Properties

Label 75.3.h.a.14.6
Level $75$
Weight $3$
Character 75.14
Analytic conductor $2.044$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(14,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 14.6
Character \(\chi\) \(=\) 75.14
Dual form 75.3.h.a.59.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27392 + 0.925557i) q^{2} +(0.196179 - 2.99358i) q^{3} +(-0.469852 + 1.44606i) q^{4} +(-2.47338 - 4.34538i) q^{5} +(2.52081 + 3.99515i) q^{6} -3.45468i q^{7} +(-2.68623 - 8.26736i) q^{8} +(-8.92303 - 1.17455i) q^{9} +(7.17279 + 3.24641i) q^{10} +(-4.67438 - 6.43373i) q^{11} +(4.23671 + 1.69023i) q^{12} +(9.39120 - 12.9259i) q^{13} +(3.19750 + 4.40098i) q^{14} +(-13.4935 + 6.55180i) q^{15} +(6.15359 + 4.47085i) q^{16} +(5.07678 + 15.6247i) q^{17} +(12.4543 - 6.76248i) q^{18} +(-0.909136 - 2.79803i) q^{19} +(7.44580 - 1.53497i) q^{20} +(-10.3418 - 0.677734i) q^{21} +(11.9096 + 3.86965i) q^{22} +(-3.91892 + 2.84726i) q^{23} +(-25.2760 + 6.41956i) q^{24} +(-12.7647 + 21.4956i) q^{25} +25.1586i q^{26} +(-5.26662 + 26.4814i) q^{27} +(4.99566 + 1.62319i) q^{28} +(2.93429 + 0.953408i) q^{29} +(11.1255 - 20.8354i) q^{30} +(9.46440 + 29.1284i) q^{31} +22.7941 q^{32} +(-20.1769 + 12.7310i) q^{33} +(-20.9290 - 15.2058i) q^{34} +(-15.0119 + 8.54475i) q^{35} +(5.89098 - 12.3513i) q^{36} +(36.9883 - 50.9101i) q^{37} +(3.74791 + 2.72301i) q^{38} +(-36.8523 - 30.6491i) q^{39} +(-29.2808 + 32.1211i) q^{40} +(-5.01027 + 6.89605i) q^{41} +(13.8020 - 8.70859i) q^{42} -76.9353i q^{43} +(11.4998 - 3.73651i) q^{44} +(16.9662 + 41.6791i) q^{45} +(2.35708 - 7.25436i) q^{46} +(21.0904 - 64.9097i) q^{47} +(14.5910 - 17.5442i) q^{48} +37.0652 q^{49} +(-3.63417 - 39.1982i) q^{50} +(47.7698 - 12.1325i) q^{51} +(14.2791 + 19.6535i) q^{52} +(-19.3602 + 59.5846i) q^{53} +(-17.8007 - 38.6097i) q^{54} +(-16.3955 + 36.2250i) q^{55} +(-28.5611 + 9.28005i) q^{56} +(-8.55449 + 2.17266i) q^{57} +(-4.62048 + 1.50128i) q^{58} +(63.2466 - 87.0514i) q^{59} +(-3.13433 - 22.5907i) q^{60} +(-60.5497 + 43.9919i) q^{61} +(-39.0169 - 28.3474i) q^{62} +(-4.05770 + 30.8262i) q^{63} +(-53.6522 + 38.9806i) q^{64} +(-79.3960 - 8.83771i) q^{65} +(13.9205 - 34.8931i) q^{66} +(-74.5516 + 24.2233i) q^{67} -24.9796 q^{68} +(7.75469 + 12.2902i) q^{69} +(11.2153 - 24.7797i) q^{70} +(35.3941 + 11.5002i) q^{71} +(14.2588 + 76.9250i) q^{72} +(8.18118 + 11.2604i) q^{73} +99.0901i q^{74} +(61.8447 + 42.4292i) q^{75} +4.47328 q^{76} +(-22.2264 + 16.1485i) q^{77} +(75.3143 + 4.93559i) q^{78} +(23.1785 - 71.3362i) q^{79} +(4.20735 - 37.7979i) q^{80} +(78.2409 + 20.9611i) q^{81} -13.4223i q^{82} +(-15.7098 - 48.3497i) q^{83} +(5.83918 - 14.6365i) q^{84} +(55.3386 - 60.7065i) q^{85} +(71.2080 + 98.0094i) q^{86} +(3.42975 - 8.59698i) q^{87} +(-40.6335 + 55.9272i) q^{88} +(80.9329 + 111.395i) q^{89} +(-60.1899 - 37.3926i) q^{90} +(-44.6548 - 32.4436i) q^{91} +(-2.27599 - 7.00477i) q^{92} +(89.0550 - 22.6181i) q^{93} +(33.2101 + 102.210i) q^{94} +(-9.90989 + 10.8712i) q^{95} +(4.47171 - 68.2359i) q^{96} +(-151.453 - 49.2101i) q^{97} +(-47.2181 + 34.3059i) q^{98} +(34.1528 + 62.8986i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 5 q^{3} - 38 q^{4} + 5 q^{6} - 13 q^{9} - 20 q^{10} - 45 q^{12} - 10 q^{13} - 15 q^{15} + 22 q^{16} - 36 q^{19} + 54 q^{21} - 50 q^{22} - 20 q^{24} - 100 q^{25} + 100 q^{27} + 270 q^{28} - 5 q^{30}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27392 + 0.925557i −0.636960 + 0.462778i −0.858804 0.512304i \(-0.828792\pi\)
0.221845 + 0.975082i \(0.428792\pi\)
\(3\) 0.196179 2.99358i 0.0653929 0.997860i
\(4\) −0.469852 + 1.44606i −0.117463 + 0.361514i
\(5\) −2.47338 4.34538i −0.494677 0.869077i
\(6\) 2.52081 + 3.99515i 0.420135 + 0.665859i
\(7\) 3.45468i 0.493525i −0.969076 0.246763i \(-0.920633\pi\)
0.969076 0.246763i \(-0.0793668\pi\)
\(8\) −2.68623 8.26736i −0.335779 1.03342i
\(9\) −8.92303 1.17455i −0.991448 0.130506i
\(10\) 7.17279 + 3.24641i 0.717279 + 0.324641i
\(11\) −4.67438 6.43373i −0.424943 0.584884i 0.541840 0.840482i \(-0.317728\pi\)
−0.966783 + 0.255597i \(0.917728\pi\)
\(12\) 4.23671 + 1.69023i 0.353059 + 0.140852i
\(13\) 9.39120 12.9259i 0.722400 0.994299i −0.277040 0.960858i \(-0.589354\pi\)
0.999441 0.0334405i \(-0.0106464\pi\)
\(14\) 3.19750 + 4.40098i 0.228393 + 0.314356i
\(15\) −13.4935 + 6.55180i −0.899565 + 0.436787i
\(16\) 6.15359 + 4.47085i 0.384600 + 0.279428i
\(17\) 5.07678 + 15.6247i 0.298634 + 0.919101i 0.981976 + 0.189003i \(0.0605256\pi\)
−0.683342 + 0.730098i \(0.739474\pi\)
\(18\) 12.4543 6.76248i 0.691907 0.375693i
\(19\) −0.909136 2.79803i −0.0478493 0.147265i 0.924277 0.381722i \(-0.124669\pi\)
−0.972126 + 0.234457i \(0.924669\pi\)
\(20\) 7.44580 1.53497i 0.372290 0.0767483i
\(21\) −10.3418 0.677734i −0.492469 0.0322730i
\(22\) 11.9096 + 3.86965i 0.541343 + 0.175893i
\(23\) −3.91892 + 2.84726i −0.170388 + 0.123794i −0.669711 0.742622i \(-0.733582\pi\)
0.499323 + 0.866416i \(0.333582\pi\)
\(24\) −25.2760 + 6.41956i −1.05317 + 0.267482i
\(25\) −12.7647 + 21.4956i −0.510589 + 0.859825i
\(26\) 25.1586i 0.967639i
\(27\) −5.26662 + 26.4814i −0.195060 + 0.980791i
\(28\) 4.99566 + 1.62319i 0.178416 + 0.0579710i
\(29\) 2.93429 + 0.953408i 0.101182 + 0.0328761i 0.359171 0.933272i \(-0.383060\pi\)
−0.257988 + 0.966148i \(0.583060\pi\)
\(30\) 11.1255 20.8354i 0.370851 0.694515i
\(31\) 9.46440 + 29.1284i 0.305303 + 0.939627i 0.979564 + 0.201133i \(0.0644625\pi\)
−0.674261 + 0.738494i \(0.735538\pi\)
\(32\) 22.7941 0.712315
\(33\) −20.1769 + 12.7310i −0.611421 + 0.385786i
\(34\) −20.9290 15.2058i −0.615558 0.447229i
\(35\) −15.0119 + 8.54475i −0.428911 + 0.244136i
\(36\) 5.89098 12.3513i 0.163638 0.343093i
\(37\) 36.9883 50.9101i 0.999684 1.37595i 0.0741655 0.997246i \(-0.476371\pi\)
0.925519 0.378701i \(-0.123629\pi\)
\(38\) 3.74791 + 2.72301i 0.0986291 + 0.0716582i
\(39\) −36.8523 30.6491i −0.944931 0.785874i
\(40\) −29.2808 + 32.1211i −0.732020 + 0.803027i
\(41\) −5.01027 + 6.89605i −0.122202 + 0.168196i −0.865735 0.500503i \(-0.833149\pi\)
0.743533 + 0.668699i \(0.233149\pi\)
\(42\) 13.8020 8.70859i 0.328618 0.207347i
\(43\) 76.9353i 1.78919i −0.446875 0.894597i \(-0.647463\pi\)
0.446875 0.894597i \(-0.352537\pi\)
\(44\) 11.4998 3.73651i 0.261359 0.0849207i
\(45\) 16.9662 + 41.6791i 0.377027 + 0.926202i
\(46\) 2.35708 7.25436i 0.0512409 0.157703i
\(47\) 21.0904 64.9097i 0.448733 1.38106i −0.429605 0.903017i \(-0.641347\pi\)
0.878338 0.478040i \(-0.158653\pi\)
\(48\) 14.5910 17.5442i 0.303980 0.365504i
\(49\) 37.0652 0.756433
\(50\) −3.63417 39.1982i −0.0726834 0.783963i
\(51\) 47.7698 12.1325i 0.936663 0.237892i
\(52\) 14.2791 + 19.6535i 0.274598 + 0.377951i
\(53\) −19.3602 + 59.5846i −0.365287 + 1.12424i 0.584514 + 0.811384i \(0.301285\pi\)
−0.949801 + 0.312855i \(0.898715\pi\)
\(54\) −17.8007 38.6097i −0.329644 0.714994i
\(55\) −16.3955 + 36.2250i −0.298100 + 0.658637i
\(56\) −28.5611 + 9.28005i −0.510019 + 0.165715i
\(57\) −8.55449 + 2.17266i −0.150079 + 0.0381168i
\(58\) −4.62048 + 1.50128i −0.0796634 + 0.0258842i
\(59\) 63.2466 87.0514i 1.07198 1.47545i 0.203915 0.978989i \(-0.434633\pi\)
0.868060 0.496459i \(-0.165367\pi\)
\(60\) −3.13433 22.5907i −0.0522389 0.376512i
\(61\) −60.5497 + 43.9919i −0.992617 + 0.721179i −0.960493 0.278305i \(-0.910227\pi\)
−0.0321247 + 0.999484i \(0.510227\pi\)
\(62\) −39.0169 28.3474i −0.629305 0.457217i
\(63\) −4.05770 + 30.8262i −0.0644079 + 0.489304i
\(64\) −53.6522 + 38.9806i −0.838316 + 0.609072i
\(65\) −79.3960 8.83771i −1.22148 0.135965i
\(66\) 13.9205 34.8931i 0.210917 0.528683i
\(67\) −74.5516 + 24.2233i −1.11271 + 0.361541i −0.806981 0.590577i \(-0.798900\pi\)
−0.305729 + 0.952119i \(0.598900\pi\)
\(68\) −24.9796 −0.367347
\(69\) 7.75469 + 12.2902i 0.112387 + 0.178118i
\(70\) 11.2153 24.7797i 0.160219 0.353995i
