Properties

Label 75.3.h.a.14.5
Level $75$
Weight $3$
Character 75.14
Analytic conductor $2.044$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(14,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 14.5
Character \(\chi\) \(=\) 75.14
Dual form 75.3.h.a.59.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.88806 + 1.37175i) q^{2} +(-2.96199 - 0.476037i) q^{3} +(0.446980 - 1.37566i) q^{4} +(-0.465978 + 4.97824i) q^{5} +(6.24541 - 3.16433i) q^{6} -12.5544i q^{7} +(-1.84155 - 5.66769i) q^{8} +(8.54678 + 2.82003i) q^{9} +(-5.94912 - 10.0384i) q^{10} +(-7.59880 - 10.4589i) q^{11} +(-1.97882 + 3.86192i) q^{12} +(-2.92256 + 4.02255i) q^{13} +(17.2215 + 23.7033i) q^{14} +(3.75005 - 14.5237i) q^{15} +(15.9325 + 11.5756i) q^{16} +(-3.32914 - 10.2460i) q^{17} +(-20.0052 + 6.39968i) q^{18} +(-1.29722 - 3.99244i) q^{19} +(6.64010 + 2.86620i) q^{20} +(-5.97634 + 37.1859i) q^{21} +(28.6939 + 9.32322i) q^{22} +(-17.6249 + 12.8053i) q^{23} +(2.75661 + 17.6643i) q^{24} +(-24.5657 - 4.63950i) q^{25} -11.6038i q^{26} +(-23.9730 - 12.4215i) q^{27} +(-17.2706 - 5.61156i) q^{28} +(-26.0760 - 8.47261i) q^{29} +(12.8426 + 32.5656i) q^{30} +(-8.64023 - 26.5919i) q^{31} -22.1228 q^{32} +(17.5288 + 34.5963i) q^{33} +(20.3406 + 14.7783i) q^{34} +(62.4987 + 5.85006i) q^{35} +(7.69966 - 10.4970i) q^{36} +(-0.0202976 + 0.0279372i) q^{37} +(7.92586 + 5.75848i) q^{38} +(10.5715 - 10.5235i) q^{39} +(29.0733 - 6.52663i) q^{40} +(44.4000 - 61.1113i) q^{41} +(-39.7262 - 78.4072i) q^{42} +43.3942i q^{43} +(-17.7844 + 5.77849i) q^{44} +(-18.0214 + 41.2338i) q^{45} +(15.7112 - 48.3541i) q^{46} +(1.52001 - 4.67812i) q^{47} +(-41.6814 - 41.8713i) q^{48} -108.612 q^{49} +(52.7457 - 24.9385i) q^{50} +(4.98338 + 31.9334i) q^{51} +(4.22736 + 5.81846i) q^{52} +(-0.528642 + 1.62699i) q^{53} +(62.3016 - 9.43260i) q^{54} +(55.6075 - 32.9550i) q^{55} +(-71.1543 + 23.1194i) q^{56} +(1.94181 + 12.4431i) q^{57} +(60.8553 - 19.7731i) q^{58} +(-28.0481 + 38.6049i) q^{59} +(-18.3035 - 11.6506i) q^{60} +(-5.28161 + 3.83732i) q^{61} +(52.7907 + 38.3547i) q^{62} +(35.4038 - 107.299i) q^{63} +(-21.9608 + 15.9555i) q^{64} +(-18.6634 - 16.4236i) q^{65} +(-80.5529 - 41.2746i) q^{66} +(-3.93744 + 1.27935i) q^{67} -15.5831 q^{68} +(58.3007 - 29.5390i) q^{69} +(-126.026 + 74.6874i) q^{70} +(51.8456 + 16.8457i) q^{71} +(0.243811 - 53.6337i) q^{72} +(21.0676 + 28.9970i) q^{73} -0.0805904i q^{74} +(70.5549 + 25.4364i) q^{75} -6.07208 q^{76} +(-131.304 + 95.3981i) q^{77} +(-5.52385 + 34.3704i) q^{78} +(5.27573 - 16.2370i) q^{79} +(-65.0503 + 73.9216i) q^{80} +(65.0948 + 48.2044i) q^{81} +176.287i q^{82} +(-17.6925 - 54.4519i) q^{83} +(48.4840 + 24.8428i) q^{84} +(52.5585 - 11.7988i) q^{85} +(-59.5261 - 81.9306i) q^{86} +(73.2036 + 37.5089i) q^{87} +(-45.2840 + 62.3281i) q^{88} +(-44.4639 - 61.1993i) q^{89} +(-22.5372 - 102.573i) q^{90} +(50.5006 + 36.6908i) q^{91} +(9.73774 + 29.9697i) q^{92} +(12.9335 + 82.8780i) q^{93} +(3.54736 + 10.9176i) q^{94} +(20.4798 - 4.59749i) q^{95} +(65.5274 + 10.5312i) q^{96} +(-28.4310 - 9.23778i) q^{97} +(205.066 - 148.989i) q^{98} +(-35.4509 - 110.818i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 5 q^{3} - 38 q^{4} + 5 q^{6} - 13 q^{9} - 20 q^{10} - 45 q^{12} - 10 q^{13} - 15 q^{15} + 22 q^{16} - 36 q^{19} + 54 q^{21} - 50 q^{22} - 20 q^{24} - 100 q^{25} + 100 q^{27} + 270 q^{28} - 5 q^{30}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88806 + 1.37175i −0.944028 + 0.685876i −0.949387 0.314109i \(-0.898294\pi\)
0.00535908 + 0.999986i \(0.498294\pi\)
\(3\) −2.96199 0.476037i −0.987330 0.158679i
\(4\) 0.446980 1.37566i 0.111745 0.343916i
\(5\) −0.465978 + 4.97824i −0.0931956 + 0.995648i
\(6\) 6.24541 3.16433i 1.04090 0.527389i
\(7\) 12.5544i 1.79348i −0.442556 0.896741i \(-0.645928\pi\)
0.442556 0.896741i \(-0.354072\pi\)
\(8\) −1.84155 5.66769i −0.230193 0.708462i
\(9\) 8.54678 + 2.82003i 0.949642 + 0.313337i
\(10\) −5.94912 10.0384i −0.594912 1.00384i
\(11\) −7.59880 10.4589i −0.690800 0.950805i 0.309200 0.950997i \(-0.399939\pi\)
−1.00000 0.000192365i \(0.999939\pi\)
\(12\) −1.97882 + 3.86192i −0.164902 + 0.321827i
\(13\) −2.92256 + 4.02255i −0.224812 + 0.309427i −0.906492 0.422223i \(-0.861250\pi\)
0.681680 + 0.731651i \(0.261250\pi\)
\(14\) 17.2215 + 23.7033i 1.23011 + 1.69310i
\(15\) 3.75005 14.5237i 0.250003 0.968245i
\(16\) 15.9325 + 11.5756i 0.995778 + 0.723475i
\(17\) −3.32914 10.2460i −0.195831 0.602707i −0.999966 0.00825983i \(-0.997371\pi\)
0.804134 0.594448i \(-0.202629\pi\)
\(18\) −20.0052 + 6.39968i −1.11140 + 0.355538i
\(19\) −1.29722 3.99244i −0.0682748 0.210128i 0.911098 0.412190i \(-0.135236\pi\)
−0.979373 + 0.202061i \(0.935236\pi\)
\(20\) 6.64010 + 2.86620i 0.332005 + 0.143310i
\(21\) −5.97634 + 37.1859i −0.284588 + 1.77076i
\(22\) 28.6939 + 9.32322i 1.30427 + 0.423783i
\(23\) −17.6249 + 12.8053i −0.766301 + 0.556751i −0.900837 0.434158i \(-0.857046\pi\)
0.134535 + 0.990909i \(0.457046\pi\)
\(24\) 2.75661 + 17.6643i 0.114859 + 0.736012i
\(25\) −24.5657 4.63950i −0.982629 0.185580i
\(26\) 11.6038i 0.446301i
\(27\) −23.9730 12.4215i −0.887890 0.460055i
\(28\) −17.2706 5.61156i −0.616807 0.200413i
\(29\) −26.0760 8.47261i −0.899172 0.292159i −0.177277 0.984161i \(-0.556729\pi\)
−0.721895 + 0.692002i \(0.756729\pi\)
\(30\) 12.8426 + 32.5656i 0.428086 + 1.08552i
