i
\(326\) 148.027i 0.454070i
\(327\) 339.521 426.747i 1.03829 1.30504i
\(328\) 217.960 + 70.8195i 0.664512 + 0.215913i
\(329\) 21.0475 + 6.83873i 0.0639740 + 0.0207864i
\(330\) −159.623 + 223.253i −0.483707 + 0.676526i
\(331\) −28.7321 88.4284i −0.0868040 0.267155i 0.898227 0.439532i \(-0.144856\pi\)
−0.985031 + 0.172376i \(0.944856\pi\)
\(332\) 208.187 0.627069
\(333\) 95.8669 110.237i 0.287889 0.331041i
\(334\) 9.22770 + 6.70432i 0.0276278 + 0.0200728i
\(335\) −292.087 + 15.0091i −0.871902 + 0.0448033i
\(336\) −14.5151 11.5482i −0.0431996 0.0343697i
\(337\) 276.127 380.056i 0.819368 1.12776i −0.170442 0.985368i \(-0.554519\pi\)
0.989810 0.142396i \(-0.0454805\pi\)
\(338\) 201.356 + 146.294i 0.595728 + 0.432822i
\(339\) −67.0363 + 84.2584i −0.197747 + 0.248550i
\(340\) −104.633 28.1507i −0.307745 0.0827963i
\(341\) 334.504 460.406i 0.980951 1.35016i
\(342\) 264.519 + 230.038i 0.773447 + 0.672626i
\(343\) 350.839i 1.02285i
\(344\) −95.0549 + 30.8852i −0.276322 + 0.0897826i
\(345\) 62.3881 + 187.156i 0.180835 + 0.542480i
\(346\) −91.9524 + 283.001i −0.265758 + 0.817921i
\(347\) 77.9057 239.769i 0.224512 0.690977i −0.773829 0.633395i \(-0.781661\pi\)
0.998341 0.0575821i \(-0.0183391\pi\)
\(348\) −189.471 150.744i −0.544457 0.433172i
\(349\) 123.827 0.354806 0.177403 0.984138i \(-0.443230\pi\)
0.177403 + 0.984138i \(0.443230\pi\)
\(350\) 13.6134 + 132.113i 0.0388953 + 0.377465i
\(351\) 382.199 + 362.917i 1.08889 + 1.03395i
\(352\) 299.569 + 412.321i 0.851048 + 1.17137i
\(353\) −127.446 + 392.238i −0.361036 + 1.11116i 0.591390 + 0.806386i \(0.298579\pi\)
−0.952426 + 0.304770i \(0.901421\pi\)
\(354\) 145.508 + 6.36796i 0.411040 + 0.0179886i
\(355\) 69.1687 + 45.0190i 0.194842 + 0.126814i
\(356\) −160.011 + 51.9907i −0.449469 + 0.146041i
\(357\) −29.9759 108.133i −0.0839661 0.302893i
\(358\) −396.427 + 128.807i −1.10734 + 0.359796i
\(359\) 370.136 509.449i 1.03102 1.41908i 0.126841 0.991923i \(-0.459516\pi\)
0.904179 0.427154i \(-0.140484\pi\)
\(360\) 12.6351 349.552i 0.0350974 0.970977i
\(361\) −598.866 + 435.102i −1.65891 + 1.20527i
\(362\) −45.4293 33.0063i −0.125495 0.0911776i
\(363\) −342.792 128.205i −0.944332 0.353181i
\(364\) −187.441 + 136.184i −0.514947 + 0.374131i
\(365\) −114.253 298.549i −0.313022 0.817942i
\(366\) −89.1502 33.3423i −0.243580 0.0910992i
\(367\) 140.729 45.7256i 0.383458 0.124593i −0.110944 0.993827i \(-0.535387\pi\)
0.494401 + 0.869234i \(0.335387\pi\)
\(368\) 17.9661 0.0488210
\(369\) 174.131 200.232i 0.471899 0.542634i
\(370\) −24.7495 + 91.9913i −0.0668906 + 0.248625i
\(371\) 1.65683 + 0.538338i 0.00446586 + 0.00145105i
\(372\) −12.5572 + 286.933i −0.0337559 + 0.771325i
\(373\) 82.2542 + 113.213i 0.220521 + 0.303521i 0.904916 0.425591i \(-0.139934\pi\)
−0.684395 + 0.729111i \(0.739934\pi\)
\(374\) 151.201i 0.404281i
\(375\) 277.278 252.471i 0.739409 0.673257i
\(376\) 38.0057 0.101079
\(377\) −486.040 + 353.128i −1.28923 + 0.936680i
\(378\) 126.076 68.4035i 0.333535 0.180962i
\(379\) 126.815 390.298i 0.334605 1.02981i −0.632311 0.774715i \(-0.717893\pi\)
0.966916 0.255094i \(-0.0821065\pi\)
\(380\) 420.170 + 113.043i 1.10571 + 0.297482i
\(381\) −467.206 + 309.168i −1.22626 + 0.811466i
\(382\) 291.710i 0.763639i
\(383\) 50.5993 + 155.729i 0.132113 + 0.406602i 0.995130 0.0985732i \(-0.0314279\pi\)
−0.863017 + 0.505175i \(0.831428\pi\)
\(384\) −258.935 96.8421i −0.674310 0.252193i
\(385\) −329.470 + 126.087i −0.855767 + 0.327498i
\(386\) −216.777 298.368i −0.561598 0.772973i
\(387\) −10.1097 + 115.283i −0.0261234 + 0.297889i
\(388\) −13.0595 + 17.9748i −0.0336584 + 0.0463268i
\(389\) 95.5239 + 131.477i 0.245563 + 0.337988i 0.913951 0.405824i \(-0.133016\pi\)
−0.668388 + 0.743812i \(0.733016\pi\)
\(390\) −327.656 103.714i −0.840144 0.265933i
\(391\) 87.9298 + 63.8847i 0.224884 + 0.163388i
\(392\) −68.4897 210.790i −0.174719 0.537729i
\(393\) −109.590 395.326i −0.278855 1.00592i
\(394\) −84.1544 259.001i −0.213590 0.657362i
\(395\) −101.684 + 156.231i −0.257428 + 0.395521i
\(396\) 358.487 82.6860i 0.905271 0.208803i
\(397\) −127.297 41.3613i −0.320647 0.104185i 0.144271 0.989538i \(-0.453916\pi\)
−0.464918 + 0.885354i \(0.653916\pi\)
\(398\) 14.1836 10.3050i 0.0356372 0.0258920i
\(399\) 120.373 + 434.222i 0.301686 + 1.08828i
\(400\) −13.8268 31.2266i −0.0345670 0.0780666i
\(401\) 451.210i 1.12521i −0.826725 0.562606i \(-0.809799\pi\)
0.826725 0.562606i \(-0.190201\pi\)
\(402\) −161.182 128.237i −0.400950 0.318997i
\(403\) 677.770 + 220.221i 1.68181 + 0.546453i
\(404\) −177.150 57.5596i −0.438490 0.142474i
\(405\) −366.810 171.685i −0.905703 0.423913i
\(406\) 50.5247 + 155.499i 0.124445 + 0.383003i
\(407\) −253.034 −0.621705
\(408\) −106.344 160.704i −0.260646 0.393881i
\(409\) 15.8044 + 11.4826i 0.0386415 + 0.0280747i 0.606938 0.794749i \(-0.292397\pi\)
−0.568297 + 0.822824i \(0.692397\pi\)
\(410\) −44.9546 + 167.091i −0.109645 + 0.407540i
\(411\) −270.968 + 340.582i −0.659290 + 0.828667i