\(71\) 35.3941 + 11.5002i 0.498508 + 0.161975i 0.547470 0.836826i \(-0.315591\pi\)
−0.0489616 + 0.998801i \(0.515591\pi\)
\(72\) 14.2588 + 76.9250i 0.198040 + 1.06840i
\(73\) 8.18118 + 11.2604i 0.112071 + 0.154252i 0.861368 0.507982i \(-0.169608\pi\)
−0.749297 + 0.662234i \(0.769608\pi\)
\(74\) 99.0901i 1.33906i
\(75\) 61.8447 + 42.4292i 0.824595 + 0.565723i
\(76\) 4.47328 0.0588589
\(77\) −22.2264 + 16.1485i −0.288655 + 0.209720i
\(78\) 75.3143 + 4.93559i 0.965568 + 0.0632767i
\(79\) 23.1785 71.3362i 0.293399 0.902990i −0.690355 0.723471i \(-0.742546\pi\)
0.983754 0.179519i \(-0.0574543\pi\)
\(80\) 4.20735 37.7979i 0.0525918 0.472473i
\(81\) 78.2409 + 20.9611i 0.965936 + 0.258779i
\(82\) 13.4223i 0.163687i
\(83\) −15.7098 48.3497i −0.189274 0.582526i 0.810721 0.585432i \(-0.199075\pi\)
−0.999996 + 0.00290563i \(0.999075\pi\)
\(84\) 5.83918 14.6365i 0.0695141 0.174244i
\(85\) 55.3386 60.7065i 0.651042 0.714194i
\(86\) 71.2080 + 98.0094i 0.828000 + 1.13964i
\(87\) 3.42975 8.59698i 0.0394224 0.0988159i
\(88\) −40.6335 + 55.9272i −0.461744 + 0.635537i
\(89\) 80.9329 + 111.395i 0.909359 + 1.25163i 0.967385 + 0.253310i \(0.0815193\pi\)
−0.0580262 + 0.998315i \(0.518481\pi\)
\(90\) −60.1899 37.3926i −0.668777 0.415474i
\(91\) −44.6548 32.4436i −0.490712 0.356523i
\(92\) −2.27599 7.00477i −0.0247390 0.0761388i
\(93\) 89.0550 22.6181i 0.957581 0.243205i
\(94\) 33.2101 + 102.210i 0.353299 + 1.08734i
\(95\) −9.90989 + 10.8712i −0.104315 + 0.114433i
\(96\) 4.47171 68.2359i 0.0465803 0.710790i
\(97\) −151.453 49.2101i −1.56137 0.507320i −0.604198 0.796834i \(-0.706506\pi\)
−0.957174 + 0.289514i \(0.906506\pi\)
\(98\) −47.2181 + 34.3059i −0.481817 + 0.350061i
\(99\) 34.1528 + 62.8986i 0.344978 + 0.635340i
\(100\) −25.0863 28.5583i −0.250863 0.285583i
\(101\) 0.307054i 0.00304014i −0.999999 0.00152007i \(-0.999516\pi\)
0.999999 0.00152007i \(-0.000483853\pi\)
\(102\) −49.6255 + 59.6695i −0.486525 + 0.584995i
\(103\) 21.0182 + 6.82924i 0.204060 + 0.0663033i 0.409264 0.912416i \(-0.365786\pi\)
−0.205203 + 0.978719i \(0.565786\pi\)
\(104\) −132.090 42.9186i −1.27010 0.412679i
\(105\) 22.6344 + 46.6156i 0.215565 + 0.443958i
\(106\) −30.4856 93.8250i −0.287600 0.885142i
\(107\) 139.254 1.30144 0.650721 0.759317i \(-0.274467\pi\)
0.650721 + 0.759317i \(0.274467\pi\)
\(108\) −35.8190 20.0582i −0.331658 0.185724i
\(109\) 81.6553 + 59.3261i 0.749131 + 0.544276i 0.895558 0.444946i \(-0.146777\pi\)
−0.146426 + 0.989222i \(0.546777\pi\)
\(110\) −12.6418 61.3227i −0.114925 0.557479i
\(111\) −145.147 120.715i −1.30763 1.08752i
\(112\) 15.4453 21.2587i 0.137905 0.189810i
\(113\) −57.8390 42.0225i −0.511849 0.371880i 0.301675 0.953411i \(-0.402454\pi\)
−0.813525 + 0.581530i \(0.802454\pi\)
\(114\) 8.88681 10.6855i 0.0779545 0.0937320i
\(115\) 22.0654 + 9.98683i 0.191873 + 0.0868420i
\(116\) −2.75736 + 3.79519i −0.0237704 + 0.0327171i
\(117\) −98.9801 + 104.308i −0.845984 + 0.891518i
\(118\) 169.435i 1.43589i
\(119\) 53.9784 17.5386i 0.453600 0.147383i
\(120\) 90.4127 + 93.9558i 0.753439 + 0.782965i
\(121\) 17.8480 54.9305i 0.147504 0.453971i
\(122\) 36.4184 112.084i 0.298511 0.918724i
\(123\) 19.6610 + 16.3515i 0.159845 + 0.132939i
\(124\) −46.5683 −0.375550
\(125\) 124.979 + 2.30075i 0.999831 + 0.0184060i
\(126\) −23.3622 43.0257i −0.185414 0.341474i
\(127\) 79.5270 + 109.460i 0.626197 + 0.861886i 0.997786 0.0665113i \(-0.0211868\pi\)
−0.371589 + 0.928397i \(0.621187\pi\)
\(128\) 4.09479 12.6025i 0.0319906 0.0984568i
\(129\) −230.312 15.0931i −1.78536 0.117000i
\(130\) 109.324 62.2270i 0.840953 0.478669i
\(131\) −123.408 + 40.0976i −0.942044 + 0.306089i −0.739478 0.673180i \(-0.764928\pi\)
−0.202565 + 0.979269i \(0.564928\pi\)
\(132\) −8.92953 35.1586i −0.0676479 0.266353i
\(133\) −9.66630 + 3.14077i −0.0726790 + 0.0236148i
\(134\) 72.5527 99.8602i 0.541438 0.745225i
\(135\) 128.098 42.6131i 0.948875 0.315653i
\(136\) 115.538 83.9432i 0.849543 0.617229i
\(137\) −34.2523 24.8857i −0.250017 0.181648i 0.455718 0.890124i \(-0.349383\pi\)
−0.705734 + 0.708477i \(0.749383\pi\)
\(138\) −21.2541 8.47926i −0.154015 0.0614439i
\(139\) 137.253 99.7198i 0.987428 0.717409i 0.0280720 0.999606i \(-0.491063\pi\)
0.959356 + 0.282197i \(0.0910632\pi\)
\(140\) −5.30281 25.7228i −0.0378772 0.183735i
\(141\) −190.175 75.8698i −1.34876 0.538083i
\(142\) −55.7333 + 18.1088i −0.392488 + 0.127527i
\(143\) −127.060 −0.888529
\(144\) −49.6575 47.1212i −0.344843 0.327231i
\(145\) −3.11470 15.1088i −0.0214807 0.104198i
\(146\) −20.8443 6.77273i −0.142769 0.0463886i
\(147\) 7.27140 110.958i 0.0494653 0.754814i
\(148\) 56.2398 + 77.4074i 0.379999 + 0.523023i
\(149\) 227.208i 1.52489i 0.647054 + 0.762444i \(0.276001\pi\)
−0.647054 + 0.762444i \(0.723999\pi\)
\(150\) −118.056 + 3.18932i −0.787038 + 0.0212622i
\(151\) −68.4391 −0.453239 −0.226620 0.973983i \(-0.572767\pi\)
−0.226620 + 0.973983i \(0.572767\pi\)
\(152\) −20.6902 + 15.0323i −0.136120 + 0.0988969i
\(153\) −26.9482 145.383i −0.176132 0.950214i
\(154\) 13.3684 41.1437i 0.0868077 0.267167i
\(155\) 103.165 113.172i 0.665582 0.730144i
\(156\) 61.6355 38.8900i 0.395099 0.249295i
\(157\) 148.456i 0.945582i 0.881175 + 0.472791i \(0.156753\pi\)
−0.881175 + 0.472791i \(0.843247\pi\)
\(158\) 36.4981 + 112.330i 0.231001 + 0.710947i
\(159\) 174.573 + 69.6456i 1.09794 + 0.438023i
\(160\) −56.3785 99.0490i −0.352366 0.619056i
\(161\) 9.83636 + 13.5386i 0.0610954 + 0.0840906i
\(162\) −119.073 + 45.7136i −0.735020 + 0.282182i
\(163\) 91.0894 125.374i 0.558830 0.769164i −0.432347 0.901707i \(-0.642314\pi\)
0.991177 + 0.132543i \(0.0423144\pi\)
\(164\) −7.61799 10.4853i −0.0464512 0.0639345i
\(165\) 105.226 + 56.1878i 0.637734 + 0.340532i
\(166\) 64.7634 + 47.0533i 0.390141 + 0.283454i
\(167\) 16.3877 + 50.4362i 0.0981300 + 0.302013i 0.988057 0.154090i \(-0.0492447\pi\)
−0.889927 + 0.456103i \(0.849245\pi\)
\(168\) 22.1775 + 87.3204i 0.132009 + 0.519764i
\(169\) −26.6599 82.0507i −0.157751 0.485507i
\(170\) −14.3096 + 128.554i −0.0841741 + 0.756201i
\(171\) 4.82581 + 26.0348i 0.0282211 + 0.152250i
\(172\) 111.253 + 36.1482i 0.646819 + 0.210164i
\(173\) 25.5804 18.5852i 0.147863 0.107429i −0.511394 0.859346i \(-0.670871\pi\)
0.659257 + 0.751917i \(0.270871\pi\)
\(174\) 3.58778 + 14.1263i 0.0206194 + 0.0811856i
\(175\) 74.2604 + 44.0980i 0.424345 + 0.251989i
\(176\) 60.4890i 0.343687i
\(177\) −248.188 206.411i −1.40219 1.16616i
\(178\) −206.204 66.9998i −1.15845 0.376403i
\(179\) −77.9997 25.3436i −0.435753 0.141585i 0.0829226 0.996556i \(-0.473575\pi\)
−0.518675 + 0.854971i \(0.673575\pi\)
\(180\) −68.2420 + 4.95106i −0.379122 + 0.0275059i
\(181\) 27.7033 + 85.2621i 0.153057 + 0.471061i 0.997959 0.0638602i \(-0.0203412\pi\)
−0.844902 + 0.534922i \(0.820341\pi\)
\(182\) 86.9149 0.477555
\(183\) 119.815 + 189.890i 0.654725 + 1.03765i
\(184\) 34.0664 + 24.7507i 0.185144 + 0.134515i
\(185\) −312.710 34.8083i −1.69032 0.188153i
\(186\) −92.5146 + 111.239i −0.497390 + 0.598059i
\(187\) 76.7944 105.698i 0.410665 0.565232i
\(188\) 83.9537 + 60.9959i 0.446562 + 0.324446i
\(189\) 91.4846 + 18.1945i 0.484045 + 0.0962671i
\(190\) 2.56252 23.0211i 0.0134870 0.121164i
\(191\) 0.866643 1.19283i 0.00453740 0.00624519i −0.806742 0.590903i \(-0.798771\pi\)
0.811280 + 0.584658i \(0.198771\pi\)
\(192\) 106.166 + 168.259i 0.552948 + 0.876350i
\(193\) 141.376i 0.732518i 0.930513 + 0.366259i \(0.119362\pi\)
−0.930513 + 0.366259i \(0.880638\pi\)
\(194\) 238.486 77.4887i 1.22931 0.399426i
\(195\) −42.0322 + 235.944i −0.215550 + 1.20997i
\(196\) −17.4152 + 53.5984i −0.0888529 + 0.273461i
\(197\) 30.8463 94.9352i 0.156580 0.481905i −0.841737 0.539887i \(-0.818467\pi\)
0.998318 + 0.0579827i \(0.0184668\pi\)
\(198\) −101.724 48.5174i −0.513759 0.245037i
\(199\) −250.393 −1.25826 −0.629128 0.777301i \(-0.716588\pi\)
−0.629128 + 0.777301i \(0.716588\pi\)