\(31\) −8.64023 26.5919i −0.278717 0.857803i −0.988212 0.153092i \(-0.951077\pi\)
0.709495 0.704711i \(-0.248923\pi\)
\(32\) −22.1228 −0.691336
\(33\) 17.5288 + 34.5963i 0.531175 + 1.04837i
\(34\) 20.3406 + 14.7783i 0.598253 + 0.434656i
\(35\) 62.4987 + 5.85006i 1.78568 + 0.167145i
\(36\) 7.69966 10.4970i 0.213879 0.291583i
\(37\) −0.0202976 + 0.0279372i −0.000548584 + 0.000755061i −0.809291 0.587408i \(-0.800149\pi\)
0.808743 + 0.588163i \(0.200149\pi\)
\(38\) 7.92586 + 5.75848i 0.208575 + 0.151539i
\(39\) 10.5715 10.5235i 0.271063 0.269834i
\(40\) 29.0733 6.52663i 0.726831 0.163166i
\(41\) 44.4000 61.1113i 1.08293 1.49052i 0.226668 0.973972i \(-0.427217\pi\)
0.856258 0.516548i \(-0.172783\pi\)
\(42\) −39.7262 78.4072i −0.945862 1.86684i
\(43\) 43.3942i 1.00917i 0.863363 + 0.504583i \(0.168354\pi\)
−0.863363 + 0.504583i \(0.831646\pi\)
\(44\) −17.7844 + 5.77849i −0.404190 + 0.131329i
\(45\) −18.0214 + 41.2338i −0.400476 + 0.916307i
\(46\) 15.7112 48.3541i 0.341548 1.05118i
\(47\) 1.52001 4.67812i 0.0323407 0.0995346i −0.933583 0.358361i \(-0.883336\pi\)
0.965924 + 0.258826i \(0.0833357\pi\)
\(48\) −41.6814 41.8713i −0.868362 0.872318i
\(49\) −108.612 −2.21658
\(50\) 52.7457 24.9385i 1.05491 0.498769i
\(51\) 4.98338 + 31.9334i 0.0977134 + 0.626146i
\(52\) 4.22736 + 5.81846i 0.0812953 + 0.111893i
\(53\) −0.528642 + 1.62699i −0.00997438 + 0.0306980i −0.955920 0.293628i \(-0.905137\pi\)
0.945945 + 0.324326i \(0.105137\pi\)
\(54\) 62.3016 9.43260i 1.15373 0.174678i
\(55\) 55.6075 32.9550i 1.01105 0.599183i
\(56\) −71.1543 + 23.1194i −1.27061 + 0.412847i
\(57\) 1.94181 + 12.4431i 0.0340668 + 0.218300i
\(58\) 60.8553 19.7731i 1.04923 0.340915i
\(59\) −28.0481 + 38.6049i −0.475392 + 0.654321i −0.977611 0.210420i \(-0.932517\pi\)
0.502219 + 0.864740i \(0.332517\pi\)
\(60\) −18.3035 11.6506i −0.305058 0.194177i
\(61\) −5.28161 + 3.83732i −0.0865838 + 0.0629068i −0.630235 0.776404i \(-0.717041\pi\)
0.543651 + 0.839311i \(0.317041\pi\)
\(62\) 52.7907 + 38.3547i 0.851463 + 0.618624i
\(63\) 35.4038 107.299i 0.561964 1.70317i
\(64\) −21.9608 + 15.9555i −0.343138 + 0.249304i
\(65\) −18.6634 16.4236i −0.287129 0.252671i
\(66\) −80.5529 41.2746i −1.22050 0.625373i
\(67\) −3.93744 + 1.27935i −0.0587677 + 0.0190948i −0.338253 0.941055i \(-0.609836\pi\)
0.279486 + 0.960150i \(0.409836\pi\)
\(68\) −15.5831 −0.229164
\(69\) 58.3007 29.5390i 0.844937 0.428101i
\(70\) −126.026 + 74.6874i −1.80037 + 1.06696i
\(71\) 51.8456 + 16.8457i 0.730220 + 0.237263i 0.650449 0.759550i \(-0.274581\pi\)
0.0797717 + 0.996813i \(0.474581\pi\)
\(72\) 0.243811 53.6337i 0.00338627 0.744913i
\(73\) 21.0676 + 28.9970i 0.288597 + 0.397220i 0.928558 0.371188i \(-0.121049\pi\)
−0.639961 + 0.768408i \(0.721049\pi\)
\(74\) 0.0805904i 0.00108906i
\(75\) 70.5549 + 25.4364i 0.940732 + 0.339151i
\(76\) −6.07208 −0.0798958
\(77\) −131.304 + 95.3981i −1.70525 + 1.23894i
\(78\) −5.52385 + 34.3704i −0.0708186 + 0.440647i
\(79\) 5.27573 16.2370i 0.0667813 0.205532i −0.912097 0.409974i \(-0.865538\pi\)
0.978879 + 0.204442i \(0.0655379\pi\)
\(80\) −65.0503 + 73.9216i −0.813129 + 0.924020i
\(81\) 65.0948 + 48.2044i 0.803640 + 0.595116i
\(82\) 176.287i 2.14985i
\(83\) −17.6925 54.4519i −0.213162 0.656046i −0.999279 0.0379682i \(-0.987911\pi\)
0.786117 0.618078i \(-0.212089\pi\)
\(84\) 48.4840 + 24.8428i 0.577191 + 0.295748i
\(85\) 52.5585 11.7988i 0.618335 0.138810i
\(86\) −59.5261 81.9306i −0.692164 0.952682i
\(87\) 73.2036 + 37.5089i 0.841421 + 0.431137i
\(88\) −45.2840 + 62.3281i −0.514591 + 0.708274i
\(89\) −44.4639 61.1993i −0.499595 0.687633i 0.482527 0.875881i \(-0.339719\pi\)
−0.982121 + 0.188248i \(0.939719\pi\)
\(90\) −22.5372 102.573i −0.250413 1.13970i
\(91\) 50.5006 + 36.6908i 0.554952 + 0.403196i
\(92\) 9.73774 + 29.9697i 0.105845 + 0.325757i
\(93\) 12.9335 + 82.8780i 0.139070 + 0.891161i
\(94\) 3.54736 + 10.9176i 0.0377378 + 0.116145i
\(95\) 20.4798 4.59749i 0.215577 0.0483946i
\(96\) 65.5274 + 10.5312i 0.682577 + 0.109701i
\(97\) −28.4310 9.23778i −0.293103 0.0952349i 0.158775 0.987315i \(-0.449246\pi\)
−0.451878 + 0.892080i \(0.649246\pi\)
\(98\) 205.066 148.989i 2.09251 1.52030i
\(99\) −35.4509 110.818i −0.358090 1.11938i
\(100\) −17.3628 + 31.7204i −0.173628 + 0.317204i
\(101\) 26.0891i 0.258308i 0.991625 + 0.129154i \(0.0412261\pi\)
−0.991625 + 0.129154i \(0.958774\pi\)
\(102\) −53.2137 53.4561i −0.521703 0.524079i
\(103\) −44.7560 14.5421i −0.434524 0.141185i 0.0835838 0.996501i \(-0.473363\pi\)
−0.518108 + 0.855315i \(0.673363\pi\)
\(104\) 28.1806 + 9.15644i 0.270967 + 0.0880427i
\(105\) −182.336 47.0795i −1.73653 0.448376i
\(106\) −1.23373 3.79702i −0.0116389 0.0358209i
\(107\) 149.068 1.39316 0.696581 0.717478i \(-0.254704\pi\)
0.696581 + 0.717478i \(0.254704\pi\)
\(108\) −27.8033 + 27.4267i −0.257438 + 0.253951i
\(109\) 120.472 + 87.5279i 1.10525 + 0.803008i 0.981908 0.189357i \(-0.0606402\pi\)
0.123338 + 0.992365i \(0.460640\pi\)
\(110\) −59.7839 + 138.501i −0.543490 + 1.25910i
\(111\) 0.0734205 0.0730875i 0.000661446 0.000658446i
\(112\) 145.324 200.022i 1.29754 1.78591i
\(113\) 47.3048 + 34.3689i 0.418626 + 0.304150i 0.777085 0.629396i \(-0.216698\pi\)
−0.358458 + 0.933546i \(0.616698\pi\)
\(114\) −20.7351 20.8296i −0.181887 0.182715i
\(115\) −55.5348 93.7081i −0.482912 0.814853i