\(412\) 86.7774 119.439i 0.210625 0.289900i
\(413\) 151.459 + 110.042i 0.366729 + 0.266444i
\(414\) −54.3117 + 127.878i −0.131188 + 0.308883i
\(415\) 20.3706 + 396.425i 0.0490858 + 0.955242i
\(416\) −375.137 + 516.331i −0.901771 + 1.24118i
\(417\) −6.84477 10.3436i −0.0164143 0.0248048i
\(418\) 607.169i 1.45256i
\(419\) −520.732 + 169.196i −1.24280 + 0.403809i −0.855334 0.518076i \(-0.826648\pi\)
−0.387463 + 0.921885i \(0.626648\pi\)
\(420\) 103.548 144.826i 0.246544 0.344823i
\(421\) −173.380 + 533.609i −0.411829 + 1.26748i 0.503227 + 0.864154i \(0.332146\pi\)
−0.915056 + 0.403326i \(0.867854\pi\)
\(422\) −87.3402 + 268.806i −0.206967 + 0.636980i
\(423\) 17.2027 40.5039i 0.0406683 0.0957540i
\(424\) 2.99177 0.00705606
\(425\) 43.3660 201.995i 0.102038 0.475283i
\(426\) 15.5263 + 56.0082i 0.0364466 + 0.131475i
\(427\) −71.9126 98.9792i −0.168414 0.231801i
\(428\) 54.1970 166.801i 0.126629 0.389722i
\(429\) 39.9123 911.998i 0.0930357 2.12587i
\(430\) −26.9712 70.4771i −0.0627238 0.163900i
\(431\) 432.742 140.606i 1.00404 0.326233i 0.239562 0.970881i \(-0.422996\pi\)
0.764479 + 0.644648i \(0.222996\pi\)
\(432\) −25.3968 + 26.7461i −0.0587888 + 0.0619123i
\(433\) 797.637 259.168i 1.84212 0.598541i 0.844061 0.536247i \(-0.180159\pi\)
0.998058 0.0622933i \(-0.0198414\pi\)
\(434\) 113.999 156.906i 0.262671 0.361536i
\(435\) 268.504 375.537i 0.617251 0.863304i
\(436\) 385.645 280.187i 0.884506 0.642631i
\(437\) −353.095 256.538i −0.807997 0.587044i
\(438\) 78.8607 210.857i 0.180047 0.481408i
\(439\) −443.492 + 322.216i −1.01023 + 0.733977i −0.964258 0.264966i \(-0.914639\pi\)
−0.0459747 + 0.998943i \(0.514639\pi\)
\(440\) −471.206 + 380.781i −1.07092 + 0.865411i
\(441\) −255.646 22.4189i −0.579697 0.0508366i
\(442\) −180.075 + 58.5099i −0.407409 + 0.132375i
\(443\) 770.025 1.73820 0.869102 0.494632i \(-0.164697\pi\)
0.869102 + 0.494632i \(0.164697\pi\)
\(444\) 106.495 70.4715i 0.239853 0.158720i
\(445\) −114.657 299.603i −0.257655 0.673265i
\(446\) 247.648 + 80.4656i 0.555263 + 0.180416i
\(447\) 471.346 + 20.6278i 1.05446 + 0.0461472i
\(448\) 87.5564 + 120.511i 0.195438 + 0.268998i
\(449\) 512.440i 1.14129i 0.821196 + 0.570646i \(0.193307\pi\)
−0.821196 + 0.570646i \(0.806693\pi\)
\(450\) 264.060 4.01662i 0.586801 0.00892582i
\(451\) −459.606 −1.01908
\(452\) −76.1430 + 55.3211i −0.168458 + 0.122392i
\(453\) −6.22063 + 142.142i −0.0137321 + 0.313778i
\(454\) 10.6929 32.9094i 0.0235527 0.0724877i
\(455\) −277.659 343.596i −0.610240 0.755156i
\(456\) 427.038 + 645.328i 0.936487 + 1.41519i
\(457\) 379.087i 0.829513i 0.909933 + 0.414756i \(0.136133\pi\)
−0.909933 + 0.414756i \(0.863867\pi\)
\(458\) −75.3631 231.944i −0.164548 0.506427i
\(459\) −219.402 + 40.5940i −0.478000 + 0.0884400i
\(460\) 8.84956 + 172.218i 0.0192382 + 0.374387i
\(461\) 124.704 + 171.640i 0.270507 + 0.372321i 0.922561 0.385852i \(-0.126092\pi\)
−0.652054 + 0.758173i \(0.726092\pi\)
\(462\) −232.696 87.0285i −0.503670 0.188373i
\(463\) −231.975 + 319.286i −0.501025 + 0.689602i −0.982374 0.186927i \(-0.940147\pi\)
0.481348 + 0.876529i \(0.340147\pi\)
\(464\) −24.7118 34.0128i −0.0532581 0.0733035i
\(465\) −547.601 + 4.16453i −1.17764 + 0.00895598i
\(466\) 115.229 + 83.7186i 0.247272 + 0.179654i
\(467\) 278.306 + 856.539i 0.595945 + 1.83413i 0.549965 + 0.835188i \(0.314641\pi\)
0.0459797 + 0.998942i \(0.485359\pi\)
\(468\) 237.199 + 394.949i 0.506836 + 0.843908i
\(469\) −81.8134 251.796i −0.174442 0.536878i
\(470\) 1.47257 + 28.6573i 0.00313314 + 0.0609729i
\(471\) −742.913 32.5125i −1.57731 0.0690288i
\(472\) 305.773 + 99.3518i 0.647825 + 0.210491i
\(473\) 162.159 117.815i 0.342831 0.249081i
\(474\) −126.505 + 35.0690i −0.266888 + 0.0739853i
\(475\) −174.142 + 811.141i −0.366615 + 1.70766i
\(476\) 98.0848i 0.206061i
\(477\) 1.35418 3.18843i 0.00283895 0.00668433i
\(478\) 122.248 + 39.7208i 0.255749 + 0.0830979i
\(479\) −542.640 176.314i −1.13286 0.368088i −0.318197 0.948024i \(-0.603077\pi\)
−0.814662 + 0.579936i \(0.803077\pi\)
\(480\) 147.998 467.560i 0.308329 0.974083i
\(481\) −97.9160 301.354i −0.203568 0.626517i
\(482\) 254.614 0.528245
\(483\) −148.928 + 98.5514i −0.308340 + 0.204040i
\(484\) −258.813 188.038i −0.534737 0.388509i
\(485\) −35.5051 23.1088i −0.0732064 0.0476470i
\(486\) −113.596 261.620i −0.233738 0.538314i
\(487\) 457.802 630.110i 0.940045 1.29386i −0.0157647 0.999876i \(-0.505018\pi\)
0.955810 0.293985i \(-0.0949817\pi\)
\(488\) −169.981 123.498i −0.348321 0.253070i
\(489\) −296.074 235.557i −0.605468 0.481712i
\(490\) 156.287 59.8102i 0.318953 0.122062i
\(491\) 306.359 421.667i 0.623949 0.858792i −0.373684 0.927556i \(-0.621905\pi\)
0.997633 + 0.0687637i \(0.0219055\pi\)
\(492\) 193.435 128.003i 0.393160 0.260169i
\(493\) 254.337i 0.515896i
\(494\) 723.117 234.955i 1.46380 0.475617i
\(495\) 192.526 + 674.534i 0.388942 + 1.36270i
\(496\) −15.4109 + 47.4300i −0.0310705 + 0.0956250i