\(200\) 212.001 + 47.7885i 1.06001 + 0.238943i
\(201\) 57.8889 + 227.928i 0.288004 + 1.13397i
\(202\) 0.284196 + 0.391162i 0.00140691 + 0.00193645i
\(203\) 3.29372 10.1370i 0.0162252 0.0499361i
\(204\) −4.90046 + 74.7783i −0.0240219 + 0.366560i
\(205\) 42.3583 + 4.71498i 0.206626 + 0.0229999i
\(206\) −33.0964 + 10.7537i −0.160662 + 0.0522022i
\(207\) 38.3128 20.8032i 0.185086 0.100499i
\(208\) 115.579 37.5540i 0.555670 0.180548i
\(209\) −13.7521 + 18.9282i −0.0657997 + 0.0905655i
\(210\) −71.9797 38.4351i −0.342761 0.183024i
\(211\) 38.3969 27.8970i 0.181976 0.132213i −0.493068 0.869991i \(-0.664125\pi\)
0.675044 + 0.737778i \(0.264125\pi\)
\(212\) −77.0663 55.9920i −0.363520 0.264113i
\(213\) 41.3704 103.699i 0.194227 0.486849i
\(214\) −177.399 + 128.888i −0.828966 + 0.602279i
\(215\) −334.313 + 190.291i −1.55495 + 0.885073i
\(216\) 233.078 27.5939i 1.07907 0.127750i
\(217\) 100.629 32.6965i 0.463730 0.150675i
\(218\) −158.932 −0.729046
\(219\) 35.3139 22.2819i 0.161251 0.101744i
\(220\) −44.6800 40.7292i −0.203091 0.185133i
\(221\) 249.640 + 81.1131i 1.12959 + 0.367028i
\(222\) 296.634 + 19.4394i 1.33619 + 0.0875647i
\(223\) −108.162 148.872i −0.485029 0.667586i 0.494432 0.869216i \(-0.335376\pi\)
−0.979462 + 0.201630i \(0.935376\pi\)
\(224\) 78.7462i 0.351545i
\(225\) 139.148 176.813i 0.618435 0.785836i
\(226\) 112.576 0.498126
\(227\) −174.859 + 127.043i −0.770305 + 0.559659i −0.902054 0.431624i \(-0.857941\pi\)
0.131749 + 0.991283i \(0.457941\pi\)
\(228\) 0.877561 13.3911i 0.00384895 0.0587329i
\(229\) −32.4904 + 99.9953i −0.141880 + 0.436661i −0.996597 0.0824337i \(-0.973731\pi\)
0.854717 + 0.519094i \(0.173731\pi\)
\(230\) −37.3529 + 7.70038i −0.162404 + 0.0334799i
\(231\) 43.9813 + 69.7046i 0.190395 + 0.301752i
\(232\) 26.8199i 0.115603i
\(233\) −62.4520 192.208i −0.268034 0.824925i −0.990979 0.134019i \(-0.957212\pi\)
0.722944 0.690906i \(-0.242788\pi\)
\(234\) 29.5501 224.491i 0.126283 0.959364i
\(235\) −334.222 + 68.9006i −1.42222 + 0.293194i
\(236\) 96.1648 + 132.359i 0.407478 + 0.560845i
\(237\) −209.003 83.3814i −0.881871 0.351820i
\(238\) −52.5311 + 72.3028i −0.220719 + 0.303793i
\(239\) −44.7563 61.6017i −0.187265 0.257748i 0.705054 0.709154i \(-0.250923\pi\)
−0.892319 + 0.451406i \(0.850923\pi\)
\(240\) −112.325 20.0102i −0.468023 0.0833757i
\(241\) 191.906 + 139.428i 0.796290 + 0.578538i 0.909823 0.414996i \(-0.136217\pi\)
−0.113534 + 0.993534i \(0.536217\pi\)
\(242\) 28.1044 + 86.4964i 0.116134 + 0.357423i
\(243\) 78.0980 230.108i 0.321391 0.946947i
\(244\) −35.1654 108.228i −0.144120 0.443557i
\(245\) −91.6765 161.063i −0.374190 0.657398i
\(246\) −40.1807 2.63317i −0.163336 0.0107039i
\(247\) −44.7049 14.5255i −0.180992 0.0588078i
\(248\) 215.392 156.491i 0.868515 0.631013i
\(249\) −147.821 + 37.5432i −0.593657 + 0.150776i
\(250\) −161.342 + 112.744i −0.645370 + 0.450976i
\(251\) 329.960i 1.31458i −0.753637 0.657291i \(-0.771702\pi\)
0.753637 0.657291i \(-0.228298\pi\)
\(252\) −42.6699 20.3514i −0.169325 0.0807596i
\(253\) 36.6370 + 11.9041i 0.144810 + 0.0470517i
\(254\) −202.622 65.8359i −0.797724 0.259196i
\(255\) −170.873 177.570i −0.670092 0.696352i
\(256\) −75.5254 232.443i −0.295021 0.907981i
\(257\) −113.930 −0.443306 −0.221653 0.975126i \(-0.571145\pi\)
−0.221653 + 0.975126i \(0.571145\pi\)
\(258\) 307.368 193.939i 1.19135 0.751703i
\(259\) −175.878 127.783i −0.679065 0.493370i
\(260\) 50.0842 110.659i 0.192632 0.425610i
\(261\) −25.0629 11.9538i −0.0960265 0.0457999i
\(262\) 120.099 165.302i 0.458393 0.630923i
\(263\) 190.229 + 138.210i 0.723304 + 0.525511i 0.887438 0.460927i \(-0.152483\pi\)
−0.164134 + 0.986438i \(0.552483\pi\)
\(264\) 159.451 + 132.611i 0.603982 + 0.502316i
\(265\) 306.803 63.2481i 1.15775 0.238672i
\(266\) 9.40713 12.9478i 0.0353651 0.0486760i
\(267\) 349.346 220.426i 1.30841 0.825565i
\(268\) 119.187i 0.444728i
\(269\) 158.804 51.5986i 0.590350 0.191816i 0.00141812 0.999999i \(-0.499549\pi\)
0.588932 + 0.808183i \(0.299549\pi\)
\(270\) −123.746 + 172.848i −0.458318 + 0.640177i
\(271\) −164.547 + 506.424i −0.607185 + 1.86872i −0.126174 + 0.992008i \(0.540270\pi\)
−0.481011 + 0.876715i \(0.659730\pi\)
\(272\) −38.6153 + 118.846i −0.141968 + 0.436933i
\(273\) −105.883 + 127.313i −0.387849 + 0.466347i
\(274\) 66.6678 0.243313
\(275\) 197.964 18.3538i 0.719869 0.0667410i
\(276\) −21.4158 + 5.43916i −0.0775935 + 0.0197071i
\(277\) −11.6322 16.0104i −0.0419935 0.0577991i 0.787504 0.616310i \(-0.211373\pi\)
−0.829497 + 0.558511i \(0.811373\pi\)
\(278\) −82.5524 + 254.070i −0.296951 + 0.913921i
\(279\) −50.2383 271.030i −0.180065 0.971435i
\(280\) 110.968 + 101.156i 0.396314 + 0.361270i
\(281\) −25.0374 + 8.13516i −0.0891012 + 0.0289507i −0.353228 0.935537i \(-0.614916\pi\)
0.264127 + 0.964488i \(0.414916\pi\)
\(282\) 312.489 79.3655i 1.10812 0.281438i
\(283\) −46.4423 + 15.0900i −0.164107 + 0.0533216i −0.389918 0.920849i \(-0.627497\pi\)
0.225811 + 0.974171i \(0.427497\pi\)
\(284\) −33.2600 + 45.7784i −0.117113 + 0.161192i
\(285\) 30.5996 + 31.7987i 0.107367 + 0.111574i
\(286\) 161.864 117.601i 0.565957 0.411192i
\(287\) 23.8236 + 17.3089i 0.0830091 + 0.0603097i
\(288\) −203.392 26.7728i −0.706223 0.0929612i
\(289\) 15.4477 11.2234i 0.0534523 0.0388354i
\(290\) 17.9519 + 16.3645i 0.0619031 + 0.0564293i
\(291\) −177.026 + 443.733i −0.608337 + 1.52485i
\(292\) −20.1272 + 6.53971i −0.0689286 + 0.0223963i
\(293\) 290.824 0.992572 0.496286 0.868159i \(-0.334697\pi\)
0.496286 + 0.868159i \(0.334697\pi\)
\(294\) 93.4344 + 148.081i 0.317804 + 0.503677i
\(295\) −534.705 59.5189i −1.81256 0.201759i
\(296\) −520.251 169.040i −1.75760 0.571080i
\(297\) 194.992 89.8998i 0.656539 0.302693i
\(298\) −210.294 289.445i −0.705685 0.971293i
\(299\) 77.3946i 0.258845i
\(300\) −90.4129 + 69.4954i −0.301376 + 0.231651i
\(301\) −265.787 −0.883012
\(302\) 87.1860 63.3443i 0.288695 0.209749i
\(303\) −0.919191 0.0602375i −0.00303363 0.000198803i
\(304\) 6.91513 21.2826i 0.0227471 0.0700085i
\(305\) 340.924 + 154.303i 1.11778 + 0.505910i
\(306\) 168.890 + 160.264i 0.551927 + 0.523738i
\(307\) 273.816i 0.891909i 0.895056 + 0.445954i \(0.147136\pi\)
−0.895056 + 0.445954i \(0.852864\pi\)
\(308\) −12.9084 39.7281i −0.0419105 0.128987i
\(309\) 24.5672 61.5800i 0.0795054 0.199288i
\(310\) −26.6767 + 239.658i −0.0860539 + 0.773089i
\(311\) −18.4022 25.3284i −0.0591710 0.0814418i 0.778406 0.627761i \(-0.216029\pi\)
−0.837577 + 0.546319i \(0.816029\pi\)
\(312\) −154.393 + 387.002i −0.494851 + 1.24039i
\(313\) 11.2273 15.4531i 0.0358700 0.0493709i −0.790705 0.612197i \(-0.790286\pi\)
0.826575 + 0.562826i \(0.190286\pi\)
\(314\) −137.405 189.121i −0.437595 0.602297i
\(315\) 143.988 58.6127i 0.457104 0.186072i
\(316\) 92.2657 + 67.0350i 0.291980 + 0.212136i
\(317\) 103.121 + 317.375i 0.325304 + 1.00118i 0.971303 + 0.237845i \(0.0764410\pi\)
−0.645999 + 0.763338i \(0.723559\pi\)
\(318\) −286.853 + 72.8546i −0.902054 + 0.229102i
\(319\) −7.58200 23.3350i −0.0237680 0.0731505i
\(320\) 302.088 + 136.725i 0.944026 + 0.427267i
\(321\) 27.3187 416.869i 0.0851051 1.29866i
\(322\) −25.0615 8.14296i −0.0778306 0.0252887i
\(323\) 39.1030 28.4100i 0.121062 0.0879567i
\(324\) −67.0726 + 103.292i −0.207014 + 0.318803i
\(325\) 157.974 + 366.865i 0.486073 + 1.12882i
\(326\) 244.024i 0.748541i
\(327\) 193.616 232.803i 0.592099 0.711936i
\(328\) 70.4709 + 22.8974i 0.214850 + 0.0698091i
\(329\) −224.242 72.8606i −0.681587 0.221461i
\(330\) −186.054 + 25.8140i −0.563801 + 0.0782243i
\(331\) −29.9792 92.2664i −0.0905715 0.278750i 0.895503 0.445056i \(-0.146816\pi\)
−0.986074 + 0.166306i \(0.946816\pi\)
\(332\) 77.2977 0.232824
\(333\) −389.844 + 410.827i −1.17070 + 1.23372i
\(334\) −67.5581 49.0839i −0.202270 0.146958i
\(335\) 289.654 + 264.042i 0.864639 + 0.788185i
\(336\) −60.6095 50.4073i −0.180385 0.150022i