\(116\) −23.3109 + 32.0847i −0.200956 + 0.276592i
\(117\) −36.3222 + 26.1382i −0.310446 + 0.223403i
\(118\) 111.363i 0.943757i
\(119\) −128.632 + 41.7952i −1.08094 + 0.351220i
\(120\) −89.2216 + 5.49188i −0.743513 + 0.0457656i
\(121\) −14.2548 + 43.8716i −0.117808 + 0.362575i
\(122\) 4.70813 14.4901i 0.0385912 0.118772i
\(123\) −160.604 + 159.875i −1.30572 + 1.29980i
\(124\) −40.4435 −0.326157
\(125\) 34.5436 120.132i 0.276349 0.961057i
\(126\) 80.3440 + 251.152i 0.637651 + 1.99327i
\(127\) −78.3016 107.773i −0.616548 0.848605i 0.380548 0.924761i \(-0.375735\pi\)
−0.997096 + 0.0761557i \(0.975735\pi\)
\(128\) 46.9215 144.410i 0.366574 1.12820i
\(129\) 20.6572 128.533i 0.160134 0.996381i
\(130\) 57.7666 + 5.40713i 0.444359 + 0.0415933i
\(131\) −201.121 + 65.3482i −1.53528 + 0.498841i −0.950068 0.312042i \(-0.898987\pi\)
−0.585208 + 0.810883i \(0.698987\pi\)
\(132\) 55.4279 8.64983i 0.419909 0.0655290i
\(133\) −50.1225 + 16.2858i −0.376861 + 0.122450i
\(134\) 5.67915 7.81668i 0.0423817 0.0583334i
\(135\) 73.0081 113.555i 0.540801 0.841151i
\(136\) −51.9406 + 37.7370i −0.381916 + 0.277478i
\(137\) 155.247 + 112.794i 1.13319 + 0.823312i 0.986156 0.165819i \(-0.0530267\pi\)
0.147036 + 0.989131i \(0.453027\pi\)
\(138\) −69.5548 + 135.745i −0.504020 + 0.983661i
\(139\) 82.6077 60.0180i 0.594300 0.431784i −0.249551 0.968362i \(-0.580283\pi\)
0.843851 + 0.536577i \(0.180283\pi\)
\(140\) 35.9834 83.3623i 0.257024 0.595445i
\(141\) −6.72923 + 13.1330i −0.0477250 + 0.0931417i
\(142\) −120.996 + 39.3138i −0.852081 + 0.276858i
\(143\) 64.2792 0.449505
\(144\) 103.528 + 143.864i 0.718941 + 0.999057i
\(145\) 54.3295 125.865i 0.374686 0.868031i
\(146\) −79.5535 25.8485i −0.544887 0.177045i
\(147\) 321.708 + 51.7034i 2.18849 + 0.351724i
\(148\) 0.0293596 + 0.0404101i 0.000198376 + 0.000273041i
\(149\) 114.565i 0.768892i −0.923148 0.384446i \(-0.874393\pi\)
0.923148 0.384446i \(-0.125607\pi\)
\(150\) −168.104 + 48.7586i −1.12069 + 0.325057i
\(151\) −163.992 −1.08604 −0.543019 0.839720i \(-0.682719\pi\)
−0.543019 + 0.839720i \(0.682719\pi\)
\(152\) −20.2390 + 14.7045i −0.133151 + 0.0967402i
\(153\) 0.440761 96.9588i 0.00288079 0.633717i
\(154\) 117.047 360.234i 0.760046 2.33918i
\(155\) 136.407 30.6219i 0.880044 0.197560i
\(156\) −9.75159 19.2466i −0.0625102 0.123376i
\(157\) 73.2155i 0.466341i −0.972436 0.233170i \(-0.925090\pi\)
0.972436 0.233170i \(-0.0749100\pi\)
\(158\) 12.3123 + 37.8934i 0.0779260 + 0.239831i
\(159\) 2.34034 4.56748i 0.0147191 0.0287263i
\(160\) 10.3087 110.132i 0.0644295 0.688327i
\(161\) 160.762 + 221.270i 0.998522 + 1.37435i
\(162\) −189.027 1.71862i −1.16683 0.0106087i
\(163\) 11.4612 15.7750i 0.0703141 0.0967790i −0.772412 0.635122i \(-0.780950\pi\)
0.842726 + 0.538343i \(0.180950\pi\)
\(164\) −64.2227 88.3950i −0.391602 0.538994i
\(165\) −180.397 + 71.1413i −1.09331 + 0.431159i
\(166\) 108.099 + 78.5384i 0.651198 + 0.473123i
\(167\) −28.1359 86.5934i −0.168478 0.518523i 0.830797 0.556575i \(-0.187885\pi\)
−0.999276 + 0.0380519i \(0.987885\pi\)
\(168\) 221.764 34.6075i 1.32002 0.205997i
\(169\) 44.5843 + 137.216i 0.263812 + 0.811931i
\(170\) −83.0483 + 94.3740i −0.488519 + 0.555141i
\(171\) 0.171746 37.7807i 0.00100436 0.220940i
\(172\) 59.6958 + 19.3963i 0.347069 + 0.112769i
\(173\) −35.0251 + 25.4472i −0.202457 + 0.147094i −0.684394 0.729112i \(-0.739933\pi\)
0.481937 + 0.876206i \(0.339933\pi\)
\(174\) −189.665 + 29.5983i −1.09003 + 0.170105i
\(175\) −58.2460 + 308.407i −0.332834 + 1.76233i
\(176\) 254.596i 1.44657i
\(177\) 101.456 100.995i 0.573196 0.570596i
\(178\) 167.901 + 54.5542i 0.943262 + 0.306485i
\(179\) −86.3556 28.0587i −0.482434 0.156752i 0.0576956 0.998334i \(-0.481625\pi\)
−0.540129 + 0.841582i \(0.681625\pi\)
\(180\) 48.6687 + 43.2221i 0.270382 + 0.240123i
\(181\) −34.0023 104.648i −0.187858 0.578168i 0.812128 0.583480i \(-0.198309\pi\)
−0.999986 + 0.00531154i \(0.998309\pi\)
\(182\) −145.679 −0.800433
\(183\) 17.4708 8.85186i 0.0954688 0.0483708i
\(184\) 105.033 + 76.3112i 0.570834 + 0.414735i
\(185\) −0.129620 0.114064i −0.000700649 0.000616565i
\(186\) −138.107 138.737i −0.742513 0.745896i
\(187\) −81.8642 + 112.676i −0.437777 + 0.602548i
\(188\) −5.75611 4.18206i −0.0306176 0.0222450i
\(189\) −155.944 + 300.966i −0.825101 + 1.59241i
\(190\) −32.3603 + 36.7735i −0.170318 + 0.193545i
\(191\) 57.8437 79.6151i 0.302847 0.416833i −0.630287 0.776362i \(-0.717063\pi\)
0.933134 + 0.359529i \(0.117063\pi\)
\(192\) 72.6431 36.8058i 0.378350 0.191697i
\(193\) 183.115i 0.948784i −0.880314 0.474392i \(-0.842668\pi\)
0.880314 0.474392i \(-0.157332\pi\)
\(194\) 66.3512 21.5588i 0.342017 0.111128i
\(195\) 47.4625 + 57.5310i 0.243398 + 0.295031i
\(196\) −48.5475 + 149.414i −0.247691 + 0.762316i
\(197\) −104.482 + 321.562i −0.530365 + 1.63229i 0.223092 + 0.974797i \(0.428385\pi\)
−0.753457 + 0.657497i \(0.771615\pi\)
\(198\) 218.949 + 160.601i 1.10580 + 0.811118i
\(199\) −12.6514 −0.0635749 −0.0317875 0.999495i \(-0.510120\pi\)
−0.0317875 + 0.999495i \(0.510120\pi\)
\(200\) 18.9436 + 147.775i 0.0947182 + 0.738874i
\(201\) 12.2717 1.91506i 0.0610531 0.00952767i
\(202\) −35.7878 49.2577i −0.177167 0.243850i
\(203\) −106.368 + 327.368i −0.523981 + 1.61265i
\(204\) 46.1571 + 7.41815i 0.226260 + 0.0363635i