\(497\) −23.0858 + 71.0509i −0.0464504 + 0.142960i
\(498\) −174.045 + 218.759i −0.349488 + 0.439274i
\(499\) 92.9843 0.186341 0.0931706 0.995650i \(-0.470300\pi\)
0.0931706 + 0.995650i \(0.470300\pi\)
\(500\) 292.519 147.921i 0.585038 0.295842i
\(501\) 28.0937 7.78797i 0.0560753 0.0155449i
\(502\) 112.467 + 154.798i 0.224038 + 0.308363i
\(503\) −57.9474 + 178.344i −0.115204 + 0.354560i −0.991989 0.126321i \(-0.959683\pi\)
0.876786 + 0.480881i \(0.159683\pi\)
\(504\) 308.529 71.1630i 0.612161 0.141196i
\(505\) 92.2701 342.958i 0.182713 0.679125i
\(506\) 228.859 74.3607i 0.452290 0.146958i
\(507\) 613.028 169.940i 1.20913 0.335188i
\(508\) −465.744 + 151.329i −0.916818 + 0.297892i
\(509\) 253.712 349.204i 0.498452 0.686060i −0.483467 0.875363i \(-0.660623\pi\)
0.981919 + 0.189303i \(0.0606227\pi\)
\(510\) 117.054 86.4125i 0.229518 0.169436i
\(511\) 234.104 170.087i 0.458129 0.332850i
\(512\) −70.4933 51.2164i −0.137682 0.100032i
\(513\) 881.040 163.011i 1.71743 0.317760i
\(514\) 224.154 162.857i 0.436097 0.316843i
\(515\) 235.924 + 153.553i 0.458105 + 0.298161i
\(516\) −35.4357 + 94.7474i −0.0686738 + 0.183619i
\(517\) −72.4887 + 23.5530i −0.140210 + 0.0455571i
\(518\) −86.2340 −0.166475
\(519\) 419.714 + 634.260i 0.808698 + 1.22208i
\(520\) −635.838 413.840i −1.22277 0.795846i
\(521\) −837.828 272.227i −1.60812 0.522508i −0.639019 0.769191i \(-0.720659\pi\)
−0.969096 + 0.246683i \(0.920659\pi\)
\(522\) 316.797 73.0700i 0.606891 0.139981i
\(523\) −361.944 498.173i −0.692053 0.952530i −0.999999 0.00112582i \(-0.999642\pi\)
0.307946 0.951404i \(-0.400358\pi\)
\(524\) 358.592i 0.684336i
\(525\) 285.906 + 183.004i 0.544583 + 0.348579i
\(526\) −103.324 −0.196433
\(527\) −244.078 + 177.333i −0.463146 + 0.336495i
\(528\) 63.8213 + 2.79305i 0.120874 + 0.00528986i
\(529\) −110.018 + 338.599i −0.207973 + 0.640074i
\(530\) 0.115920 + 2.25587i 0.000218716 + 0.00425636i
\(531\) 244.286 280.903i 0.460049 0.529007i
\(532\) 393.874i 0.740364i
\(533\) −177.853 547.375i −0.333683 1.02697i
\(534\) 79.1391 211.601i 0.148201 0.396256i
\(535\) 322.923 + 86.8798i 0.603594 + 0.162392i
\(536\) −267.249 367.837i −0.498599 0.686263i
\(537\) −373.209 + 997.880i −0.694988 + 1.85825i
\(538\) −83.0592 + 114.321i −0.154385 + 0.212493i
\(539\) 261.262 + 359.597i 0.484717 + 0.667156i
\(540\) −268.891 230.272i −0.497946 0.426430i
\(541\) 754.736 + 548.348i 1.39508 + 1.01358i 0.995287 + 0.0969753i \(0.0309168\pi\)
0.399790 + 0.916607i \(0.369083\pi\)
\(542\) 96.7525 + 297.773i 0.178510 + 0.549398i
\(543\) −138.309 + 38.3413i −0.254713 + 0.0706101i
\(544\) −83.4927 256.964i −0.153479 0.472360i
\(545\) 571.262 + 706.921i 1.04819 + 1.29710i
\(546\) 13.6021 310.809i 0.0249123 0.569248i
\(547\) −322.894 104.915i −0.590300 0.191800i −0.00139024 0.999999i \(-0.500443\pi\)
−0.588909 + 0.808199i \(0.700443\pi\)
\(548\) −307.779 + 223.614i −0.561640 + 0.408055i
\(549\) −208.555 + 125.254i −0.379882 + 0.228150i
\(550\) −305.376 340.548i −0.555228 0.619177i
\(551\) 1021.33i 1.85359i
\(552\) −190.942 + 239.997i −0.345910 + 0.434777i
\(553\) −160.482 52.1438i −0.290203 0.0942925i
\(554\) −463.913 150.734i −0.837388 0.272084i
\(555\) 144.611 + 195.889i 0.260560 + 0.352954i
\(556\) −3.35032 10.3112i −0.00602576 0.0185454i
\(557\) 782.260 1.40442 0.702208 0.711972i \(-0.252198\pi\)
0.702208 + 0.711972i \(0.252198\pi\)
\(558\) −291.005 253.072i −0.521515 0.453534i
\(559\) 203.064 + 147.535i 0.363264 + 0.263927i
\(560\) 24.0447 19.4305i 0.0429370 0.0346973i
\(561\) 302.422 + 240.608i 0.539077 + 0.428892i
\(562\) 97.4508 134.130i 0.173400 0.238665i
\(563\) 92.3487 + 67.0952i 0.164030 + 0.119174i 0.666772 0.745262i \(-0.267676\pi\)
−0.502742 + 0.864436i \(0.667676\pi\)
\(564\) 23.9487 30.1013i 0.0424623 0.0533712i
\(565\) −112.792 139.577i −0.199632 0.247039i
\(566\) 136.536 187.926i 0.241230 0.332025i
\(567\) 63.8103 361.021i 0.112540 0.636721i
\(568\) 128.298i 0.225876i
\(569\) 48.2487 15.6769i 0.0847956 0.0275518i −0.266312 0.963887i \(-0.585805\pi\)
0.351108 + 0.936335i \(0.385805\pi\)
\(570\) −470.048 + 347.002i −0.824645 + 0.608775i
\(571\) 163.602 503.516i 0.286519 0.881814i −0.699421 0.714710i \(-0.746559\pi\)
0.985939 0.167103i \(-0.0534414\pi\)
\(572\) 246.581 758.899i 0.431086 1.32675i
\(573\) 583.460 + 464.202i 1.01825 + 0.810126i
\(574\) −156.634 −0.272881
\(575\) −327.069 + 33.7023i −0.568815 + 0.0586128i
\(576\) 253.924 152.502i 0.440841 0.264761i
\(577\) −43.7565 60.2257i −0.0758345 0.104377i 0.769415 0.638750i \(-0.220548\pi\)
−0.845249 + 0.534372i \(0.820548\pi\)
\(578\) −80.0518 + 246.374i −0.138498 + 0.426253i
\(579\) −941.735 41.2137i −1.62649 0.0711809i
\(580\) 313.865 253.634i 0.541147 0.437300i
\(581\) −341.741 + 111.038i −0.588195 + 0.191116i
\(582\) −7.96981 28.7496i −0.0136938 0.0493980i
\(583\) −5.70624 + 1.85407i −0.00978771 + 0.00318022i
\(584\) 292.096 402.035i 0.500164 0.688417i
\(585\) −728.845 + 490.315i −1.24589 + 0.838146i