\(337\) 35.9558 49.4890i 0.106694 0.146852i −0.752331 0.658785i \(-0.771071\pi\)
0.859025 + 0.511934i \(0.171071\pi\)
\(338\) 109.905 + 79.8507i 0.325163 + 0.236245i
\(339\) −137.144 + 164.902i −0.404556 + 0.486436i
\(340\) 61.7841 + 108.546i 0.181718 + 0.319252i
\(341\) 143.164 197.049i 0.419836 0.577855i
\(342\) −30.2443 28.6996i −0.0884338 0.0839170i
\(343\) 297.327i 0.866844i
\(344\) −636.052 + 206.666i −1.84899 + 0.600773i
\(345\) 34.2251 64.0954i 0.0992032 0.185784i
\(346\) −15.3856 + 47.3522i −0.0444672 + 0.136856i
\(347\) −110.008 + 338.571i −0.317027 + 0.975709i 0.657885 + 0.753119i \(0.271451\pi\)
−0.974912 + 0.222591i \(0.928549\pi\)
\(348\) 10.8203 + 8.99892i 0.0310927 + 0.0258590i
\(349\) 120.930 0.346506 0.173253 0.984877i \(-0.444572\pi\)
0.173253 + 0.984877i \(0.444572\pi\)
\(350\) −135.417 + 12.5549i −0.386906 + 0.0358711i
\(351\) 292.835 + 316.768i 0.834288 + 0.902472i
\(352\) −106.548 146.651i −0.302693 0.416622i
\(353\) 131.712 405.367i 0.373121 1.14835i −0.571617 0.820520i \(-0.693684\pi\)
0.944738 0.327827i \(-0.106316\pi\)
\(354\) 507.216 + 33.2395i 1.43281 + 0.0938968i
\(355\) −37.5702 182.245i −0.105832 0.513367i
\(356\) −199.110 + 64.6946i −0.559296 + 0.181726i
\(357\) −41.9139 165.029i −0.117406 0.462267i
\(358\) 122.822 39.9074i 0.343079 0.111473i
\(359\) 103.927 143.043i 0.289491 0.398450i −0.639358 0.768909i \(-0.720800\pi\)
0.928849 + 0.370460i \(0.120800\pi\)
\(360\) 299.001 252.225i 0.830559 0.700626i
\(361\) 285.053 207.103i 0.789620 0.573692i
\(362\) −114.207 82.9761i −0.315488 0.229216i
\(363\) −160.937 64.2056i −0.443354 0.176875i
\(364\) 67.8964 49.3296i 0.186529 0.135521i
\(365\) 28.6957 63.4017i 0.0786183 0.173703i
\(366\) −328.389 131.010i −0.897237 0.357950i
\(367\) 257.659 83.7185i 0.702068 0.228116i 0.0638366 0.997960i \(-0.479666\pi\)
0.638231 + 0.769845i \(0.279666\pi\)
\(368\) −36.8451 −0.100122
\(369\) 52.8066 55.6488i 0.143107 0.150810i
\(370\) 430.585 245.088i 1.16374 0.662400i
\(371\) 205.846 + 66.8833i 0.554840 + 0.180278i
\(372\) −9.13570 + 139.406i −0.0245583 + 0.374747i
\(373\) 371.550 + 511.394i 0.996111 + 1.37103i 0.927681 + 0.373374i \(0.121799\pi\)
0.0684302 + 0.997656i \(0.478201\pi\)
\(374\) 205.729i 0.550077i
\(375\) 31.4056 373.683i 0.0837484 0.996487i
\(376\) −593.286 −1.57789
\(377\) 39.8801 28.9746i 0.105783 0.0768558i
\(378\) −133.384 + 61.4958i −0.352868 + 0.162687i
\(379\) −8.13290 + 25.0305i −0.0214588 + 0.0660435i −0.961212 0.275809i \(-0.911054\pi\)
0.939754 + 0.341852i \(0.111054\pi\)
\(380\) −11.0641 19.4381i −0.0291161 0.0511529i
\(381\) 343.277 216.597i 0.900990 0.568495i
\(382\) 2.32170i 0.00607775i
\(383\) −8.00232 24.6286i −0.0208938 0.0643045i 0.940066 0.340993i \(-0.110763\pi\)
−0.960960 + 0.276688i \(0.910763\pi\)
\(384\) −36.9232 14.7304i −0.0961541 0.0383605i
\(385\) 125.146 + 56.6411i 0.325054 + 0.147120i
\(386\) −130.851 180.102i −0.338993 0.466584i
\(387\) −90.3645 + 686.496i −0.233500 + 1.77389i
\(388\) 142.321 195.888i 0.366807 0.504867i
\(389\) 92.7133 + 127.609i 0.238338 + 0.328044i 0.911384 0.411556i \(-0.135015\pi\)
−0.673047 + 0.739600i \(0.735015\pi\)
\(390\) −164.834 339.477i −0.422652 0.870455i
\(391\) −64.3831 46.7770i −0.164663 0.119634i
\(392\) −99.5656 306.432i −0.253994 0.781713i
\(393\) 95.8254 + 377.297i 0.243830 + 0.960043i
\(394\) 48.5722 + 149.490i 0.123280 + 0.379416i
\(395\) −367.313 + 75.7222i −0.929906 + 0.191702i
\(396\) −107.002 + 19.8339i −0.270206 + 0.0500856i
\(397\) −468.010 152.066i −1.17887 0.383037i −0.346921 0.937894i \(-0.612773\pi\)
−0.831945 + 0.554858i \(0.812773\pi\)
\(398\) 318.981 231.753i 0.801459 0.582294i
\(399\) 7.50583 + 29.5530i 0.0188116 + 0.0740677i
\(400\) −174.653 + 75.2061i −0.436632 + 0.188015i
\(401\) 590.500i 1.47257i −0.676672 0.736285i \(-0.736579\pi\)
0.676672 0.736285i \(-0.263421\pi\)
\(402\) −284.706 236.783i −0.708224 0.589012i
\(403\) 465.393 + 151.215i 1.15482 + 0.375224i
\(404\) 0.444018 + 0.144270i 0.00109905 + 0.000357104i
\(405\) −102.436 391.832i −0.252927 0.967485i
\(406\) 5.18645 + 15.9623i 0.0127745 + 0.0393159i
\(407\) −500.439 −1.22958
\(408\) −228.624 362.340i −0.560354 0.888087i
\(409\) 602.755 + 437.927i 1.47373 + 1.07073i 0.979511 + 0.201390i \(0.0645457\pi\)
0.494218 + 0.869338i \(0.335454\pi\)
\(410\) −58.3251 + 33.1985i −0.142256 + 0.0809720i
\(411\) −81.2170 + 97.6548i −0.197608 + 0.237603i
\(412\) −19.7509 + 27.1848i −0.0479391 + 0.0659826i
\(413\) −300.735 218.496i −0.728171 0.529047i
\(414\) −29.5529 + 61.9623i −0.0713839 + 0.149667i
\(415\) −171.242 + 187.852i −0.412631 + 0.452656i
\(416\) 214.064 294.634i 0.514576 0.708254i
\(417\) −271.593 430.439i −0.651302 1.03223i
\(418\) 36.8414i 0.0881373i
\(419\) −187.721 + 60.9941i −0.448020 + 0.145571i −0.524333 0.851513i \(-0.675685\pi\)
0.0763126 + 0.997084i \(0.475685\pi\)
\(420\) −78.0436 + 10.8281i −0.185818 + 0.0257812i
\(421\) 47.9058 147.439i 0.113791 0.350211i −0.877902 0.478840i \(-0.841058\pi\)
0.991693 + 0.128629i \(0.0410575\pi\)
\(422\) −23.0943 + 71.0770i −0.0547259 + 0.168429i
\(423\) −264.430 + 554.419i −0.625131 + 1.31068i
\(424\) 544.614 1.28447
\(425\) −400.667 90.3169i −0.942745 0.212510i
\(426\) 43.2766 + 170.395i 0.101588 + 0.399987i
\(427\) 151.978 + 209.180i 0.355920 + 0.489882i
\(428\) −65.4290 + 201.370i −0.152871 + 0.470490i
\(429\) −24.9264 + 380.363i −0.0581035 + 0.886627i
\(430\) 249.764 551.841i 0.580846 1.28335i
\(431\) 218.609 71.0303i 0.507213 0.164804i −0.0442213 0.999022i \(-0.514081\pi\)
0.551434 + 0.834218i \(0.314081\pi\)
\(432\) −150.803 + 139.409i −0.349081 + 0.322707i
\(433\) −526.213 + 170.977i −1.21527 + 0.394866i −0.845358 0.534200i \(-0.820613\pi\)
−0.369915 + 0.929066i \(0.620613\pi\)
\(434\) −97.9313 + 134.791i −0.225648 + 0.310578i
\(435\) −45.8403 + 6.36008i −0.105380 + 0.0146209i
\(436\) −124.155 + 90.2038i −0.284759 + 0.206889i
\(437\) 11.5296 + 8.37671i 0.0263834 + 0.0191687i
\(438\) −24.3639 + 61.0705i −0.0556254 + 0.139430i
\(439\) 42.8442 31.1281i 0.0975950 0.0709069i −0.537918 0.842997i \(-0.680789\pi\)
0.635513 + 0.772091i \(0.280789\pi\)
\(440\) 343.528 + 38.2387i 0.780745 + 0.0869061i
\(441\) −330.734 43.5350i −0.749963 0.0987189i
\(442\) −393.096 + 127.725i −0.889359 + 0.288970i
\(443\) 260.488 0.588009 0.294004 0.955804i \(-0.405012\pi\)
0.294004 + 0.955804i \(0.405012\pi\)
\(444\) 242.758 153.173i 0.546753 0.344983i
\(445\) 283.874 627.207i 0.637920 1.40945i
\(446\) 275.578 + 89.5408i 0.617888 + 0.200764i
\(447\) 680.166 + 44.5734i 1.52162 + 0.0997169i
\(448\) 134.665 + 185.351i 0.300592 + 0.413730i
\(449\) 757.399i 1.68686i −0.537241 0.843429i \(-0.680533\pi\)
0.537241 0.843429i \(-0.319467\pi\)
\(450\) −13.6125 + 354.035i −0.0302501 + 0.786744i
\(451\) 67.7872 0.150304
\(452\) 87.9427 63.8941i 0.194563 0.141359i
\(453\) −13.4263 + 204.878i −0.0296386 + 0.452269i
\(454\) 105.171 323.684i 0.231655 0.712961i
\(455\) −30.5314 + 274.288i −0.0671020 + 0.602830i
\(456\) 40.9415 + 64.8868i 0.0897839 + 0.142296i
\(457\) 28.8112i 0.0630442i −0.999503 0.0315221i \(-0.989965\pi\)
0.999503 0.0315221i \(-0.0100355\pi\)
\(458\) −51.1611 157.458i −0.111705 0.343794i
\(459\) −440.501 + 52.1505i −0.959698 + 0.113618i
\(460\) −24.8090 + 27.2155i −0.0539326 + 0.0591642i
\(461\) −7.46952 10.2809i −0.0162029 0.0223013i 0.800839 0.598880i \(-0.204387\pi\)
−0.817042 + 0.576579i \(0.804387\pi\)
\(462\) −120.544 48.0908i −0.260918 0.104093i
\(463\) −275.156 + 378.719i −0.594289 + 0.817969i −0.995171 0.0981613i \(-0.968704\pi\)
0.400882 + 0.916130i \(0.368704\pi\)
\(464\) 13.7939 + 18.9856i 0.0297282 + 0.0409173i
\(465\) −318.551 331.035i −0.685057 0.711903i
\(466\) 257.458 + 187.054i 0.552485 + 0.401404i
\(467\) 109.488 + 336.968i 0.234449 + 0.721559i 0.997194 + 0.0748600i \(0.0238510\pi\)
−0.762745 + 0.646699i \(0.776149\pi\)