\(205\) 283.537 + 249.510i 1.38311 + 1.21712i
\(206\) 104.450 33.9378i 0.507038 0.164747i
\(207\) −186.748 + 59.7408i −0.902163 + 0.288603i
\(208\) −93.1270 + 30.2588i −0.447726 + 0.145475i
\(209\) −31.8990 + 43.9052i −0.152627 + 0.210073i
\(210\) 408.841 161.231i 1.94686 0.767765i
\(211\) 293.037 212.904i 1.38880 1.00902i 0.392808 0.919621i \(-0.371504\pi\)
0.995995 0.0894038i \(-0.0284962\pi\)
\(212\) 2.00190 + 1.45447i 0.00944294 + 0.00686069i
\(213\) −145.547 74.5772i −0.683320 0.350128i
\(214\) −281.449 + 204.485i −1.31518 + 0.955537i
\(215\) −216.027 20.2207i −1.00477 0.0940499i
\(216\) −26.2538 + 158.747i −0.121545 + 0.734938i
\(217\) −333.844 + 108.473i −1.53845 + 0.499874i
\(218\) −347.524 −1.59415
\(219\) −48.5983 95.9179i −0.221910 0.437981i
\(220\) −20.4796 91.2275i −0.0930891 0.414671i
\(221\) 50.9448 + 16.5530i 0.230519 + 0.0749003i
\(222\) −0.0383640 + 0.238708i −0.000172811 + 0.00107526i
\(223\) −134.126 184.609i −0.601462 0.827842i 0.394379 0.918948i \(-0.370960\pi\)
−0.995841 + 0.0911062i \(0.970960\pi\)
\(224\) 277.737i 1.23990i
\(225\) −196.874 108.929i −0.874997 0.484129i
\(226\) −136.460 −0.603804
\(227\) 251.371 182.632i 1.10736 0.804545i 0.125115 0.992142i \(-0.460070\pi\)
0.982246 + 0.187598i \(0.0600701\pi\)
\(228\) 17.9855 + 2.89054i 0.0788836 + 0.0126778i
\(229\) 37.5038 115.425i 0.163772 0.504039i −0.835172 0.549989i \(-0.814632\pi\)
0.998944 + 0.0459508i \(0.0146317\pi\)
\(230\) 233.397 + 100.746i 1.01477 + 0.438026i
\(231\) 434.335 220.063i 1.88024 0.952653i
\(232\) 163.393i 0.704282i
\(233\) −124.270 382.465i −0.533350 1.64148i −0.747188 0.664612i \(-0.768597\pi\)
0.213839 0.976869i \(-0.431403\pi\)
\(234\) 32.7232 99.1753i 0.139843 0.423826i
\(235\) 22.5805 + 9.74690i 0.0960873 + 0.0414762i
\(236\) 40.5704 + 55.8404i 0.171909 + 0.236612i
\(237\) −23.3561 + 45.5824i −0.0985488 + 0.192331i
\(238\) 185.532 255.363i 0.779548 1.07296i
\(239\) 115.387 + 158.817i 0.482792 + 0.664507i 0.979038 0.203675i \(-0.0652887\pi\)
−0.496246 + 0.868182i \(0.665289\pi\)
\(240\) 227.868 187.989i 0.949449 0.783286i
\(241\) −291.933 212.102i −1.21134 0.880091i −0.215989 0.976396i \(-0.569298\pi\)
−0.995352 + 0.0963050i \(0.969298\pi\)
\(242\) −33.2672 102.386i −0.137468 0.423083i
\(243\) −169.863 173.769i −0.699025 0.715097i
\(244\) 2.91808 + 8.98093i 0.0119594 + 0.0368071i
\(245\) 50.6109 540.697i 0.206575 2.20693i
\(246\) 83.9193 522.161i 0.341135 2.12261i
\(247\) 19.8510 + 6.44998i 0.0803684 + 0.0261133i
\(248\) −134.803 + 97.9403i −0.543562 + 0.394921i
\(249\) 26.4839 + 169.708i 0.106361 + 0.681559i
\(250\) 99.5713 + 274.202i 0.398285 + 1.09681i
\(251\) 337.441i 1.34439i −0.740376 0.672193i \(-0.765353\pi\)
0.740376 0.672193i \(-0.234647\pi\)
\(252\) −131.783 96.6644i −0.522949 0.383589i
\(253\) 267.857 + 87.0319i 1.05872 + 0.344000i
\(254\) 295.676 + 96.0708i 1.16408 + 0.378231i
\(255\) −161.294 + 9.92819i −0.632527 + 0.0389341i
\(256\) 75.9506 + 233.752i 0.296682 + 0.913094i
\(257\) −190.928 −0.742911 −0.371455 0.928451i \(-0.621141\pi\)
−0.371455 + 0.928451i \(0.621141\pi\)
\(258\) 137.314 + 271.014i 0.532224 + 1.05044i
\(259\) 0.350735 + 0.254824i 0.00135419 + 0.000983875i
\(260\) −30.9355 + 18.3335i −0.118983 + 0.0705135i
\(261\) −198.973 145.949i −0.762348 0.559190i
\(262\) 290.086 399.270i 1.10720 1.52393i
\(263\) 221.916 + 161.231i 0.843787 + 0.613047i 0.923426 0.383776i \(-0.125377\pi\)
−0.0796388 + 0.996824i \(0.525377\pi\)
\(264\) 163.801 163.058i 0.620460 0.617646i
\(265\) −7.85322 3.38985i −0.0296348 0.0127919i
\(266\) 72.2940 99.5042i 0.271782 0.374076i
\(267\) 102.569 + 202.438i 0.384152 + 0.758196i
\(268\) 5.98844i 0.0223449i
\(269\) 132.545 43.0665i 0.492733 0.160099i −0.0521023 0.998642i \(-0.516592\pi\)
0.544835 + 0.838543i \(0.316592\pi\)
\(270\) 17.9265 + 314.548i 0.0663945 + 1.16499i
\(271\) −108.618 + 334.292i −0.400805 + 1.23355i 0.523543 + 0.851999i \(0.324610\pi\)
−0.924348 + 0.381551i \(0.875390\pi\)
\(272\) 65.5626 201.781i 0.241039 0.741842i
\(273\) −132.116 132.718i −0.483942 0.486147i
\(274\) −447.841 −1.63446
\(275\) 138.146 + 292.184i 0.502350 + 1.06249i
\(276\) −14.5764 93.4054i −0.0528131 0.338426i
\(277\) 234.264 + 322.437i 0.845719 + 1.16403i 0.984790 + 0.173750i \(0.0555884\pi\)
−0.139071 + 0.990282i \(0.544412\pi\)
\(278\) −73.6381 + 226.635i −0.264885 + 0.815233i
\(279\) 1.14392 251.641i 0.00410008 0.901938i
\(280\) −81.9377 364.996i −0.292635 1.30356i
\(281\) −167.897 + 54.5530i −0.597498 + 0.194139i −0.592124 0.805847i \(-0.701710\pi\)
−0.00537353 + 0.999986i \(0.501710\pi\)
\(282\) −5.31004 34.0266i −0.0188299 0.120662i
\(283\) −306.568 + 99.6099i −1.08328 + 0.351979i −0.795646 0.605762i \(-0.792868\pi\)
−0.287633 + 0.957741i \(0.592868\pi\)
\(284\) 46.3480 63.7925i 0.163197 0.224621i
\(285\) −62.8495 + 3.86859i −0.220525 + 0.0135740i
\(286\) −121.363 + 88.1752i −0.424345 + 0.308305i
\(287\) −767.214 557.414i −2.67322 1.94221i
\(288\) −189.078 62.3869i −0.656522 0.216621i
\(289\) 139.908 101.649i 0.484111 0.351727i
\(290\) 70.0779 + 312.166i 0.241648 + 1.07643i
\(291\) 79.8147 + 40.8964i 0.274277 + 0.140538i
\(292\) 49.3070 16.0208i 0.168860 0.0548658i
\(293\) 330.675 1.12858 0.564292 0.825575i \(-0.309149\pi\)
0.564292 + 0.825575i \(0.309149\pi\)
\(294\) −678.327 + 343.685i −2.30724 + 1.16900i