\(586\) 65.3669 47.4918i 0.111548 0.0810441i
\(587\) −850.180 617.692i −1.44835 1.05229i −0.986214 0.165476i \(-0.947084\pi\)
−0.462134 0.886810i \(-0.652916\pi\)
\(588\) −210.108 78.5806i −0.357326 0.133640i
\(589\) 980.130 712.106i 1.66406 1.20901i
\(590\) −63.0662 + 234.410i −0.106892 + 0.397306i
\(591\) −651.952 243.831i −1.10313 0.412574i
\(592\) 21.0887 6.85212i 0.0356227 0.0115745i
\(593\) −1079.90 −1.82108 −0.910540 0.413420i \(-0.864334\pi\)
−0.910540 + 0.413420i \(0.864334\pi\)
\(594\) −212.812 + 445.817i −0.358270 + 0.750534i
\(595\) 186.771 9.59738i 0.313901 0.0161301i
\(596\) 392.220 + 127.440i 0.658087 + 0.213825i
\(597\) 1.95919 44.7676i 0.00328173 0.0749877i
\(598\) 177.122 + 243.788i 0.296191 + 0.407671i
\(599\) 1066.05i 1.77972i 0.456229 + 0.889862i \(0.349200\pi\)
−0.456229 + 0.889862i \(0.650800\pi\)
\(600\) 564.084 + 147.171i 0.940140 + 0.245285i
\(601\) −825.264 −1.37315 −0.686576 0.727058i \(-0.740887\pi\)
−0.686576 + 0.727058i \(0.740887\pi\)
\(602\) 55.2639 40.1516i 0.0918005 0.0666969i
\(603\) −512.982 + 118.320i −0.850716 + 0.196220i
\(604\) −38.4315 + 118.280i −0.0636282 + 0.195828i
\(605\) 332.735 511.226i 0.549975 0.845001i
\(606\) 208.581 138.026i 0.344193 0.227765i
\(607\) 444.639i 0.732519i −0.930513 0.366260i \(-0.880638\pi\)
0.930513 0.366260i \(-0.119362\pi\)
\(608\) 335.277 + 1031.88i 0.551442 + 1.69716i
\(609\) 391.420 + 146.392i 0.642725 + 0.240380i
\(610\) 86.5346 132.955i 0.141860 0.217959i
\(611\) −56.1016 77.2173i −0.0918194 0.126379i
\(612\) −194.291 17.0384i −0.317470 0.0278406i
\(613\) 108.903 149.893i 0.177656 0.244523i −0.710897 0.703296i \(-0.751711\pi\)
0.888554 + 0.458773i \(0.151711\pi\)
\(614\) 97.4578 + 134.139i 0.158726 + 0.218468i
\(615\) 262.668 + 355.810i 0.427103 + 0.578553i
\(616\) −443.675 322.349i −0.720252 0.523293i
\(617\) 129.854 + 399.648i 0.210460 + 0.647728i 0.999445 + 0.0333160i \(0.0106068\pi\)
−0.788985 + 0.614412i \(0.789393\pi\)
\(618\) 52.9577 + 191.035i 0.0856921 + 0.309119i
\(619\) 55.1731 + 169.805i 0.0891327 + 0.274322i 0.985680 0.168625i \(-0.0539328\pi\)
−0.896548 + 0.442948i \(0.853933\pi\)
\(620\) −462.242 124.362i −0.745551 0.200585i
\(621\) 169.345 + 312.124i 0.272698 + 0.502615i
\(622\) −603.262 196.012i −0.969874 0.315131i
\(623\) 234.930 170.687i 0.377095 0.273976i
\(624\) 21.3704 + 77.0897i 0.0342474 + 0.123541i
\(625\) 310.291 + 542.535i 0.496465 + 0.868057i
\(626\) 160.784i 0.256844i
\(627\) −1214.42 966.197i −1.93687 1.54098i
\(628\) −618.198 200.865i −0.984392 0.319848i
\(629\) 127.577 + 41.4523i 0.202825 + 0.0659020i
\(630\) 65.6130 + 229.882i 0.104148 + 0.364891i
\(631\) −194.093 597.356i −0.307596 0.946682i −0.978696 0.205316i \(-0.934178\pi\)
0.671100 0.741367i \(-0.265822\pi\)
\(632\) −289.785 −0.458520
\(633\) 398.662 + 602.446i 0.629798 + 0.951732i
\(634\) 260.278 + 189.103i 0.410534 + 0.298270i
\(635\) −333.730 872.053i −0.525560 1.37331i
\(636\) 1.88522 2.36954i 0.00296418 0.00372570i
\(637\) −327.167 + 450.307i −0.513606 + 0.706918i
\(638\) −455.565 330.987i −0.714051 0.518788i
\(639\) 136.731 + 58.0719i 0.213977 + 0.0908794i
\(640\) 251.338 386.164i 0.392716 0.603382i
\(641\) −102.718 + 141.379i −0.160246 + 0.220560i −0.881589 0.472019i \(-0.843525\pi\)
0.721342 + 0.692579i \(0.243525\pi\)
\(642\) 129.963 + 196.396i 0.202434 + 0.305912i
\(643\) 441.290i 0.686298i 0.939281 + 0.343149i \(0.111494\pi\)
−0.939281 + 0.343149i \(0.888506\pi\)
\(644\) −148.462 + 48.2382i −0.230531 + 0.0749040i
\(645\) −183.883 58.2051i −0.285091 0.0902404i
\(646\) −99.4672 + 306.129i −0.153974 + 0.473883i
\(647\) 191.495 589.361i 0.295974 0.910913i −0.686919 0.726734i \(-0.741037\pi\)
0.982893 0.184179i \(-0.0589627\pi\)
\(648\) −87.3684 623.513i −0.134828 0.962211i
\(649\) −644.776 −0.993491
\(650\) 287.410 495.473i 0.442169 0.762266i
\(651\) −132.426 477.701i −0.203419 0.733796i
\(652\) −194.392 267.557i −0.298147 0.410364i
\(653\) 240.005 738.661i 0.367543 1.13118i −0.580831 0.814024i \(-0.697272\pi\)
0.948373 0.317156i \(-0.102728\pi\)
\(654\) −27.9853 + 639.465i −0.0427910 + 0.977776i
\(655\) 682.824 35.0875i 1.04248 0.0535686i
\(656\) 38.3051 12.4461i 0.0583919 0.0189727i
\(657\) −296.250 493.271i −0.450913 0.750793i
\(658\) −24.7042 + 8.02688i −0.0375444 + 0.0121989i
\(659\) −157.285 + 216.484i −0.238672 + 0.328504i −0.911504 0.411292i \(-0.865078\pi\)
0.672832 + 0.739796i \(0.265078\pi\)
\(660\) 4.66303 + 613.149i 0.00706519 + 0.929013i
\(661\) 527.052 382.926i 0.797356 0.579313i −0.112781 0.993620i \(-0.535976\pi\)
0.910137 + 0.414307i \(0.135976\pi\)
\(662\) 88.2905 + 64.1468i 0.133369 + 0.0968985i
\(663\) −169.528 + 453.282i −0.255699 + 0.683683i
\(664\) −499.234 + 362.715i −0.751859 + 0.546257i
\(665\) −750.007 + 38.5397i −1.12783 + 0.0579544i
\(666\) −14.9798 + 170.817i −0.0224922 + 0.256482i
\(667\) −384.966 + 125.083i −0.577160 + 0.187531i
\(668\) 25.4832 0.0381485
\(669\) 555.027 367.283i 0.829637 0.549002i