\(468\) −104.329 192.140i −0.222924 0.410556i
\(469\) 83.6836 + 257.552i 0.178430 + 0.549151i
\(470\) 362.001 397.115i 0.770215 0.844926i
\(471\) 444.416 + 29.1240i 0.943558 + 0.0618343i
\(472\) −889.580 289.042i −1.88470 0.612378i
\(473\) −494.981 + 359.624i −1.04647 + 0.760305i
\(474\) 343.428 87.2233i 0.724531 0.184015i
\(475\) 71.7504 + 16.1737i 0.151053 + 0.0340499i
\(476\) 86.2964i 0.181295i
\(477\) 242.737 508.936i 0.508883 1.06695i
\(478\) 114.032 + 37.0512i 0.238560 + 0.0775129i
\(479\) 845.986 + 274.877i 1.76615 + 0.573857i 0.997808 0.0661825i \(-0.0210820\pi\)
0.768342 + 0.640039i \(0.221082\pi\)
\(480\) −307.571 + 149.342i −0.640774 + 0.311130i
\(481\) −310.693 956.213i −0.645931 1.98797i
\(482\) −373.521 −0.774940
\(483\) 42.4585 26.7899i 0.0879058 0.0554657i
\(484\) 71.0467 + 51.6185i 0.146791 + 0.106650i
\(485\) 160.765 + 779.837i 0.331474 + 1.60791i
\(486\) 113.487 + 365.423i 0.233513 + 0.751900i
\(487\) 367.869 506.328i 0.755377 1.03969i −0.242207 0.970225i \(-0.577871\pi\)
0.997585 0.0694630i \(-0.0221286\pi\)
\(488\) 526.347 + 382.414i 1.07858 + 0.783635i
\(489\) −357.446 297.279i −0.730974 0.607932i
\(490\) 265.861 + 120.329i 0.542574 + 0.245569i
\(491\) −87.2230 + 120.052i −0.177644 + 0.244505i −0.888548 0.458783i \(-0.848286\pi\)
0.710905 + 0.703288i \(0.248286\pi\)
\(492\) −32.8829 + 20.7481i −0.0668353 + 0.0421709i
\(493\) 50.6877i 0.102815i
\(494\) 70.3947 22.8726i 0.142499 0.0463009i
\(495\) 188.846 303.980i 0.381506 0.614100i
\(496\) −71.9887 + 221.559i −0.145139 + 0.446691i
\(497\) 39.7296 122.275i 0.0799388 0.246026i
\(498\) 153.563 184.643i 0.308360 0.370770i
\(499\) −162.393 −0.325437 −0.162719 0.986673i \(-0.552026\pi\)
−0.162719 + 0.986673i \(0.552026\pi\)
\(500\) −62.0486 + 179.645i −0.124097 + 0.359291i
\(501\) 154.200 39.1634i 0.307784 0.0781704i
\(502\) 305.397 + 420.342i 0.608360 + 0.837335i
\(503\) −89.5586 + 275.633i −0.178049 + 0.547978i −0.999760 0.0219268i \(-0.993020\pi\)
0.821711 + 0.569905i \(0.193020\pi\)
\(504\) 265.751 49.2597i 0.527284 0.0977375i
\(505\) −1.33427 + 0.759463i −0.00264211 + 0.00150389i
\(506\) −57.6904 + 18.7448i −0.114013 + 0.0370450i
\(507\) −250.855 + 63.7119i −0.494784 + 0.125664i
\(508\) −195.651 + 63.5708i −0.385139 + 0.125139i
\(509\) −229.058 + 315.271i −0.450016 + 0.619394i −0.972401 0.233316i \(-0.925042\pi\)
0.522385 + 0.852710i \(0.325042\pi\)
\(510\) 382.030 + 68.0565i 0.749078 + 0.133444i
\(511\) 38.9011 28.2633i 0.0761275 0.0553098i
\(512\) 354.234 + 257.366i 0.691863 + 0.502668i
\(513\) 78.8838 9.33898i 0.153770 0.0182046i
\(514\) 145.137 105.448i 0.282368 0.205152i
\(515\) −22.3105 108.224i −0.0433214 0.210143i
\(516\) 130.038 325.953i 0.252012 0.631691i
\(517\) −516.196 + 167.722i −0.998444 + 0.324414i
\(518\) 342.324 0.660858
\(519\) −50.6180 80.2229i −0.0975299 0.154572i
\(520\) 140.211 + 680.136i 0.269637 + 1.30795i
\(521\) −62.7140 20.3770i −0.120372 0.0391113i 0.248211 0.968706i \(-0.420157\pi\)
−0.368584 + 0.929595i \(0.620157\pi\)
\(522\) 42.9920 7.96901i 0.0823602 0.0152663i
\(523\) −195.827 269.533i −0.374430 0.515359i 0.579668 0.814853i \(-0.303182\pi\)
−0.954098 + 0.299494i \(0.903182\pi\)
\(524\) 197.295i 0.376516i
\(525\) 146.579 213.653i 0.279199 0.406959i
\(526\) −370.257 −0.703911
\(527\) −407.075 + 295.757i −0.772438 + 0.561209i
\(528\) −181.078 11.8666i −0.342952 0.0224747i
\(529\) −156.219 + 480.793i −0.295310 + 0.908871i
\(530\) −332.303 + 364.537i −0.626987 + 0.687806i
\(531\) −666.597 + 702.476i −1.25536 + 1.32293i
\(532\) 15.4537i 0.0290484i
\(533\) 42.0850 + 129.524i 0.0789588 + 0.243010i
\(534\) −241.022 + 604.144i −0.451352 + 1.13136i
\(535\) −344.430 605.114i −0.643794 1.13105i
\(536\) 400.525 + 551.276i 0.747249 + 1.02850i
\(537\) −91.1701 + 228.526i −0.169777 + 0.425561i
\(538\) −154.546 + 212.715i −0.287261 + 0.395381i
\(539\) −173.257 238.467i −0.321441 0.442426i
\(540\) 1.43378 + 205.259i 0.00265515 + 0.380109i
\(541\) −127.353 92.5277i −0.235404 0.171031i 0.463829 0.885925i \(-0.346475\pi\)
−0.699233 + 0.714894i \(0.746475\pi\)
\(542\) −259.104 797.441i −0.478052 1.47129i
\(543\) 260.674 66.2055i 0.480062 0.121925i
\(544\) 115.720 + 356.151i 0.212721 + 0.654689i
\(545\) 55.8295 501.560i 0.102439 0.920294i
\(546\) 17.0509 260.187i 0.0312287 0.476532i
\(547\) 60.8679 + 19.7772i 0.111276 + 0.0361557i 0.364126 0.931350i \(-0.381368\pi\)
−0.252850 + 0.967506i \(0.581368\pi\)
\(548\) 52.0797 37.8381i 0.0950359 0.0690477i
\(549\) 591.957 321.422i 1.07825 0.585469i
\(550\) −235.203 + 206.608i −0.427641 + 0.375651i
\(551\) 9.07702i 0.0164737i
\(552\) 80.7763 97.1250i 0.146334 0.175951i
\(553\) −246.444 80.0744i −0.445648 0.144800i
\(554\) 29.6370 + 9.62964i 0.0534964 + 0.0173820i
\(555\) −165.548 + 929.294i −0.298286 + 1.67440i
\(556\) 79.7121 + 245.329i 0.143367 + 0.441239i
\(557\) 934.176 1.67716 0.838578 0.544781i \(-0.183387\pi\)
0.838578 + 0.544781i \(0.183387\pi\)
\(558\) 314.853 + 298.772i 0.564253 + 0.535434i
\(559\) −994.457 722.515i −1.77899 1.29251i
\(560\) −130.579 14.5350i −0.233178 0.0259554i
\(561\) −301.351 250.626i −0.537168 0.446748i
\(562\) 24.3661 33.5371i 0.0433561 0.0596746i
\(563\) −583.167 423.696i −1.03582 0.752568i −0.0663559 0.997796i \(-0.521137\pi\)
−0.969465 + 0.245228i \(0.921137\pi\)
\(564\) 199.066 239.356i 0.352954 0.424390i
\(565\) −39.5458 + 355.270i −0.0699925 + 0.628797i
\(566\) 45.1971 62.2084i 0.0798535 0.109909i
\(567\) 72.4139 270.297i 0.127714 0.476714i
\(568\) 323.508i 0.569556i
\(569\) −560.605 + 182.152i −0.985246 + 0.320126i −0.756955 0.653467i \(-0.773314\pi\)
−0.228291 + 0.973593i \(0.573314\pi\)
\(570\) −68.4129 12.1874i −0.120023 0.0213814i
\(571\) 23.9750 73.7873i 0.0419877 0.129225i −0.927865 0.372915i \(-0.878358\pi\)
0.969853 + 0.243691i \(0.0783582\pi\)
\(572\) 59.6993 183.735i 0.104369 0.321216i
\(573\) −3.40082 2.82837i −0.00593511 0.00493608i
\(574\) −46.3697 −0.0807835
\(575\) −11.1797 120.584i −0.0194429 0.209711i
\(576\) 524.525 284.808i 0.910633 0.494458i
\(577\) 618.037 + 850.656i 1.07112 + 1.47427i 0.868935 + 0.494926i \(0.164805\pi\)
0.202187 + 0.979347i \(0.435195\pi\)
\(578\) −9.29123 + 28.5955i −0.0160748 + 0.0494731i
\(579\) 423.220 + 27.7349i 0.730950 + 0.0479014i
\(580\) 23.3116 + 2.59485i 0.0401924 + 0.00447388i
\(581\) −167.033 + 54.2722i −0.287492 + 0.0934117i
\(582\) −185.183 729.127i −0.318183 1.25280i
\(583\) 473.848 153.963i 0.812776 0.264087i
\(584\) 71.1175 97.8849i 0.121777 0.167611i
\(585\) 698.072 + 172.114i 1.19329 + 0.294212i
\(586\) −370.486 + 269.174i −0.632228 + 0.459341i
\(587\) 229.514 + 166.752i 0.390994 + 0.284074i 0.765863 0.643004i \(-0.222312\pi\)
−0.374868 + 0.927078i \(0.622312\pi\)
\(588\) 157.035 + 62.6486i 0.267066 + 0.106545i
\(589\) 72.8979 52.9634i 0.123766 0.0899210i
\(590\) 736.259 419.077i 1.24790 0.710301i
\(591\) −278.145 110.965i −0.470634 0.187758i
\(592\) 455.222 147.911i 0.768957 0.249849i
\(593\) −924.858 −1.55962 −0.779812 0.626013i \(-0.784686\pi\)
−0.779812 + 0.626013i \(0.784686\pi\)
\(594\) −165.197 + 295.001i −0.278109 + 0.496635i
\(595\) −209.721 191.177i −0.352473 0.321306i
\(596\) −328.556 106.754i −0.551269 0.179118i
\(597\) −49.1218 + 749.571i −0.0822810 + 1.25556i
\(598\) −71.6331 98.5945i −0.119788 0.164874i
\(599\) 620.049i 1.03514i −0.855641 0.517570i \(-0.826837\pi\)
0.855641 0.517570i \(-0.173163\pi\)
\(600\) 184.649 625.267i 0.307748 1.04211i
\(601\) 738.329 1.22850 0.614251 0.789111i \(-0.289458\pi\)
0.614251 + 0.789111i \(0.289458\pi\)
\(602\) 338.591 246.001i 0.562443 0.408639i
\(603\) 693.677 128.580i 1.15038 0.213234i
\(604\) 32.1563 98.9669i 0.0532389 0.163852i
\(605\) −282.839 + 58.3079i −0.467503 + 0.0963766i
\(606\) 1.22673 0.774025i 0.00202430 0.00127727i
\(607\) 43.7863i 0.0721355i −0.999349 0.0360678i \(-0.988517\pi\)
0.999349 0.0360678i \(-0.0114832\pi\)