\(295\) −179.115 157.619i −0.607169 0.534303i
\(296\) 0.195719 + 0.0635929i 0.000661212 + 0.000214841i
\(297\) 52.2517 + 345.119i 0.175932 + 1.16202i
\(298\) 157.155 + 216.305i 0.527365 + 0.725855i
\(299\) 108.321i 0.362279i
\(300\) 66.5285 85.6903i 0.221762 0.285634i
\(301\) 544.787 1.80992
\(302\) 309.626 224.956i 1.02525 0.744888i
\(303\) 12.4194 77.2757i 0.0409880 0.255035i
\(304\) 25.5470 78.6254i 0.0840360 0.258636i
\(305\) −16.6420 28.0812i −0.0545638 0.0920697i
\(306\) 132.171 + 183.668i 0.431932 + 0.600223i
\(307\) 169.985i 0.553697i 0.960914 + 0.276849i \(0.0892901\pi\)
−0.960914 + 0.276849i \(0.910710\pi\)
\(308\) 72.5454 + 223.272i 0.235537 + 0.724908i
\(309\) 125.644 + 64.3790i 0.406615 + 0.208346i
\(310\) −215.538 + 244.932i −0.695284 + 0.790104i
\(311\) 269.449 + 370.864i 0.866394 + 1.19249i 0.980007 + 0.198964i \(0.0637577\pi\)
−0.113613 + 0.993525i \(0.536242\pi\)
\(312\) −79.1119 40.5363i −0.253564 0.129924i
\(313\) −187.842 + 258.542i −0.600133 + 0.826012i −0.995720 0.0924161i \(-0.970541\pi\)
0.395587 + 0.918428i \(0.370541\pi\)
\(314\) 100.434 + 138.235i 0.319852 + 0.440239i
\(315\) 517.665 + 226.248i 1.64338 + 0.718246i
\(316\) −19.9785 14.5153i −0.0632232 0.0459343i
\(317\) 75.8505 + 233.444i 0.239276 + 0.736415i 0.996525 + 0.0832897i \(0.0265427\pi\)
−0.757249 + 0.653126i \(0.773457\pi\)
\(318\) 1.84676 + 11.8340i 0.00580743 + 0.0372139i
\(319\) 109.533 + 337.107i 0.343362 + 1.05676i
\(320\) −69.1969 116.761i −0.216240 0.364878i
\(321\) −441.539 70.9620i −1.37551 0.221066i
\(322\) −607.055 197.244i −1.88526 0.612560i
\(323\) −36.5880 + 26.5827i −0.113276 + 0.0822995i
\(324\) 95.4092 68.0022i 0.294473 0.209883i
\(325\) 90.4574 85.2578i 0.278330 0.262332i
\(326\) 45.5060i 0.139589i
\(327\) −315.170 316.606i −0.963822 0.968214i
\(328\) −428.125 139.106i −1.30526 0.424104i
\(329\) −58.7309 19.0828i −0.178513 0.0580025i
\(330\) 243.011 381.779i 0.736397 1.15690i
\(331\) −46.4064 142.824i −0.140200 0.431493i 0.856162 0.516707i \(-0.172842\pi\)
−0.996363 + 0.0852145i \(0.972842\pi\)
\(332\) −82.8156 −0.249445
\(333\) −0.252263 + 0.181534i −0.000757547 + 0.000545146i
\(334\) 171.907 + 124.898i 0.514691 + 0.373945i
\(335\) −4.53416 20.1977i −0.0135348 0.0602915i
\(336\) −525.667 + 523.283i −1.56449 + 1.55739i
\(337\) 371.305 511.058i 1.10180 1.51649i 0.268816 0.963192i \(-0.413368\pi\)
0.832981 0.553301i \(-0.186632\pi\)
\(338\) −272.404 197.913i −0.805930 0.585542i
\(339\) −123.755 124.319i −0.365060 0.366724i
\(340\) 7.26140 77.5766i 0.0213571 0.228167i
\(341\) −212.465 + 292.433i −0.623065 + 0.857575i
\(342\) 51.5015 + 71.5676i 0.150589 + 0.209262i
\(343\) 748.394i 2.18191i
\(344\) 245.945 79.9123i 0.714956 0.232303i
\(345\) 119.885 + 303.999i 0.347493 + 0.881157i
\(346\) 31.2221 96.0916i 0.0902371 0.277721i
\(347\) 177.557 546.463i 0.511690 1.57482i −0.277534 0.960716i \(-0.589517\pi\)
0.789224 0.614105i \(-0.210483\pi\)
\(348\) 84.3202 83.9378i 0.242300 0.241201i
\(349\) 461.206 1.32151 0.660754 0.750603i \(-0.270237\pi\)
0.660754 + 0.750603i \(0.270237\pi\)
\(350\) −313.087 662.189i −0.894534 1.89197i
\(351\) 120.029 60.1303i 0.341962 0.171311i
\(352\) 168.106 + 231.379i 0.477575 + 0.657326i
\(353\) −54.2919 + 167.093i −0.153801 + 0.473352i −0.998037 0.0626196i \(-0.980055\pi\)
0.844236 + 0.535971i \(0.180055\pi\)
\(354\) −53.0131 + 329.857i −0.149754 + 0.931800i
\(355\) −108.021 + 250.250i −0.304284 + 0.704930i
\(356\) −104.064 + 33.8125i −0.292315 + 0.0949790i
\(357\) 400.904 62.5632i 1.12298 0.175247i
\(358\) 201.534 65.4823i 0.562944 0.182911i
\(359\) −271.386 + 373.531i −0.755950 + 1.04048i 0.241590 + 0.970379i \(0.422331\pi\)
−0.997540 + 0.0700981i \(0.977669\pi\)
\(360\) 266.888 + 26.2059i 0.741355 + 0.0727942i
\(361\) 277.798 201.832i 0.769525 0.559092i
\(362\) 207.750 + 150.939i 0.573895 + 0.416959i
\(363\) 63.1070 123.162i 0.173848 0.339288i
\(364\) 73.0471 53.0718i 0.200679 0.145802i
\(365\) −154.171 + 91.3675i −0.422387 + 0.250322i
\(366\) −20.8433 + 40.6784i −0.0569489 + 0.111143i
\(367\) 375.313 121.946i 1.02265 0.332279i 0.250770 0.968047i \(-0.419316\pi\)
0.771881 + 0.635768i \(0.219316\pi\)
\(368\) −429.037 −1.16586
\(369\) 551.813 397.095i 1.49543 1.07614i
\(370\) 0.401198 + 0.0375533i 0.00108432 + 0.000101496i
\(371\) 20.4259 + 6.63677i 0.0550562 + 0.0178889i
\(372\) 119.793 + 19.2526i 0.322025 + 0.0517543i
\(373\) −203.237 279.732i −0.544871 0.749951i 0.444434 0.895812i \(-0.353405\pi\)
−0.989305 + 0.145861i \(0.953405\pi\)
\(374\) 325.037i 0.869082i
\(375\) −159.505 + 339.386i −0.425347 + 0.905030i
\(376\) −29.3133 −0.0779610
\(377\) 110.290 80.1304i 0.292547 0.212548i
\(378\) −118.420 782.158i −0.313281 2.06920i
\(379\) −115.909 + 356.732i −0.305829 + 0.941245i 0.673537 + 0.739153i \(0.264774\pi\)
−0.979367 + 0.202092i \(0.935226\pi\)
\(380\) 2.82946 30.2283i 0.00744594 0.0795481i
\(381\) 180.625 + 356.497i 0.474081 + 0.935687i
\(382\) 229.665i 0.601217i
\(383\) −39.2793 120.889i −0.102557 0.315638i 0.886592 0.462552i \(-0.153066\pi\)
−0.989149 + 0.146914i \(0.953066\pi\)
\(384\) −207.725 + 405.403i −0.540952 + 1.05574i
\(385\) −413.730 698.118i −1.07462 1.81329i
\(386\) 251.189 + 345.732i 0.650748 + 0.895678i
\(387\) −122.373 + 370.880i −0.316209 + 0.958347i
\(388\) −25.4162 + 34.9824i −0.0655056 + 0.0901607i