\(670\) 267.003 215.765i 0.398512 0.322037i
\(671\) 400.741 + 130.209i 0.597229 + 0.194051i
\(672\) 443.520 + 19.4100i 0.660000 + 0.0288840i
\(673\) 53.6995 + 73.9111i 0.0797913 + 0.109823i 0.847047 0.531518i \(-0.178378\pi\)
−0.767256 + 0.641341i \(0.778378\pi\)
\(674\) 551.393i 0.818090i
\(675\) 412.169 534.548i 0.610621 0.791923i
\(676\) 556.065 0.822581
\(677\) 696.469 506.015i 1.02876 0.747437i 0.0606986 0.998156i \(-0.480667\pi\)
0.968060 + 0.250719i \(0.0806672\pi\)
\(678\) 5.52552 126.258i 0.00814973 0.186222i
\(679\) 11.8502 36.4712i 0.0174525 0.0537132i
\(680\) 299.957 114.792i 0.441114 0.168812i
\(681\) −48.8075 73.7565i −0.0716703 0.108306i
\(682\) 667.965i 0.979422i
\(683\) −249.650 768.345i −0.365520 1.12496i −0.949655 0.313299i \(-0.898566\pi\)
0.584134 0.811657i \(-0.301434\pi\)
\(684\) 780.205 + 68.4202i 1.14065 + 0.100030i
\(685\) −455.918 564.186i −0.665573 0.823630i
\(686\) 242.046 + 333.147i 0.352836 + 0.485638i
\(687\) −583.845 218.359i −0.849848 0.317844i
\(688\) −10.3244 + 14.2104i −0.0150064 + 0.0206546i
\(689\) −4.41626 6.07846i −0.00640967 0.00882215i
\(690\) −188.362 134.676i −0.272988 0.195183i
\(691\) 873.560 + 634.678i 1.26420 + 0.918492i 0.998956 0.0456898i \(-0.0145486\pi\)
0.265241 + 0.964182i \(0.414549\pi\)
\(692\) 205.438 + 632.274i 0.296876 + 0.913691i
\(693\) −544.360 + 326.933i −0.785513 + 0.471765i
\(694\) 91.4408 + 281.426i 0.131759 + 0.405513i
\(695\) 19.3066 7.38855i 0.0277793 0.0106310i
\(696\) 716.988 + 31.3780i 1.03015 + 0.0450833i
\(697\) 231.729 + 75.2933i 0.332466 + 0.108025i
\(698\) −117.583 + 85.4291i −0.168457 + 0.122391i
\(699\) 350.814 97.2505i 0.501879 0.139128i
\(700\) 198.099 + 220.915i 0.282998 + 0.315593i
\(701\) 126.200i 0.180028i 0.995940 + 0.0900140i \(0.0286912\pi\)
−0.995940 + 0.0900140i \(0.971309\pi\)
\(702\) −613.304 80.9349i −0.873653 0.115292i
\(703\) −512.304 166.458i −0.728740 0.236782i
\(704\) −487.918 158.534i −0.693065 0.225190i
\(705\) 59.6617 + 42.6573i 0.0846265 + 0.0605069i
\(706\) −149.588 460.384i −0.211881 0.652102i
\(707\) 321.494 0.454730
\(708\) 271.367 179.574i 0.383287 0.253636i
\(709\) 639.408 + 464.557i 0.901845 + 0.655229i 0.938939 0.344083i \(-0.111810\pi\)
−0.0370940 + 0.999312i \(0.511810\pi\)
\(710\) −96.7397 + 4.97104i −0.136253 + 0.00700146i
\(711\) −131.167 + 308.833i −0.184482 + 0.434364i
\(712\) 293.127 403.455i 0.411695 0.566650i
\(713\) 388.450 + 282.226i 0.544811 + 0.395828i
\(714\) 103.066 + 81.9993i 0.144350 + 0.114845i
\(715\) 1469.21 + 395.279i 2.05484 + 0.552837i
\(716\) −547.386 + 753.412i −0.764506 + 1.05225i
\(717\) 273.982 181.304i 0.382123 0.252865i
\(718\) 739.118i 1.02941i
\(719\) 595.621 193.529i 0.828402 0.269164i 0.136030 0.990705i \(-0.456566\pi\)
0.692372 + 0.721540i \(0.256566\pi\)
\(720\) −34.3120 51.0043i −0.0476556 0.0708393i
\(721\) −78.7423 + 242.344i −0.109213 + 0.336122i
\(722\) 268.488 826.322i 0.371868 1.14449i
\(723\) 405.171 509.263i 0.560403 0.704375i
\(724\) −125.457 −0.173284
\(725\) 513.676 + 572.839i 0.708518 + 0.790123i
\(726\) 413.956 114.754i 0.570187 0.158064i
\(727\) −196.370 270.281i −0.270110 0.371775i 0.652317 0.757947i \(-0.273797\pi\)
−0.922427 + 0.386171i \(0.873797\pi\)
\(728\) 212.218 653.140i 0.291508 0.897170i
\(729\) −704.044 189.112i −0.965767 0.259413i
\(730\) 314.462 + 204.670i 0.430770 + 0.280370i
\(731\) −101.060 + 32.8363i −0.138249 + 0.0449197i
\(732\) −204.924 + 56.8078i −0.279951 + 0.0776063i
\(733\) −253.600 + 82.3997i −0.345976 + 0.112414i −0.476850 0.878985i \(-0.658222\pi\)
0.130874 + 0.991399i \(0.458222\pi\)
\(734\) −102.086 + 140.509i −0.139082 + 0.191430i
\(735\) 129.073 407.772i 0.175610 0.554792i
\(736\) −347.881 + 252.750i −0.472664 + 0.343411i
\(737\) 737.684 + 535.959i 1.00093 + 0.727217i
\(738\) −27.2091 + 310.269i −0.0368686 + 0.420418i
\(739\) −895.612 + 650.700i −1.21192 + 0.880515i −0.995404 0.0957635i \(-0.969471\pi\)
−0.216520 + 0.976278i \(0.569471\pi\)
\(740\) 76.0701 + 198.775i 0.102797 + 0.268615i
\(741\) 680.764 1820.22i 0.918711 2.45644i
\(742\) −1.94469 + 0.631867i −0.00262087 + 0.000851573i
\(743\) 149.524 0.201244 0.100622 0.994925i \(-0.467917\pi\)
0.100622 + 0.994925i \(0.467917\pi\)
\(744\) −469.798 709.945i −0.631449 0.954228i
\(745\) −204.291 + 759.327i −0.274216 + 1.01923i
\(746\) −156.213 50.7566i −0.209400 0.0680383i
\(747\) 160.586 + 696.227i 0.214975 + 0.932031i
\(748\) 198.560 + 273.294i 0.265454 + 0.365367i
\(749\) 302.713i 0.404156i
\(750\) −89.1147 + 431.036i −0.118820 + 0.574714i
\(751\) −14.6660 −0.0195287 −0.00976434 0.999952i \(-0.503108\pi\)
−0.00976434 + 0.999952i \(0.503108\pi\)
\(752\) 5.40363 3.92597i 0.00718568 0.00522070i
\(753\) 488.588 + 21.3824i 0.648855 + 0.0283962i
\(754\) 217.905 670.643i 0.288999 0.889447i
\(755\) −228.987 61.6070i −0.303294 0.0815987i
\(756\) 138.052 289.204i 0.182609 0.382545i
\(757\) 433.882i 0.573160i 0.958056 + 0.286580i \(0.0925185\pi\)