\(608\) −20.7229 63.7786i −0.0340838 0.104899i
\(609\) −29.6998 11.8487i −0.0487682 0.0194559i
\(610\) −577.126 + 118.976i −0.946108 + 0.195042i
\(611\) −640.950 882.192i −1.04902 1.44385i
\(612\) 222.893 + 29.3398i 0.364205 + 0.0479409i
\(613\) −99.1056 + 136.407i −0.161673 + 0.222524i −0.882166 0.470938i \(-0.843916\pi\)
0.720493 + 0.693462i \(0.243916\pi\)
\(614\) −253.432 348.820i −0.412756 0.568110i
\(615\) 22.4245 125.878i 0.0364625 0.204680i
\(616\) 193.211 + 140.376i 0.313653 + 0.227883i
\(617\) −29.9101 92.0539i −0.0484767 0.149196i 0.923888 0.382663i \(-0.124993\pi\)
−0.972365 + 0.233467i \(0.924993\pi\)
\(618\) 25.6991 + 101.186i 0.0415844 + 0.163732i
\(619\) −268.240 825.556i −0.433343 1.33369i −0.894775 0.446518i \(-0.852664\pi\)
0.461431 0.887176i \(-0.347336\pi\)
\(620\) 115.181 + 202.357i 0.185776 + 0.326382i
\(621\) −54.7598 118.774i −0.0881801 0.191262i
\(622\) 46.8858 + 15.2341i 0.0753790 + 0.0244921i
\(623\) 384.833 279.597i 0.617709 0.448792i
\(624\) −89.7467 353.363i −0.143825 0.566287i
\(625\) −299.123 548.772i −0.478597 0.878035i
\(626\) 30.0775i 0.0480471i
\(627\) 53.9652 + 44.8814i 0.0860689 + 0.0715812i
\(628\) −214.676 69.7525i −0.341841 0.111071i
\(629\) 983.237 + 319.473i 1.56317 + 0.507906i
\(630\) −129.180 + 207.937i −0.205047 + 0.330058i
\(631\) 177.485 + 546.241i 0.281275 + 0.865676i 0.987490 + 0.157679i \(0.0504010\pi\)
−0.706215 + 0.707997i \(0.749599\pi\)
\(632\) −652.025 −1.03169
\(633\) −75.9792 120.417i −0.120030 0.190232i
\(634\) −425.117 308.866i −0.670532 0.487170i
\(635\) 278.943 616.311i 0.439280 0.970569i
\(636\) −182.735 + 219.720i −0.287319 + 0.345471i
\(637\) 348.087 479.101i 0.546447 0.752120i
\(638\) 31.2567 + 22.7093i 0.0489917 + 0.0355946i
\(639\) −302.315 144.189i −0.473106 0.225648i
\(640\) −64.8906 + 13.3773i −0.101392 + 0.0209021i
\(641\) −666.711 + 917.650i −1.04011 + 1.43159i −0.143034 + 0.989718i \(0.545686\pi\)
−0.897078 + 0.441873i \(0.854314\pi\)
\(642\) 351.034 + 556.342i 0.546782 + 0.866577i
\(643\) 21.4999i 0.0334368i −0.999860 0.0167184i \(-0.994678\pi\)
0.999860 0.0167184i \(-0.00532189\pi\)
\(644\) −24.1992 + 7.86280i −0.0375764 + 0.0122093i
\(645\) 504.065 + 1038.12i 0.781496 + 1.60950i
\(646\) −23.5190 + 72.3841i −0.0364072 + 0.112050i
\(647\) −230.085 + 708.129i −0.355619 + 1.09448i 0.600031 + 0.799976i \(0.295155\pi\)
−0.955650 + 0.294505i \(0.904845\pi\)
\(648\) −36.8796 703.152i −0.0569129 1.08511i
\(649\) −855.703 −1.31849
\(650\) −540.800 321.143i −0.832000 0.494066i
\(651\) −78.1381 307.656i −0.120028 0.472590i
\(652\) 138.499 + 190.628i 0.212422 + 0.292374i
\(653\) 290.386 893.717i 0.444696 1.36863i −0.438121 0.898916i \(-0.644356\pi\)
0.882817 0.469717i \(-0.155644\pi\)
\(654\) −31.1791 + 475.775i −0.0476744 + 0.727485i
\(655\) 479.474 + 437.077i 0.732022 + 0.667293i
\(656\) −61.6624 + 20.0353i −0.0939975 + 0.0305416i
\(657\) −59.7749 110.086i −0.0909816 0.167559i
\(658\) 353.103 114.730i 0.536630 0.174362i
\(659\) −695.825 + 957.721i −1.05588 + 1.45329i −0.172283 + 0.985047i \(0.555114\pi\)
−0.883597 + 0.468247i \(0.844886\pi\)
\(660\) −130.691 + 125.763i −0.198017 + 0.190550i
\(661\) 676.253 491.327i 1.02308 0.743308i 0.0561650 0.998422i \(-0.482113\pi\)
0.966911 + 0.255113i \(0.0821127\pi\)
\(662\) 123.589 + 89.7925i 0.186690 + 0.135638i
\(663\) 291.793 731.406i 0.440109 1.10318i
\(664\) −357.524 + 259.757i −0.538440 + 0.391200i
\(665\) 37.5564 + 34.2355i 0.0564757 + 0.0514819i
\(666\) 116.387 884.184i 0.174755 1.32760i
\(667\) −14.2138 + 4.61835i −0.0213101 + 0.00692407i
\(668\) −80.6334 −0.120709
\(669\) −466.878 + 294.585i −0.697874 + 0.440336i
\(670\) −613.382 68.2766i −0.915495 0.101905i
\(671\) 566.064 + 183.925i 0.843612 + 0.274106i
\(672\) −235.733 15.4483i −0.350793 0.0229886i
\(673\) −188.307 259.183i −0.279803 0.385116i 0.645866 0.763451i \(-0.276497\pi\)
−0.925669 + 0.378335i \(0.876497\pi\)
\(674\) 96.3241i 0.142914i
\(675\) −502.006 451.237i −0.743713 0.668499i
\(676\) 131.176 0.194048
\(677\) 418.668 304.180i 0.618416 0.449306i −0.233952 0.972248i \(-0.575166\pi\)
0.852368 + 0.522943i \(0.175166\pi\)
\(678\) 22.0851 337.006i 0.0325739 0.497059i
\(679\) −170.005 + 523.221i −0.250375 + 0.770576i
\(680\) −650.535 294.433i −0.956669 0.432989i
\(681\) 346.008 + 548.378i 0.508089 + 0.805254i
\(682\) 383.531i 0.562362i
\(683\) 170.064 + 523.402i 0.248995 + 0.766328i 0.994954 + 0.100336i \(0.0319917\pi\)
−0.745958 + 0.665993i \(0.768008\pi\)
\(684\) −39.9152 5.25410i −0.0583555 0.00768143i
\(685\) −23.4190 + 210.391i −0.0341884 + 0.307141i
\(686\) 275.193 + 378.771i 0.401157 + 0.552145i
\(687\) 292.970 + 116.880i 0.426448 + 0.170130i
\(688\) 343.966 473.429i 0.499951 0.688123i
\(689\) 588.368 + 809.819i 0.853945 + 1.17535i
\(690\) 15.7238 + 113.330i 0.0227882 + 0.164246i
\(691\) 600.331 + 436.166i 0.868786 + 0.631210i 0.930261 0.366899i \(-0.119581\pi\)
−0.0614752 + 0.998109i \(0.519581\pi\)
\(692\) 14.8563 + 45.7230i 0.0214686 + 0.0660737i
\(693\) 217.294 117.987i 0.313556 0.170255i
\(694\) −173.225 533.131i −0.249604 0.768201i
\(695\) −772.799 349.770i −1.11194 0.503266i
\(696\) −80.2875 5.26149i −0.115356 0.00755961i
\(697\) −133.185 43.2744i −0.191083 0.0620866i
\(698\) −154.056 + 111.928i −0.220710 + 0.160355i
\(699\) −587.640 + 149.248i −0.840687 + 0.213517i
\(700\) −98.6597 + 86.6652i −0.140942 + 0.123807i
\(701\) 684.914i 0.977053i 0.872549 + 0.488527i \(0.162465\pi\)
−0.872549 + 0.488527i \(0.837535\pi\)
\(702\) −666.235 132.501i −0.949052 0.188748i
\(703\) −176.075 57.2104i −0.250463 0.0813804i
\(704\) 501.581 + 162.974i 0.712473 + 0.231497i
\(705\) 140.692 + 1014.04i 0.199563 + 1.43835i
\(706\) 207.400 + 638.311i 0.293767 + 0.904123i
\(707\) −1.06077 −0.00150039
\(708\) 415.094 261.911i 0.586291 0.369930i
\(709\) 648.335 + 471.043i 0.914435 + 0.664376i 0.942133 0.335240i \(-0.108817\pi\)
−0.0276973 + 0.999616i \(0.508817\pi\)
\(710\) 216.540 + 197.392i 0.304986 + 0.278018i
\(711\) −290.611 + 609.311i −0.408735 + 0.856977i
\(712\) 703.536 968.334i 0.988112 1.36002i
\(713\) −120.026 87.2043i −0.168340 0.122306i
\(714\) 206.139 + 171.440i 0.288710 + 0.240112i
\(715\) 314.267 + 552.123i 0.439535 + 0.772200i
\(716\) 73.2967 100.884i 0.102370 0.140900i
\(717\) −193.190 + 121.896i −0.269442 + 0.170009i
\(718\) 278.416i 0.387766i
\(719\) 803.024 260.918i 1.11686 0.362890i 0.308293 0.951292i \(-0.400242\pi\)
0.808569 + 0.588401i \(0.200242\pi\)
\(720\) −81.9378 + 332.330i −0.113803 + 0.461569i
\(721\) 23.5928 72.6112i 0.0327223 0.100709i
\(722\) −171.449 + 527.665i −0.237464 + 0.730838i
\(723\) 455.036 547.132i 0.629372 0.756753i
\(724\) −136.310 −0.188274
\(725\) −57.9495 + 50.9043i −0.0799303 + 0.0702129i
\(726\) 264.447 67.1640i 0.364253 0.0925123i
\(727\) 389.355 + 535.901i 0.535563 + 0.737140i 0.987966 0.154674i \(-0.0494328\pi\)
−0.452402 + 0.891814i \(0.649433\pi\)
\(728\) −148.270 + 456.328i −0.203668 + 0.626824i
\(729\) −673.525 278.935i −0.923903 0.382627i
\(730\) 22.1259 + 107.328i 0.0303095 + 0.147025i
\(731\) 1202.09 390.584i 1.64445 0.534314i
\(732\) −330.888 + 84.0384i −0.452032 + 0.114807i
\(733\) −84.9829 + 27.6126i −0.115938 + 0.0376707i −0.366412 0.930453i \(-0.619414\pi\)
0.250473 + 0.968124i \(0.419414\pi\)
\(734\) −250.751 + 345.128i −0.341622 + 0.470202i
\(735\) −500.138 + 242.844i −0.680461 + 0.330400i
\(736\) −89.3280 + 64.9006i −0.121370 + 0.0881802i
\(737\) 504.328 + 366.416i 0.684299 + 0.497172i
\(738\) −15.7652 + 119.768i −0.0213621 + 0.162287i
\(739\) −295.965 + 215.031i −0.400494 + 0.290976i −0.769742 0.638355i \(-0.779615\pi\)
0.369248 + 0.929331i \(0.379615\pi\)
\(740\) 197.262 435.842i 0.266571 0.588975i
\(741\) −52.2534 + 130.978i −0.0705175 + 0.176759i
\(742\) −324.135 + 105.318i −0.436840 + 0.141938i
\(743\) 1066.14 1.43491 0.717454 0.696606i \(-0.245308\pi\)