\(389\) −157.269 216.462i −0.404291 0.556458i 0.557524 0.830161i \(-0.311752\pi\)
−0.961814 + 0.273703i \(0.911752\pi\)
\(390\) −168.530 43.5149i −0.432129 0.111577i
\(391\) 189.879 + 137.955i 0.485624 + 0.352826i
\(392\) 200.014 + 615.581i 0.510240 + 1.57036i
\(393\) 626.827 97.8197i 1.59498 0.248905i
\(394\) −243.836 750.450i −0.618873 1.90470i
\(395\) 78.3734 + 33.8299i 0.198414 + 0.0856454i
\(396\) −168.295 0.765044i −0.424987 0.00193193i
\(397\) −68.6142 22.2941i −0.172832 0.0561564i 0.221323 0.975201i \(-0.428963\pi\)
−0.394155 + 0.919044i \(0.628963\pi\)
\(398\) 23.8866 17.3546i 0.0600165 0.0436045i
\(399\) 156.215 24.3782i 0.391517 0.0610983i
\(400\) −337.687 358.282i −0.844218 0.895704i
\(401\) 255.533i 0.637239i 0.947883 + 0.318620i \(0.103219\pi\)
−0.947883 + 0.318620i \(0.896781\pi\)
\(402\) −20.5426 + 20.4494i −0.0511010 + 0.0508693i
\(403\) 132.219 + 42.9605i 0.328086 + 0.106602i
\(404\) 35.8898 + 11.6613i 0.0888362 + 0.0288646i
\(405\) −270.306 + 301.595i −0.667422 + 0.744680i
\(406\) −248.238 763.999i −0.611425 1.88177i
\(407\) 0.446429 0.00109688
\(408\) 171.812 87.0511i 0.421107 0.213361i
\(409\) −577.930 419.891i −1.41303 1.02663i −0.992873 0.119178i \(-0.961974\pi\)
−0.420160 0.907450i \(-0.638026\pi\)
\(410\) −877.600 82.1460i −2.14049 0.200356i
\(411\) −406.147 407.998i −0.988193 0.992695i
\(412\) −40.0101 + 55.0691i −0.0971118 + 0.133663i
\(413\) 484.660 + 352.126i 1.17351 + 0.852606i
\(414\) 270.640 368.966i 0.653721 0.891221i
\(415\) 279.319 62.7040i 0.673057 0.151094i
\(416\) 64.6550 88.9900i 0.155421 0.213918i
\(417\) −273.254 + 138.449i −0.655286 + 0.332011i
\(418\) 126.653i 0.302997i
\(419\) −4.75627 + 1.54540i −0.0113515 + 0.00368832i −0.314687 0.949195i \(-0.601900\pi\)
0.303336 + 0.952884i \(0.401900\pi\)
\(420\) −146.266 + 229.789i −0.348252 + 0.547116i
\(421\) −34.6754 + 106.720i −0.0823643 + 0.253491i −0.983755 0.179515i \(-0.942547\pi\)
0.901391 + 0.433006i \(0.142547\pi\)
\(422\) −261.219 + 803.950i −0.619003 + 1.90509i
\(423\) 26.1837 35.6964i 0.0619000 0.0843886i
\(424\) 10.1948 0.0240444
\(425\) 34.2462 + 267.147i 0.0805793 + 0.628580i
\(426\) 377.103 58.8489i 0.885217 0.138143i
\(427\) 48.1751 + 66.3073i 0.112822 + 0.155287i
\(428\) 66.6306 205.068i 0.155679 0.479131i
\(429\) −190.394 30.5993i −0.443810 0.0713270i
\(430\) 435.608 258.157i 1.01304 0.600366i
\(431\) 418.838 136.089i 0.971783 0.315751i 0.220247 0.975444i \(-0.429314\pi\)
0.751535 + 0.659693i \(0.229314\pi\)
\(432\) −238.163 475.407i −0.551303 1.10048i
\(433\) 701.374 227.890i 1.61980 0.526305i 0.647906 0.761720i \(-0.275645\pi\)
0.971895 + 0.235415i \(0.0756449\pi\)
\(434\) 481.519 662.754i 1.10949 1.52708i
\(435\) −220.840 + 346.947i −0.507677 + 0.797579i
\(436\) 174.257 126.605i 0.399673 0.290380i
\(437\) 73.9877 + 53.7552i 0.169308 + 0.123010i
\(438\) 223.332 + 114.433i 0.509890 + 0.261264i
\(439\) −150.664 + 109.464i −0.343199 + 0.249349i −0.746010 0.665934i \(-0.768033\pi\)
0.402811 + 0.915283i \(0.368033\pi\)
\(440\) −289.183 254.478i −0.657234 0.578360i
\(441\) −928.284 306.290i −2.10495 0.694535i
\(442\) −118.893 + 38.6307i −0.268989 + 0.0873998i
\(443\) −474.687 −1.07153 −0.535764 0.844368i \(-0.679976\pi\)
−0.535764 + 0.844368i \(0.679976\pi\)
\(444\) −0.0677263 0.133671i −0.000152537 0.000301060i
\(445\) 325.384 192.834i 0.731200 0.433336i
\(446\) 506.475 + 164.564i 1.13559 + 0.368977i
\(447\) −54.5371 + 339.340i −0.122007 + 0.759150i
\(448\) 200.311 + 275.704i 0.447122 + 0.615411i
\(449\) 211.075i 0.470100i −0.971983 0.235050i \(-0.924475\pi\)
0.971983 0.235050i \(-0.0755254\pi\)
\(450\) 521.133 64.3988i 1.15807 0.143109i
\(451\) −976.541 −2.16528
\(452\) 68.4244 49.7133i 0.151381 0.109985i
\(453\) 485.742 + 78.0662i 1.07228 + 0.172332i
\(454\) −224.077 + 689.637i −0.493561 + 1.51902i
\(455\) −206.188 + 234.307i −0.453160 + 0.514961i
\(456\) 66.9477 33.9201i 0.146815 0.0743862i
\(457\) 353.601i 0.773743i −0.922134 0.386872i \(-0.873556\pi\)
0.922134 0.386872i \(-0.126444\pi\)
\(458\) 87.5251 + 269.374i 0.191103 + 0.588154i
\(459\) −47.4615 + 286.981i −0.103402 + 0.625231i
\(460\) −153.734 + 34.5116i −0.334204 + 0.0750252i
\(461\) −175.509 241.567i −0.380713 0.524007i 0.575060 0.818111i \(-0.304979\pi\)
−0.955773 + 0.294104i \(0.904979\pi\)
\(462\) −518.177 + 1011.29i −1.12160 + 2.18894i
\(463\) 305.117 419.957i 0.659000 0.907035i −0.340448 0.940263i \(-0.610579\pi\)
0.999448 + 0.0332279i \(0.0105787\pi\)
\(464\) −317.379 436.835i −0.684007 0.941454i
\(465\) −418.613 + 25.7670i −0.900243 + 0.0554129i
\(466\) 759.277 + 551.647i 1.62935 + 1.18379i
\(467\) −131.808 405.664i −0.282244 0.868659i −0.987211 0.159419i \(-0.949038\pi\)
0.704967 0.709240i \(-0.250962\pi\)
\(468\) 19.7220 + 61.6503i 0.0421411 + 0.131732i
\(469\) 16.0615 + 49.4321i 0.0342462 + 0.105399i
\(470\) −56.0036 + 12.5722i −0.119157 + 0.0267494i
\(471\) −34.8533 + 216.864i −0.0739985 + 0.460433i
\(472\) 270.453 + 87.8754i 0.572993 + 0.186177i
\(473\) 453.853 329.744i 0.959521 0.697133i
\(474\) −18.4303 118.101i −0.0388824 0.249158i
\(475\) 13.3443 + 104.096i 0.0280932 + 0.219149i
\(476\) 195.637i 0.411001i
\(477\) −9.10636 + 12.4148i −0.0190909 + 0.0260267i
\(478\) −435.715 141.573i −0.911539 0.296177i
\(479\) 280.502 + 91.1407i 0.585600 + 0.190273i 0.586808 0.809726i \(-0.300384\pi\)