−0.958056 + 0.286580i \(0.907482\pi\)
\(758\) 148.848 + 458.107i 0.196369 + 0.604363i
\(759\) 215.455 576.080i 0.283867 0.758998i
\(760\) −1204.52 + 460.965i −1.58490 + 0.606532i
\(761\) 148.426 + 204.291i 0.195041 + 0.268451i 0.895325 0.445414i \(-0.146943\pi\)
−0.700284 + 0.713864i \(0.746943\pi\)
\(762\) 230.350 615.906i 0.302296 0.808276i
\(763\) −483.600 + 665.618i −0.633814 + 0.872370i
\(764\) 383.079 + 527.263i 0.501412 + 0.690135i
\(765\) 13.4333 371.633i 0.0175598 0.485795i
\(766\) −155.486 112.967i −0.202984 0.147477i
\(767\) −249.508 767.905i −0.325303 1.00118i
\(768\) 693.270 192.184i 0.902696 0.250240i
\(769\) 110.577 + 340.322i 0.143794 + 0.442552i 0.996854 0.0792610i \(-0.0252560\pi\)
−0.853060 + 0.521813i \(0.825256\pi\)
\(770\) 225.868 347.032i 0.293336 0.450691i
\(771\) 30.9626 707.496i 0.0401590 0.917634i
\(772\) −783.644 254.621i −1.01508 0.329820i
\(773\) −677.204 + 492.018i −0.876073 + 0.636504i −0.932210 0.361919i \(-0.882122\pi\)
0.0561366 + 0.998423i \(0.482122\pi\)
\(774\) −69.9343 116.444i −0.0903544 0.150445i
\(775\) 191.579 892.361i 0.247199 1.15143i
\(776\) 65.8567i 0.0848668i
\(777\) −137.225 + 172.480i −0.176609 + 0.221982i
\(778\) −181.414 58.9449i −0.233180 0.0757647i
\(779\) −930.540 302.351i −1.19453 0.388127i
\(780\) −728.434 + 242.822i −0.933890 + 0.311311i
\(781\) −79.5090 244.704i −0.101804 0.313321i
\(782\) −127.570 −0.163133
\(783\) 357.974 749.915i 0.457183 0.957745i
\(784\) −31.5123 22.8950i −0.0401942 0.0292028i
\(785\) 321.993 1196.82i 0.410183 1.52461i
\(786\) 376.802 + 299.785i 0.479391 + 0.381405i
\(787\) −95.1242 + 130.927i −0.120869 + 0.166362i −0.865164 0.501489i \(-0.832786\pi\)
0.744295 + 0.667851i \(0.232786\pi\)
\(788\) −492.233 357.628i −0.624661 0.453843i
\(789\) −164.421 + 206.662i −0.208391 + 0.261928i
\(790\) −11.2280 218.505i −0.0142127 0.276589i
\(791\) 95.4836 131.422i 0.120713 0.166147i
\(792\) −715.596 + 822.859i −0.903531 + 1.03896i
\(793\) 527.654i 0.665390i
\(794\) 149.413 48.5473i 0.188178 0.0611427i
\(795\) 4.69651 + 3.35794i 0.00590755 + 0.00422382i
\(796\) 12.1040 37.2524i 0.0152061 0.0467995i
\(797\) −254.920 + 784.563i −0.319849 + 0.984395i 0.653863 + 0.756613i \(0.273147\pi\)
−0.973712 + 0.227782i \(0.926853\pi\)
\(798\) −413.875 329.280i −0.518640 0.412632i
\(799\) 40.4066 0.0505714
\(800\) 707.031 + 410.129i 0.883789 + 0.512661i
\(801\) −297.295 495.012i −0.371155 0.617993i
\(802\) 311.292 + 428.457i 0.388145 + 0.534236i
\(803\) −307.967 + 947.826i −0.383521 + 1.18036i
\(804\) −459.738 20.1198i −0.571813 0.0250246i
\(805\) −106.381 277.978i −0.132150 0.345315i
\(806\) −795.523 + 258.481i −0.987002 + 0.320696i
\(807\) 96.4846 + 348.051i 0.119560 + 0.431289i
\(808\) 525.091 170.612i 0.649865 0.211154i
\(809\) −93.1201 + 128.169i −0.115105 + 0.158429i −0.862682 0.505746i \(-0.831217\pi\)
0.747577 + 0.664175i \(0.231217\pi\)
\(810\) 466.759 90.0367i 0.576246 0.111156i
\(811\) 1067.58 775.641i 1.31637 0.956401i 0.316403 0.948625i \(-0.397525\pi\)
0.999970 0.00777589i \(-0.00247517\pi\)
\(812\) 295.527 + 214.713i 0.363950 + 0.264425i
\(813\) 749.551 + 280.333i 0.921957 + 0.344813i
\(814\) 240.274 174.569i 0.295177 0.214459i
\(815\) 490.456 396.337i 0.601787 0.486303i
\(816\) −31.7205 11.8635i −0.0388731 0.0145386i
\(817\) 405.820 131.859i 0.496719 0.161394i
\(818\) −22.9293 −0.0280309
\(819\) −600.015 521.801i −0.732620 0.637120i
\(820\) 138.172 + 361.051i 0.168503 + 0.440306i
\(821\) −1045.16 339.592i −1.27303 0.413632i −0.406908 0.913469i \(-0.633393\pi\)
−0.866119 + 0.499837i \(0.833393\pi\)
\(822\) 22.3348 510.350i 0.0271713 0.620864i
\(823\) −281.353 387.249i −0.341863 0.470534i 0.603122 0.797649i \(-0.293923\pi\)
−0.944984 + 0.327116i \(0.893923\pi\)
\(824\) 437.604i 0.531073i
\(825\) −1167.09 + 68.8745i −1.41465 + 0.0834842i
\(826\) −219.740 −0.266029
\(827\) −418.443 + 304.017i −0.505977 + 0.367614i −0.811295 0.584636i \(-0.801237\pi\)
0.305318 + 0.952250i \(0.401237\pi\)
\(828\) 69.7632 + 302.460i 0.0842551 + 0.365290i
\(829\) 114.037 350.971i 0.137560 0.423366i −0.858419 0.512948i \(-0.828553\pi\)
0.995979 + 0.0895823i \(0.0285532\pi\)
\(830\) −292.839 362.381i −0.352819 0.436604i
\(831\) −1039.72 + 688.023i −1.25117 + 0.827946i
\(832\) 642.441i 0.772164i
\(833\) −72.8163 224.105i −0.0874145 0.269034i
\(834\) 13.6357 + 5.09978i 0.0163498 + 0.00611484i
\(835\) 2.49347 + 48.5246i 0.00298620 + 0.0581133i
\(836\) −797.346 1097.45i −0.953763 1.31274i
\(837\) −969.259 + 179.333i −1.15802 + 0.214257i
\(838\) 377.744 519.920i 0.450768 0.620430i
\(839\) 145.236 + 199.900i 0.173106 + 0.238260i 0.886751 0.462248i \(-0.152957\pi\)
−0.713645 + 0.700508i \(0.752957\pi\)
\(840\) 4.01320 + 527.701i 0.00477761 + 0.628216i
\(841\) 85.9271 + 62.4297i 0.102173 + 0.0742327i
\(842\) −203.503 626.317i −0.241690 0.743845i
\(843\) −113.202 408.357i −0.134285 0.484409i
\(844\) 195.134 + 600.560i 0.231201 + 0.711564i
\(845\) 54.4097 + 1058.85i 0.0643902 + 1.25308i