0.717454 + 0.696606i \(0.245308\pi\)
\(744\) −426.214 675.493i −0.572868 0.907920i
\(745\) 987.308 561.974i 1.32525 0.754327i
\(746\) −946.648 307.585i −1.26897 0.412312i
\(747\) 83.3894 + 449.878i 0.111632 + 0.602246i
\(748\) 116.764 + 160.712i 0.156101 + 0.214855i
\(749\) 481.079i 0.642295i
\(750\) 305.856 + 505.109i 0.407808 + 0.673479i
\(751\) −312.398 −0.415976 −0.207988 0.978131i \(-0.566691\pi\)
−0.207988 + 0.978131i \(0.566691\pi\)
\(752\) 419.983 305.136i 0.558488 0.405766i
\(753\) −987.761 64.7311i −1.31177 0.0859643i
\(754\) −23.9864 + 73.8227i −0.0318122 + 0.0979080i
\(755\) 169.276 + 297.394i 0.224207 + 0.393900i
\(756\) −69.2945 + 123.743i −0.0916594 + 0.163681i
\(757\) 657.769i 0.868915i −0.900692 0.434458i \(-0.856940\pi\)
0.900692 0.434458i \(-0.143060\pi\)
\(758\) −12.8065 39.4143i −0.0168951 0.0519978i
\(759\) 42.8232 107.340i 0.0564205 0.141423i
\(760\) 116.496 + 52.7262i 0.153284 + 0.0693766i
\(761\) −55.8262 76.8382i −0.0733590 0.100970i 0.770761 0.637125i \(-0.219876\pi\)
−0.844120 + 0.536155i \(0.819876\pi\)
\(762\) −236.835 + 593.649i −0.310807 + 0.779067i
\(763\) 204.952 282.093i 0.268614 0.369715i
\(764\) 1.31771 + 1.81367i 0.00172475 + 0.00237391i
\(765\) −565.091 + 476.688i −0.738681 + 0.623121i
\(766\) 32.9895 + 23.9683i 0.0430672 + 0.0312902i
\(767\) −531.255 1635.04i −0.692640 2.13173i
\(768\) −710.654 + 180.491i −0.925330 + 0.235014i
\(769\) −174.903 538.297i −0.227443 0.699997i −0.998034 0.0626676i \(-0.980039\pi\)
0.770592 0.637329i \(-0.219961\pi\)
\(770\) −211.850 + 43.6733i −0.275130 + 0.0567186i
\(771\) −22.3506 + 341.057i −0.0289890 + 0.442357i
\(772\) −204.438 66.4258i −0.264816 0.0860438i
\(773\) −1165.39 + 846.708i −1.50762 + 1.09535i −0.540406 + 0.841404i \(0.681729\pi\)
−0.967218 + 0.253949i \(0.918271\pi\)
\(774\) −520.274 958.178i −0.672188 1.23796i
\(775\) −746.944 168.374i −0.963799 0.217256i
\(776\) 1384.31i 1.78390i
\(777\) −417.031 + 501.436i −0.536720 + 0.645349i
\(778\) −236.219 76.7521i −0.303623 0.0986531i
\(779\) 23.8504 + 7.74946i 0.0306167 + 0.00994796i
\(780\) −321.440 171.640i −0.412103 0.220051i
\(781\) −91.4558 281.472i −0.117101 0.360400i
\(782\) 125.314 0.160248
\(783\) −40.7013 + 72.6827i −0.0519813 + 0.0928259i
\(784\) 228.084 + 165.713i 0.290924 + 0.211369i
\(785\) 645.100 367.190i 0.821783 0.467757i
\(786\) −471.284 391.954i −0.599597 0.498669i
\(787\) 197.252 271.494i 0.250638 0.344973i −0.665097 0.746757i \(-0.731610\pi\)
0.915735 + 0.401784i \(0.131610\pi\)
\(788\) 122.789 + 89.2111i 0.155823 + 0.113212i
\(789\) 451.060 542.352i 0.571686 0.687392i
\(790\) 397.842 436.433i 0.503597 0.552447i
\(791\) −145.174 + 199.815i −0.183532 + 0.252611i
\(792\) 428.263 451.314i 0.540737 0.569841i
\(793\) 1195.79i 1.50794i
\(794\) 736.952 239.450i 0.928151 0.301575i
\(795\) −129.150 930.848i −0.162453 1.17088i
\(796\) 117.648 362.083i 0.147799 0.454878i
\(797\) 209.068 643.446i 0.262319 0.807335i −0.729980 0.683469i \(-0.760471\pi\)
0.992299 0.123866i \(-0.0395294\pi\)
\(798\) −36.9148 30.7011i −0.0462591 0.0384725i
\(799\) 1121.27 1.40334
\(800\) −290.960 + 489.973i −0.363700 + 0.612466i
\(801\) −591.328 1089.04i −0.738237 1.35960i
\(802\) 546.541 + 752.250i 0.681473 + 0.937967i
\(803\) 34.2046 105.271i 0.0425960 0.131097i
\(804\) −356.796 23.3820i −0.443776 0.0290821i
\(805\) 34.5013 76.2289i 0.0428587 0.0946943i
\(806\) −732.831 + 238.111i −0.909220 + 0.295424i
\(807\) −123.310 485.515i −0.152801 0.601630i
\(808\) −2.53853 + 0.824818i −0.00314174 + 0.00102081i
\(809\) 519.696 715.300i 0.642393 0.884178i −0.356348 0.934353i \(-0.615978\pi\)
0.998740 + 0.0501756i \(0.0159781\pi\)
\(810\) 493.157 + 404.352i 0.608836 + 0.499200i
\(811\) 319.492 232.125i 0.393949 0.286220i −0.373123 0.927782i \(-0.621713\pi\)
0.767072 + 0.641561i \(0.221713\pi\)
\(812\) 13.1111 + 9.52580i 0.0161467 + 0.0117313i
\(813\) 1483.74 + 591.934i 1.82502 + 0.728086i
\(814\) 637.519 463.184i 0.783192 0.569023i
\(815\) −770.096 85.7208i −0.944903 0.105179i
\(816\) 348.198 + 138.913i 0.426714 + 0.170236i
\(817\) −215.268 + 69.9447i −0.263485 + 0.0856116i
\(818\) −1173.19 −1.43422
\(819\) 360.349 + 341.944i 0.439986 + 0.417514i
\(820\) −26.7203 + 59.0372i −0.0325857 + 0.0719966i
\(821\) 942.860 + 306.354i 1.14843 + 0.373147i 0.820551 0.571573i \(-0.193667\pi\)
0.327878 + 0.944720i \(0.393667\pi\)
\(822\) 13.0788 199.575i 0.0159109 0.242792i
\(823\) −303.986 418.401i −0.369364 0.508385i 0.583364 0.812211i \(-0.301736\pi\)
−0.952728 + 0.303825i \(0.901736\pi\)
\(824\) 192.110i 0.233143i
\(825\) −16.1072 596.222i −0.0195238 0.722693i
\(826\) 585.342 0.708647
\(827\) 866.409 629.483i 1.04765 0.761164i 0.0758880 0.997116i \(-0.475821\pi\)
0.971765 + 0.235952i \(0.0758209\pi\)
\(828\) 12.0812 + 65.1770i 0.0145909 + 0.0787162i
\(829\) −35.7199 + 109.935i −0.0430880 + 0.132611i −0.970286 0.241960i \(-0.922210\pi\)
0.927198 + 0.374571i \(0.122210\pi\)
\(830\) 44.2801 397.803i 0.0533495 0.479280i
\(831\) −50.2103 + 31.6810i −0.0604215 + 0.0381240i
\(832\) 1059.58i 1.27353i
\(833\) 188.172 + 579.133i 0.225897 + 0.695238i
\(834\) 744.384 + 296.970i 0.892546 + 0.356079i
\(835\) 178.631 195.959i 0.213930 0.234681i
\(836\) −20.9098 28.7798i −0.0250117 0.0344256i
\(837\) −821.206 + 97.2218i −0.981131 + 0.116155i
\(838\) 182.687 251.448i 0.218004 0.300057i
\(839\) −304.872 419.620i −0.363375 0.500143i 0.587710 0.809072i \(-0.300030\pi\)
−0.951085 + 0.308929i \(0.900030\pi\)
\(840\) 324.587 312.347i 0.386413 0.371841i
\(841\) −672.682 488.732i −0.799860 0.581132i
\(842\) 75.4349 + 232.165i 0.0895902 + 0.275730i
\(843\) 19.4414 + 76.5475i 0.0230622 + 0.0908037i
\(844\) 22.2997 + 68.6316i 0.0264215 + 0.0813170i
\(845\) −290.602 + 318.790i −0.343907 + 0.377267i
\(846\) −176.283 951.030i −0.208373 1.12415i
\(847\) −189.767 61.6591i −0.224046 0.0727971i
\(848\) −385.529 + 280.103i −0.454633 + 0.330310i
\(849\) 36.0621 + 141.989i 0.0424760 + 0.167243i
\(850\) 594.011 255.783i 0.698836 0.300922i
\(851\) 304.827i 0.358199i
\(852\) 130.516 + 108.547i 0.153188 + 0.127403i
\(853\) −748.148 243.088i −0.877079 0.284980i −0.164335 0.986405i \(-0.552548\pi\)
−0.712744 + 0.701424i \(0.752548\pi\)
\(854\) −387.215 125.814i −0.453413 0.147323i
\(855\) 101.195 85.3640i 0.118357 0.0998409i
\(856\) −374.069 1151.27i −0.436997 1.34494i
\(857\) −977.865 −1.14103 −0.570517 0.821286i \(-0.693257\pi\)
−0.570517 + 0.821286i \(0.693257\pi\)
\(858\) −320.293 507.623i −0.373302 0.591635i
\(859\) 268.364 + 194.978i 0.312414 + 0.226982i 0.732932 0.680302i \(-0.238151\pi\)
−0.420518 + 0.907284i \(0.638151\pi\)
\(860\) −118.093 572.845i −0.137318 0.666099i
\(861\) 56.4892 67.9222i 0.0656088 0.0788876i
\(862\) −212.747 + 292.822i −0.246807 + 0.339700i
\(863\) −353.404 256.763i −0.409507 0.297524i 0.363895 0.931440i \(-0.381447\pi\)
−0.773402 + 0.633916i \(0.781447\pi\)
\(864\) −120.048 + 603.618i −0.138944 + 0.698632i
\(865\) −144.030 65.1881i −0.166509 0.0753620i
\(866\) 512.104 704.851i 0.591344 0.813916i
\(867\) −30.5677 48.4457i −0.0352568 0.0558774i
\(868\) 160.878i 0.185344i
\(869\) −567.303 + 184.328i −0.652823 + 0.212115i
\(870\) 52.5102 50.5300i 0.0603566 0.0580805i
\(871\) −387.022 + 1191.13i −0.444342 + 1.36754i
\(872\) 271.125 834.438i 0.310923 0.956924i
\(873\) 1293.62 + 616.993i 1.48181 + 0.706750i
\(874\) −22.4408 −0.0256760
\(875\) 7.94833 431.761i 0.00908381 0.493442i
\(876\) 15.6286 + 61.5352i 0.0178409 + 0.0702457i
\(877\) −909.561 1251.90i −1.03713 1.42748i −0.899459 0.437005i \(-0.856039\pi\)
−0.137668 0.990478i \(-0.543961\pi\)
\(878\) −25.7692 + 79.3094i −0.0293499 + 0.0903297i
\(879\) 57.0534 870.603i 0.0649071 0.990447i
\(880\) −262.848 + 149.612i −0.298691 + 0.170014i
\(881\) 265.263 86.1891i 0.301093 0.0978310i −0.154574 0.987981i \(-0.549401\pi\)
0.455667 + 0.890150i \(0.349401\pi\)