−0.00120777 + 0.999999i \(0.500384\pi\)
\(480\) −82.9614 + 321.304i −0.172836 + 0.669383i
\(481\) −0.0530582 0.163296i −0.000110308 0.000339493i
\(482\) 842.137 1.74717
\(483\) −370.843 731.928i −0.767791 1.51538i
\(484\) 53.9810 + 39.2195i 0.111531 + 0.0810320i
\(485\) 59.2361 137.232i 0.122136 0.282952i
\(486\) 559.079 + 95.0744i 1.15037 + 0.195626i
\(487\) −389.881 + 536.625i −0.800576 + 1.10190i 0.192133 + 0.981369i \(0.438459\pi\)
−0.992710 + 0.120530i \(0.961541\pi\)
\(488\) 31.4751 + 22.8680i 0.0644981 + 0.0468606i
\(489\) −41.4574 + 41.2694i −0.0847800 + 0.0843955i
\(490\) 646.147 + 1090.29i 1.31867 + 2.22509i
\(491\) −315.408 + 434.122i −0.642379 + 0.884158i −0.998740 0.0501900i \(-0.984017\pi\)
0.356361 + 0.934348i \(0.384017\pi\)
\(492\) 148.148 + 292.398i 0.301113 + 0.594304i
\(493\) 295.382i 0.599152i
\(494\) −46.3276 + 15.0527i −0.0937805 + 0.0304711i
\(495\) 568.200 124.844i 1.14788 0.252211i
\(496\) 170.157 523.690i 0.343059 1.05583i
\(497\) 211.487 650.889i 0.425527 1.30964i
\(498\) −282.801 284.089i −0.567873 0.570460i
\(499\) −791.222 −1.58562 −0.792808 0.609472i \(-0.791382\pi\)
−0.792808 + 0.609472i \(0.791382\pi\)
\(500\) −149.821 101.217i −0.299642 0.202434i
\(501\) 42.1166 + 269.882i 0.0840651 + 0.538688i
\(502\) 462.885 + 637.107i 0.922082 + 1.26914i
\(503\) 135.778 417.883i 0.269937 0.830781i −0.720578 0.693374i \(-0.756123\pi\)
0.990515 0.137407i \(-0.0438767\pi\)
\(504\) −673.338 3.06090i −1.33599 0.00607321i
\(505\) −129.878 12.1570i −0.257184 0.0240732i
\(506\) −625.115 + 203.112i −1.23540 + 0.401407i
\(507\) −66.7382 427.657i −0.131633 0.843505i
\(508\) −183.259 + 59.5443i −0.360745 + 0.117213i
\(509\) 311.605 428.888i 0.612191 0.842609i −0.384564 0.923098i \(-0.625648\pi\)
0.996755 + 0.0804893i \(0.0256483\pi\)
\(510\) 290.914 240.001i 0.570419 0.470590i
\(511\) 364.040 264.490i 0.712406 0.517593i
\(512\) 27.3195 + 19.8488i 0.0533584 + 0.0387671i
\(513\) −18.4937 + 111.824i −0.0360501 + 0.217981i
\(514\) 360.483 261.906i 0.701328 0.509545i
\(515\) 93.2493 216.030i 0.181067 0.419475i
\(516\) −167.585 85.8692i −0.324777 0.166413i
\(517\) −60.4781 + 19.6505i −0.116979 + 0.0380088i
\(518\) −1.01176 −0.00195321
\(519\) 115.858 58.7012i 0.223233 0.113104i
\(520\) −58.7145 + 136.023i −0.112912 + 0.261583i
\(521\) −363.355 118.061i −0.697419 0.226605i −0.0612134 0.998125i \(-0.519497\pi\)
−0.636206 + 0.771519i \(0.719497\pi\)
\(522\) 575.877 + 2.61786i 1.10321 + 0.00501505i
\(523\) 66.4150 + 91.4124i 0.126988 + 0.174785i 0.867777 0.496953i \(-0.165548\pi\)
−0.740789 + 0.671738i \(0.765548\pi\)
\(524\) 305.885i 0.583749i
\(525\) 319.337 885.772i 0.608262 1.68718i
\(526\) −640.159 −1.21703
\(527\) −243.697 + 177.056i −0.462422 + 0.335970i
\(528\) −121.197 + 754.110i −0.229540 + 1.42824i
\(529\) −16.8065 + 51.7251i −0.0317703 + 0.0977790i
\(530\) 19.4774 4.37246i 0.0367497 0.00824992i
\(531\) −348.588 + 250.851i −0.656475 + 0.472413i
\(532\) 76.2312i 0.143292i
\(533\) 116.062 + 357.202i 0.217753 + 0.670174i
\(534\) −471.350 241.516i −0.882679 0.452277i
\(535\) −69.4626 + 742.098i −0.129837 + 1.38710i
\(536\) 14.5019 + 19.9602i 0.0270559 + 0.0372392i
\(537\) 242.428 + 124.218i 0.451448 + 0.231318i
\(538\) −191.176 + 263.131i −0.355346 + 0.489091i
\(539\) 825.322 + 1135.96i 1.53121 + 2.10753i
\(540\) −123.581 151.192i −0.228853 0.279984i
\(541\) −53.3470 38.7589i −0.0986082 0.0716431i 0.537389 0.843335i \(-0.319411\pi\)
−0.635997 + 0.771692i \(0.719411\pi\)
\(542\) −253.489 780.160i −0.467692 1.43941i
\(543\) 50.8981 + 326.154i 0.0937350 + 0.600652i
\(544\) 73.6496 + 226.670i 0.135385 + 0.416673i
\(545\) −491.872 + 558.951i −0.902517 + 1.02560i
\(546\) 431.499 + 69.3485i 0.790291 + 0.127012i
\(547\) −807.148 262.258i −1.47559 0.479448i −0.542798 0.839863i \(-0.682635\pi\)
−0.932792 + 0.360415i \(0.882635\pi\)
\(548\) 224.559 163.152i 0.409779 0.297722i
\(549\) −55.9622 + 17.9024i −0.101935 + 0.0326090i
\(550\) −661.632 362.157i −1.20297 0.658467i
\(551\) 115.098i 0.208889i
\(552\) −274.781 276.033i −0.497792 0.500060i
\(553\) −203.845 66.2334i −0.368617 0.119771i
\(554\) −884.607 287.426i −1.59676 0.518820i
\(555\) 0.329635 + 0.399562i 0.000593936 + 0.000719931i
\(556\) −45.6406 140.467i −0.0820874 0.252639i
\(557\) −309.269 −0.555241 −0.277621 0.960691i \(-0.589546\pi\)
−0.277621 + 0.960691i \(0.589546\pi\)
\(558\) 343.029 + 476.681i 0.614747 + 0.854266i
\(559\) −174.555 126.822i −0.312264 0.226873i
\(560\) 928.039 + 816.665i 1.65721 + 1.45833i
\(561\) 296.119 294.776i 0.527842 0.525448i
\(562\) 242.165 333.312i 0.430899 0.593082i
\(563\) −426.536 309.897i −0.757614 0.550438i 0.140564 0.990072i \(-0.455108\pi\)
−0.898177 + 0.439633i \(0.855108\pi\)
\(564\) 15.0587 + 15.1273i 0.0266999 + 0.0268215i
\(565\) −193.140 + 219.479i −0.341840 + 0.388459i
\(566\) 442.177 608.604i 0.781231 1.07527i
\(567\) 605.176 817.224i 1.06733 1.44131i
\(568\) 324.867i 0.571949i
\(569\) −619.336 + 201.235i −1.08846 + 0.353663i −0.797653 0.603117i \(-0.793925\pi\)
−0.290811 + 0.956780i \(0.593925\pi\)
\(570\) 113.357 93.5181i 0.198871 0.164067i
\(571\) −179.914 + 553.718i −0.315086 + 0.969734i 0.660634 + 0.750708i \(0.270288\pi\)
−0.975719 + 0.219025i \(0.929712\pi\)
\(572\) 28.7315 88.4266i 0.0502300 0.154592i