\(846\) 11.6087 + 50.3297i 0.0137218 + 0.0594914i
\(847\) 525.137 + 170.627i 0.619996 + 0.201449i
\(848\) 0.425368 0.309048i 0.000501613 0.000364443i
\(849\) −158.605 572.140i −0.186814 0.673899i
\(850\) 98.1784 + 221.728i 0.115504 + 0.260856i
\(851\) 213.488i 0.250867i
\(852\) 101.614 + 80.8448i 0.119266 + 0.0948883i
\(853\) −5.05983 1.64404i −0.00593181 0.00192736i 0.306050 0.952016i \(-0.400993\pi\)
−0.311981 + 0.950088i \(0.600993\pi\)
\(854\) 136.573 + 44.3751i 0.159921 + 0.0519615i
\(855\) −53.9431 + 1492.35i −0.0630914 + 1.74544i
\(856\) 160.645 + 494.416i 0.187670 + 0.577589i
\(857\) 941.563 1.09867 0.549337 0.835601i \(-0.314880\pi\)
0.549337 + 0.835601i \(0.314880\pi\)
\(858\) 591.293 + 893.545i 0.689153 + 1.04143i
\(859\) −131.977 95.8872i −0.153641 0.111627i 0.508309 0.861175i \(-0.330271\pi\)
−0.661950 + 0.749548i \(0.730271\pi\)
\(860\) −141.302 91.9675i −0.164305 0.106939i
\(861\) −249.254 + 313.289i −0.289493 + 0.363866i
\(862\) −313.915 + 432.067i −0.364171 + 0.501238i
\(863\) −1130.37 821.258i −1.30981 0.951632i −1.00000 0.000833301i \(-0.999735\pi\)
−0.309809 0.950799i \(-0.600265\pi\)
\(864\) 115.493 875.175i 0.133672 1.01293i
\(865\) −1183.86 + 453.058i −1.36863 + 0.523767i
\(866\) −578.614 + 796.394i −0.668145 + 0.919623i
\(867\) 365.394 + 552.173i 0.421446 + 0.636877i
\(868\) 433.313i 0.499208i
\(869\) 552.710 179.586i 0.636030 0.206659i
\(870\) 4.12074 + 541.843i 0.00473648 + 0.622808i
\(871\) −352.848 + 1085.96i −0.405107 + 1.24679i
\(872\) −436.622 + 1343.78i −0.500713 + 1.54104i
\(873\) −70.1856 29.8090i −0.0803959 0.0341455i
\(874\) 512.276 0.586128
\(875\) −401.279 + 398.832i −0.458604 + 0.455808i
\(876\) −134.361 484.683i −0.153380 0.553291i
\(877\) 568.890 + 783.010i 0.648678 + 0.892828i 0.999041 0.0437856i \(-0.0139418\pi\)
−0.350363 + 0.936614i \(0.613942\pi\)
\(878\) 198.830 611.935i 0.226458 0.696965i
\(879\) 9.02918 206.317i 0.0102721 0.234718i
\(880\) −27.6614 + 102.815i −0.0314334 + 0.116835i
\(881\) 1217.78 395.680i 1.38227 0.449126i 0.478853 0.877895i \(-0.341053\pi\)
0.903414 + 0.428770i \(0.141053\pi\)
\(882\) 258.222 155.083i 0.292768 0.175831i
\(883\) 142.939 46.4437i 0.161879 0.0525976i −0.226956 0.973905i \(-0.572878\pi\)
0.388835 + 0.921307i \(0.372878\pi\)
\(884\) −248.647 + 342.234i −0.281275 + 0.387142i
\(885\) 368.494 + 499.161i 0.416378 + 0.564024i
\(886\) −731.195 + 531.244i −0.825276 + 0.599598i
\(887\) −186.253 135.321i −0.209980 0.152560i 0.477824 0.878455i \(-0.341426\pi\)
−0.687805 + 0.725896i \(0.741426\pi\)
\(888\) −132.596 + 354.532i −0.149319 + 0.399248i
\(889\) 683.811 496.818i 0.769191 0.558850i
\(890\) 315.572 + 205.393i 0.354576 + 0.230778i
\(891\) 553.044 + 1135.09i 0.620700 + 1.27395i
\(892\) 553.289 179.775i 0.620279 0.201541i
\(893\) −162.258 −0.181700
\(894\) −461.809 + 305.596i −0.516564 + 0.341830i
\(895\) −1488.19 968.603i −1.66279 1.08224i
\(896\) 396.672 + 128.887i 0.442715 + 0.143847i
\(897\) 769.465 + 33.6745i 0.857820 + 0.0375413i
\(898\) −353.535 486.599i −0.393692 0.541870i
\(899\) 1123.59i 1.24982i
\(900\) 472.012 354.029i 0.524457 0.393365i
\(901\) 3.18076 0.00353026
\(902\) 436.430 317.085i 0.483847 0.351535i
\(903\) 7.63364 174.429i 0.00845364 0.193166i
\(904\) 86.2081 265.321i 0.0953629 0.293497i
\(905\) −12.2757 238.894i −0.0135643 0.263971i
\(906\) −92.1573 139.265i −0.101719 0.153715i
\(907\) 410.452i 0.452539i −0.974065 0.226269i \(-0.927347\pi\)
0.974065 0.226269i \(-0.0726529\pi\)
\(908\) −23.8899 73.5256i −0.0263105 0.0809753i
\(909\) 55.8471 636.832i 0.0614379 0.700585i
\(910\) 500.707 + 134.711i 0.550227 + 0.148034i
\(911\) 292.830 + 403.046i 0.321438 + 0.442422i 0.938906 0.344175i \(-0.111841\pi\)
−0.617467 + 0.786597i \(0.711841\pi\)
\(912\) 127.378 + 47.6396i 0.139669 + 0.0522364i
\(913\) 727.412 1001.20i 0.796728 1.09660i
\(914\) −261.534 359.971i −0.286143 0.393842i
\(915\) −128.224 384.654i −0.140135 0.420386i
\(916\) −440.811 320.268i −0.481235 0.349637i
\(917\) 191.259 + 588.634i 0.208570 + 0.641912i
\(918\) 180.332 189.914i 0.196440 0.206877i
\(919\) −330.073 1015.86i −0.359165 1.10540i −0.953555 0.301219i \(-0.902606\pi\)
0.594390 0.804177i \(-0.297394\pi\)
\(920\) −321.270 397.563i −0.349206 0.432133i
\(921\) 423.382 + 18.5287i 0.459698 + 0.0201181i
\(922\) −236.831 76.9509i −0.256866 0.0834609i
\(923\) 260.666 189.385i 0.282412 0.205184i
\(924\) −534.882 + 148.277i −0.578877 + 0.160473i
\(925\) −371.060 + 164.301i −0.401146 + 0.177623i
\(926\) 463.226i 0.500244i
\(927\) 466.369 + 198.075i 0.503095 + 0.213673i
\(928\) 956.996 + 310.947i 1.03125 + 0.335072i
\(929\) 1704.04 + 553.677i 1.83428 + 0.595992i 0.998929 + 0.0462700i \(0.0147335\pi\)
0.835347 + 0.549723i \(0.185267\pi\)
\(930\) 517.114 381.747i 0.556036 0.410481i
\(931\) 292.404 + 899.928i 0.314075 + 0.966625i
\(932\) 318.215 0.341433
\(933\) −1352.03 + 894.689i −1.44912 + 0.958938i
\(934\) −855.203 621.341i −0.915635 0.665248i