\(882\) 461.622 250.653i 0.523381 0.284187i
\(883\) 866.868 281.662i 0.981730 0.318983i 0.226188 0.974084i \(-0.427374\pi\)
0.755542 + 0.655100i \(0.227374\pi\)
\(884\) −234.588 + 322.883i −0.265371 + 0.365252i
\(885\) −283.072 + 1589.01i −0.319856 + 1.79549i
\(886\) −331.841 + 241.096i −0.374538 + 0.272118i
\(887\) −725.289 526.953i −0.817687 0.594085i 0.0983617 0.995151i \(-0.468640\pi\)
−0.916049 + 0.401066i \(0.868640\pi\)
\(888\) −608.096 + 1524.25i −0.684793 + 1.71650i
\(889\) 378.147 274.740i 0.425363 0.309044i
\(890\) 218.882 + 1061.75i 0.245935 + 1.19298i
\(891\) −230.869 601.360i −0.259112 0.674928i
\(892\) 266.097 86.4601i 0.298315 0.0969283i
\(893\) −200.794 −0.224853
\(894\) −907.732 + 572.749i −1.01536 + 0.640659i
\(895\) 82.7954 + 401.623i 0.0925089 + 0.448741i
\(896\) −43.5375 14.1462i −0.0485909 0.0157882i
\(897\) 231.687 + 15.1832i 0.258291 + 0.0169266i
\(898\) 701.016 + 964.865i 0.780641 + 1.07446i
\(899\) 94.4947i 0.105111i
\(900\) 190.303 + 284.292i 0.211448 + 0.315880i
\(901\) −1029.28 −1.14238
\(902\) −86.3554 + 62.7409i −0.0957377 + 0.0695575i
\(903\) −52.1417 + 795.653i −0.0577427 + 0.881122i
\(904\) −192.046 + 591.058i −0.212441 + 0.653825i
\(905\) 301.976 331.268i 0.333675 0.366042i
\(906\) −172.522 273.425i −0.190422 0.301793i
\(907\) 324.877i 0.358189i −0.983832 0.179094i \(-0.942683\pi\)
0.983832 0.179094i \(-0.0573168\pi\)
\(908\) −101.553 312.548i −0.111842 0.344215i
\(909\) −0.360651 + 2.73985i −0.000396756 + 0.00301414i
\(910\) −214.974 377.679i −0.236235 0.415032i
\(911\) 140.444 + 193.304i 0.154164 + 0.212189i 0.879112 0.476615i \(-0.158136\pi\)
−0.724948 + 0.688804i \(0.758136\pi\)
\(912\) −62.3545 24.8762i −0.0683711 0.0272765i
\(913\) −237.635 + 327.077i −0.260280 + 0.358244i
\(914\) 26.6664 + 36.7031i 0.0291755 + 0.0401566i
\(915\) 528.799 990.313i 0.577923 1.08231i
\(916\) −129.333 93.9661i −0.141193 0.102583i
\(917\) 138.524 + 426.334i 0.151062 + 0.464922i
\(918\) 512.895 474.145i 0.558709 0.516497i
\(919\) 414.828 + 1276.71i 0.451391 + 1.38924i 0.875320 + 0.483544i \(0.160651\pi\)
−0.423929 + 0.905695i \(0.639349\pi\)
\(920\) 23.2920 209.250i 0.0253173 0.227445i
\(921\) 819.690 + 53.7169i 0.890000 + 0.0583245i
\(922\) 19.0311 + 6.18359i 0.0206411 + 0.00670671i
\(923\) 481.044 349.499i 0.521174 0.378655i
\(924\) −121.462 + 30.8486i −0.131452 + 0.0333860i
\(925\) 622.197 + 1444.94i 0.672645 + 1.56210i
\(926\) 737.130i 0.796037i
\(927\) −179.525 85.6245i −0.193662 0.0923673i
\(928\) 66.8844 + 21.7321i 0.0720737 + 0.0234182i
\(929\) 498.160 + 161.862i 0.536232 + 0.174232i 0.564599 0.825365i \(-0.309031\pi\)
−0.0283670 + 0.999598i \(0.509031\pi\)
\(930\) 712.200 + 126.875i 0.765807 + 0.136424i
\(931\) −33.6973 103.710i −0.0361948 0.111396i
\(932\) 307.286 0.329706
\(933\) −79.4327 + 50.1194i −0.0851369 + 0.0537186i
\(934\) −451.361 327.933i −0.483256 0.351106i
\(935\) −649.242 72.2683i −0.694377 0.0772923i
\(936\) 1128.23 + 538.110i 1.20538 + 0.574904i
\(937\) −845.258 + 1163.40i −0.902089 + 1.24162i 0.0677073 + 0.997705i \(0.478432\pi\)
−0.969797 + 0.243914i \(0.921568\pi\)
\(938\) −344.985 250.646i −0.367788 0.267213i
\(939\) −44.0575 36.6414i −0.0469196 0.0390218i
\(940\) 57.4010 515.678i 0.0610649 0.548593i
\(941\) −660.110 + 908.564i −0.701498 + 0.965530i 0.298440 + 0.954428i \(0.403534\pi\)
−0.999938 + 0.0111014i \(0.996466\pi\)
\(942\) −593.106 + 374.230i −0.629624 + 0.397272i
\(943\) 41.2906i 0.0437864i
\(944\) 778.387 252.913i 0.824563 0.267917i
\(945\) −147.215 442.538i −0.155783 0.468294i
\(946\) 297.713 916.265i 0.314707 0.968568i
\(947\) −134.922 + 415.247i −0.142473 + 0.438487i −0.996677 0.0814503i \(-0.974045\pi\)
0.854204 + 0.519938i \(0.174045\pi\)
\(948\) 218.775 263.054i 0.230775 0.277483i
\(949\) 222.382 0.234333
\(950\) −106.374 + 45.8050i −0.111972 + 0.0482158i
\(951\) 970.318 246.440i 1.02031 0.259138i
\(952\) −289.997 399.146i −0.304618 0.419271i
\(953\) −48.3303 + 148.745i −0.0507138 + 0.156081i −0.973206 0.229934i \(-0.926149\pi\)
0.922492 + 0.386015i \(0.126149\pi\)
\(954\) 161.821 + 873.010i 0.169624 + 0.915105i
\(955\) −7.32686 0.815565i −0.00767210 0.000853995i
\(956\) 110.108 35.7764i 0.115176 0.0374230i
\(957\) −71.3426 + 18.1195i −0.0745481 + 0.0189336i
\(958\) −1332.13 + 432.836i −1.39053 + 0.451812i
\(959\) −85.9722 + 118.331i −0.0896477 + 0.123390i
\(960\) 468.561 877.502i 0.488085 0.914065i
\(961\) 18.5744 13.4951i 0.0193282 0.0140427i
\(962\) 1280.83 + 930.575i 1.33142 + 0.967334i
\(963\) −1242.57 163.562i −1.29031 0.169846i
\(964\) −291.788 + 211.996i −0.302685 + 0.219913i
\(965\) 614.333 349.677i 0.636614 0.362360i
\(966\) −29.2931 + 73.4260i −0.0303241 + 0.0760103i
\(967\) −405.235 + 131.669i −0.419064 + 0.136162i −0.510956 0.859607i \(-0.670709\pi\)
0.0918918 + 0.995769i \(0.470709\pi\)
\(968\) −502.075 −0.518672
\(969\) −77.3764 122.631i −0.0798518 0.126555i
\(970\) −926.585 844.653i −0.955242 0.870776i
\(971\) −871.013 283.009i −0.897026 0.291462i −0.176017 0.984387i \(-0.556321\pi\)
−0.721009 + 0.692926i \(0.756321\pi\)
\(972\) 296.055 + 221.051i 0.304583 + 0.227419i
\(973\) −344.500 474.163i −0.354059 0.487321i
\(974\) 985.504i 1.01181i
\(975\) 1129.23 400.935i 1.15819 0.411216i
\(976\) −569.279 −0.583278
\(977\) −565.618 + 410.945i −0.578933 + 0.420620i −0.838339 0.545149i \(-0.816473\pi\)
0.259406 + 0.965768i \(0.416473\pi\)
\(978\) 730.506 + 47.8724i 0.746939 + 0.0489493i
\(979\) 338.372 1041.40i 0.345630 1.06374i
\(980\) 275.980 56.8938i 0.281612 0.0580549i
\(981\) −658.931 625.277i −0.671693 0.637387i
\(982\) 233.667i 0.237950i
\(983\) 106.423 + 327.536i 0.108263 + 0.333201i 0.990483 0.137639i \(-0.0439512\pi\)
−0.882219 + 0.470839i \(0.843951\pi\)
\(984\) 82.3700 206.468i 0.0837093 0.209825i
\(985\) −488.825 + 100.772i −0.496269 + 0.102307i
\(986\) −46.9143 64.5720i −0.0475804 0.0654889i
\(987\) −262.106 + 656.992i −0.265558 + 0.665646i
\(988\) 42.0095 57.8211i 0.0425197 0.0585233i
\(989\) 219.055 + 301.503i 0.221491 + 0.304856i
\(990\) 40.7764 + 562.033i 0.0411883 + 0.567710i
\(991\) 187.691 + 136.365i 0.189395 + 0.137604i 0.678442 0.734654i \(-0.262655\pi\)
−0.489047 + 0.872257i \(0.662655\pi\)
\(992\) 215.732 + 663.956i 0.217472 + 0.669310i
\(993\) −282.088 + 71.6443i −0.284076 + 0.0721493i
\(994\) 62.5602 + 192.541i 0.0629378 + 0.193703i
\(995\) 619.318 + 1088.05i 0.622431 + 1.09352i
\(996\) 15.1642 231.397i 0.0152251 0.232326i
\(997\) −903.277 293.493i −0.905995 0.294376i −0.181286 0.983430i \(-0.558026\pi\)
−0.724709 + 0.689055i \(0.758026\pi\)
\(998\) 206.876 150.304i 0.207290 0.150605i
\(999\) 1153.36 + 1247.63i 1.15452 + 1.24887i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.h.a.14.6 72
3.2 odd 2 inner 75.3.h.a.14.13 yes 72
5.2 odd 4 375.3.j.b.176.11 144
5.3 odd 4 375.3.j.b.176.26 144
5.4 even 2 375.3.h.a.74.13 72
15.2 even 4 375.3.j.b.176.25 144
15.8 even 4 375.3.j.b.176.12 144
15.14 odd 2 375.3.h.a.74.6 72
25.9 even 10 inner 75.3.h.a.59.13 yes 72
25.12 odd 20 375.3.j.b.326.25 144
25.13 odd 20 375.3.j.b.326.12 144
25.16 even 5 375.3.h.a.299.6 72
75.38 even 20 375.3.j.b.326.26 144
75.41 odd 10 375.3.h.a.299.13 72
75.59 odd 10 inner 75.3.h.a.59.6 yes 72
75.62 even 20 375.3.j.b.326.11 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.h.a.14.6 72 1.1 even 1 trivial
75.3.h.a.14.13 yes 72 3.2 odd 2 inner
75.3.h.a.59.6 yes 72 75.59 odd 10 inner
75.3.h.a.59.13 yes 72 25.9 even 10 inner
375.3.h.a.74.6 72 15.14 odd 2
375.3.h.a.74.13 72 5.4 even 2
375.3.h.a.299.6 72 25.16 even 5
375.3.h.a.299.13 72 75.41 odd 10
375.3.j.b.176.11 144 5.2 odd 4
375.3.j.b.176.12 144 15.8 even 4
375.3.j.b.176.25 144 15.2 even 4
375.3.j.b.176.26 144 5.3 odd 4
375.3.j.b.326.11 144 75.62 even 20
375.3.j.b.326.12 144 25.13 odd 20
375.3.j.b.326.25 144 25.12 odd 20
375.3.j.b.326.26 144 75.38 even 20