\(935\) −500.973 + 404.835i −0.535800 + 0.432979i
\(936\) −1256.91 533.830i −1.34285 0.570331i
\(937\) 776.352 1068.56i 0.828550 1.14040i −0.159641 0.987175i \(-0.551034\pi\)
0.988191 0.153227i \(-0.0489665\pi\)
\(938\) 251.403 + 182.655i 0.268020 + 0.194728i
\(939\) 321.591 + 255.859i 0.342482 + 0.272480i
\(940\) 40.2949 + 49.8639i 0.0428669 + 0.0530467i
\(941\) −619.997 + 853.353i −0.658871 + 0.906858i −0.999443 0.0333605i \(-0.989379\pi\)
0.340573 + 0.940218i \(0.389379\pi\)
\(942\) 727.881 481.667i 0.772697 0.511323i
\(943\) 387.776i 0.411215i
\(944\) 53.7377 17.4604i 0.0569255 0.0184962i
\(945\) 564.205 + 234.579i 0.597042 + 0.248232i
\(946\) −72.7004 + 223.749i −0.0768503 + 0.236521i
\(947\) 163.200 502.277i 0.172333 0.530388i −0.827168 0.561954i \(-0.810050\pi\)
0.999502 + 0.0315667i \(0.0100497\pi\)
\(948\) −182.603 + 229.516i −0.192620 + 0.242105i
\(949\) −1248.00 −1.31507
\(950\) −394.249 890.379i −0.414999 0.937241i
\(951\) 792.417 219.669i 0.833246 0.230988i
\(952\) 170.889 + 235.208i 0.179505 + 0.247068i
\(953\) 215.591 663.520i 0.226223 0.696244i −0.771942 0.635693i \(-0.780714\pi\)
0.998165 0.0605505i \(-0.0192856\pi\)
\(954\) 0.913821 + 3.96190i 0.000957884 + 0.00415293i
\(955\) −966.521 + 781.044i −1.01206 + 0.817847i
\(956\) 273.124 88.7435i 0.285695 0.0928279i
\(957\) −1386.97 + 384.486i −1.44928 + 0.401762i
\(958\) 636.916 206.947i 0.664840 0.216019i
\(959\) 385.956 531.222i 0.402456 0.553934i
\(960\) 156.117 + 468.331i 0.162622 + 0.487845i
\(961\) −300.806 + 218.549i −0.313014 + 0.227418i
\(962\) 300.885 + 218.605i 0.312770 + 0.227241i
\(963\) 599.629 + 52.5846i 0.622668 + 0.0546050i
\(964\) 460.213 334.364i 0.477399 0.346851i
\(965\) 408.167 1517.11i 0.422971 1.57214i
\(966\) 73.4270 196.328i 0.0760114 0.203238i
\(967\) −1001.44 + 325.388i −1.03562 + 0.336492i −0.777009 0.629490i \(-0.783264\pi\)
−0.258609 + 0.965982i \(0.583264\pi\)
\(968\) 948.247 0.979594
\(969\) 454.015 + 686.094i 0.468540 + 0.708044i
\(970\) 49.6576 2.55169i 0.0511934 0.00263061i
\(971\) −220.610 71.6804i −0.227198 0.0738212i 0.193206 0.981158i \(-0.438112\pi\)
−0.420404 + 0.907337i \(0.638112\pi\)
\(972\) −548.889 323.699i −0.564701 0.333024i
\(973\) 10.9992 + 15.1391i 0.0113044 + 0.0155592i
\(974\) 914.176i 0.938579i
\(975\) −533.653 1363.31i −0.547337 1.39827i
\(976\) −36.9250 −0.0378330
\(977\) −375.775 + 273.017i −0.384622 + 0.279444i −0.763248 0.646106i \(-0.776397\pi\)
0.378626 + 0.925550i \(0.376397\pi\)
\(978\) 443.656 + 19.4160i 0.453636 + 0.0198527i
\(979\) −309.054 + 951.171i −0.315684 + 0.971574i
\(980\) 203.943 313.345i 0.208105 0.319740i
\(981\) 1234.48 + 1073.56i 1.25839 + 1.09436i
\(982\) 611.763i 0.622976i
\(983\) 377.895 + 1163.04i 0.384431 + 1.18316i 0.936892 + 0.349618i \(0.113689\pi\)
−0.552462 + 0.833538i \(0.686311\pi\)
\(984\) −240.844 + 643.966i −0.244760 + 0.654437i
\(985\) 632.825 972.293i 0.642461 0.987100i
\(986\) 175.468 + 241.511i 0.177960 + 0.244941i
\(987\) −23.2573 + 62.1850i −0.0235636 + 0.0630040i
\(988\) 998.480 1374.29i 1.01061 1.39098i
\(989\) 99.4024 + 136.816i 0.100508 + 0.138337i
\(990\) −648.183 507.695i −0.654730 0.512823i
\(991\) −1298.79 943.625i −1.31058 0.952195i −0.999999 0.00164927i \(-0.999475\pi\)
−0.310585 0.950546i \(-0.600525\pi\)
\(992\) −368.848 1135.20i −0.371823 1.14435i
\(993\) 268.800 74.5153i 0.270695 0.0750405i
\(994\) −27.0967 83.3951i −0.0272603 0.0838985i
\(995\) 72.1196 + 19.4032i 0.0724820 + 0.0195007i
\(996\) −27.3069 + 623.963i −0.0274165 + 0.626469i
\(997\) 372.060 + 120.890i 0.373179 + 0.121253i 0.489601 0.871947i \(-0.337142\pi\)
−0.116422 + 0.993200i \(0.537142\pi\)
\(998\) −88.2954 + 64.1504i −0.0884723 + 0.0642789i
\(999\) 317.819 + 301.785i 0.318137 + 0.302087i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.h.a.14.7 72
3.2 odd 2 inner 75.3.h.a.14.12 yes 72
5.2 odd 4 375.3.j.b.176.14 144
5.3 odd 4 375.3.j.b.176.23 144
5.4 even 2 375.3.h.a.74.12 72
15.2 even 4 375.3.j.b.176.24 144
15.8 even 4 375.3.j.b.176.13 144
15.14 odd 2 375.3.h.a.74.7 72
25.9 even 10 inner 75.3.h.a.59.12 yes 72
25.12 odd 20 375.3.j.b.326.24 144
25.13 odd 20 375.3.j.b.326.13 144
25.16 even 5 375.3.h.a.299.7 72
75.38 even 20 375.3.j.b.326.23 144
75.41 odd 10 375.3.h.a.299.12 72
75.59 odd 10 inner 75.3.h.a.59.7 yes 72
75.62 even 20 375.3.j.b.326.14 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.h.a.14.7 72 1.1 even 1 trivial
75.3.h.a.14.12 yes 72 3.2 odd 2 inner
75.3.h.a.59.7 yes 72 75.59 odd 10 inner
75.3.h.a.59.12 yes 72 25.9 even 10 inner
375.3.h.a.74.7 72 15.14 odd 2
375.3.h.a.74.12 72 5.4 even 2
375.3.h.a.299.7 72 25.16 even 5
375.3.h.a.299.12 72 75.41 odd 10
375.3.j.b.176.13 144 15.8 even 4
375.3.j.b.176.14 144 5.2 odd 4
375.3.j.b.176.23 144 5.3 odd 4
375.3.j.b.176.24 144 15.2 even 4
375.3.j.b.326.13 144 25.13 odd 20
375.3.j.b.326.14 144 75.62 even 20
375.3.j.b.326.23 144 75.38 even 20
375.3.j.b.326.24 144 25.12 odd 20