\(573\) −209.232 + 208.283i −0.365152 + 0.363496i
\(574\) 2213.18 3.85571
\(575\) 492.379 232.800i 0.856312 0.404869i
\(576\) −232.689 + 74.4376i −0.403974 + 0.129232i
\(577\) 135.871 + 187.010i 0.235478 + 0.324107i 0.910359 0.413819i \(-0.135805\pi\)
−0.674881 + 0.737926i \(0.735805\pi\)
\(578\) −124.717 + 383.838i −0.215773 + 0.664080i
\(579\) −87.1696 + 542.386i −0.150552 + 0.936763i
\(580\) −148.863 130.998i −0.256660 0.225859i
\(581\) −683.609 + 222.118i −1.17661 + 0.382303i
\(582\) −206.794 + 32.2714i −0.355317 + 0.0554491i
\(583\) 21.0335 6.83420i 0.0360781 0.0117225i
\(584\) 125.549 172.804i 0.214982 0.295897i
\(585\) −113.197 193.000i −0.193499 0.329915i
\(586\) −624.333 + 453.604i −1.06541 + 0.774069i
\(587\) 443.896 + 322.509i 0.756212 + 0.549420i 0.897746 0.440513i \(-0.145204\pi\)
−0.141534 + 0.989933i \(0.545204\pi\)
\(588\) 214.924 419.452i 0.365517 0.713354i
\(589\) −94.9581 + 68.9911i −0.161219 + 0.117133i
\(590\) 554.393 + 51.8929i 0.939650 + 0.0879540i
\(591\) 462.550 902.726i 0.782656 1.52746i
\(592\) −0.646781 + 0.210152i −0.00109254 + 0.000354986i
\(593\) 1005.47 1.69557 0.847783 0.530343i \(-0.177937\pi\)
0.847783 + 0.530343i \(0.177937\pi\)
\(594\) −572.072 579.927i −0.963084 0.976308i
\(595\) −148.127 659.838i −0.248952 1.10897i
\(596\) −157.603 51.2082i −0.264434 0.0859199i
\(597\) 37.4734 + 6.02254i 0.0627695 + 0.0100880i
\(598\) 148.590 + 204.517i 0.248478 + 0.342001i
\(599\) 288.607i 0.481814i 0.970548 + 0.240907i \(0.0774449\pi\)
−0.970548 + 0.240907i \(0.922555\pi\)
\(600\) 14.2354 446.726i 0.0237257 0.744543i
\(601\) 265.405 0.441605 0.220802 0.975319i \(-0.429132\pi\)
0.220802 + 0.975319i \(0.429132\pi\)
\(602\) −1028.59 + 747.312i −1.70862 + 1.24138i
\(603\) −37.2602 0.169380i −0.0617914 0.000280895i
\(604\) −73.3011 + 225.598i −0.121359 + 0.373506i
\(605\) −211.761 91.4068i −0.350018 0.151086i
\(606\) 82.5546 + 162.937i 0.136229 + 0.268873i
\(607\) 357.546i 0.589038i −0.955646 0.294519i \(-0.904841\pi\)
0.955646 0.294519i \(-0.0951595\pi\)
\(608\) 28.6981 + 88.3237i 0.0472008 + 0.145269i
\(609\) 470.901 919.025i 0.773236 1.50907i
\(610\) 69.9415 + 30.1903i 0.114658 + 0.0494923i
\(611\) 14.3757 + 19.7864i 0.0235281 + 0.0323837i
\(612\) −133.186 43.9450i −0.217624 0.0718056i
\(613\) −201.824 + 277.787i −0.329240 + 0.453160i −0.941260 0.337682i \(-0.890357\pi\)
0.612020 + 0.790842i \(0.290357\pi\)
\(614\) −233.178 320.941i −0.379768 0.522706i
\(615\) −721.059 874.021i −1.17245 1.42117i
\(616\) 782.490 + 568.512i 1.27028 + 0.922910i
\(617\) −47.6139 146.541i −0.0771701 0.237505i 0.905028 0.425351i \(-0.139849\pi\)
−0.982198 + 0.187846i \(0.939849\pi\)
\(618\) −325.535 + 50.8015i −0.526756 + 0.0822031i
\(619\) −321.394 989.150i −0.519216 1.59798i −0.775479 0.631374i \(-0.782491\pi\)
0.256263 0.966607i \(-0.417509\pi\)
\(620\) 18.8458 201.337i 0.0303964 0.324738i
\(621\) 581.584 88.0530i 0.936528 0.141792i
\(622\) −1017.47 330.595i −1.63580 0.531504i
\(623\) −768.319 + 558.216i −1.23326 + 0.896014i
\(624\) 290.245 45.2944i 0.465137 0.0725871i
\(625\) 581.950 + 227.945i 0.931120 + 0.364713i
\(626\) 745.814i 1.19140i
\(627\) 115.385 114.862i 0.184027 0.183192i
\(628\) −100.720 32.7259i −0.160382 0.0521113i
\(629\) 0.353819 + 0.114963i 0.000562511 + 0.000182771i
\(630\) −1287.74 + 282.940i −2.04402 + 0.449111i
\(631\) 271.623 + 835.969i 0.430464 + 1.32483i 0.897664 + 0.440681i \(0.145263\pi\)
−0.467200 + 0.884152i \(0.654737\pi\)
\(632\) −101.742 −0.160984
\(633\) −969.324 + 491.123i −1.53132 + 0.775866i
\(634\) −463.437 336.707i −0.730973 0.531083i
\(635\) 573.006 339.584i 0.902372 0.534778i
\(636\) −5.23724 5.26110i −0.00823465 0.00827217i
\(637\) 317.425 436.898i 0.498313 0.685869i
\(638\) −669.231 486.224i −1.04895 0.762107i
\(639\) 395.608 + 290.183i 0.619105 + 0.454120i
\(640\) 697.041 + 300.878i 1.08913 + 0.470122i
\(641\) 305.155 420.009i 0.476060 0.655241i −0.501682 0.865052i \(-0.667285\pi\)
0.977742 + 0.209812i \(0.0672851\pi\)
\(642\) 930.992 471.702i 1.45014 0.734738i
\(643\) 702.045i 1.09183i −0.837842 0.545914i \(-0.816183\pi\)
0.837842 0.545914i \(-0.183817\pi\)
\(644\) 376.250 122.251i 0.584240 0.189831i
\(645\) 630.243 + 162.730i 0.977121 + 0.252295i
\(646\) 32.6152 100.379i 0.0504880 0.155386i
\(647\) 95.5712 294.138i 0.147714 0.454618i −0.849636 0.527370i \(-0.823178\pi\)
0.997350 + 0.0727520i \(0.0231782\pi\)
\(648\) 153.333 457.708i 0.236625 0.706340i
\(649\) 616.895 0.950532
\(650\) −53.8360 + 285.056i −0.0828246 + 0.438548i
\(651\) 1040.48 162.373i 1.59828 0.249420i
\(652\) −16.5781 22.8179i −0.0254266 0.0349967i
\(653\) −40.3685 + 124.241i −0.0618200 + 0.190263i −0.977197 0.212336i \(-0.931893\pi\)
0.915377 + 0.402598i \(0.131893\pi\)
\(654\) 1029.36 + 165.434i 1.57395 + 0.252958i
\(655\) −231.601 1031.68i −0.353589 1.57508i
\(656\) 1414.80 459.697i 2.15671 0.700757i
\(657\) 98.2873 + 307.243i 0.149600 + 0.467645i
\(658\) 137.064 44.5348i 0.208304 0.0676821i
\(659\) −543.472 + 748.024i −0.824691 + 1.13509i 0.164197 + 0.986428i \(0.447497\pi\)
−0.988888 + 0.148663i \(0.952503\pi\)
\(660\) 17.2327 + 279.964i 0.0261101 + 0.424188i
\(661\) −723.767 + 525.847i −1.09496 + 0.795533i −0.980230 0.197864i \(-0.936600\pi\)
−0.114728 + 0.993397i \(0.536600\pi\)
\(662\) 283.537 + 206.002i 0.428304 + 0.311181i
\(663\) −143.018 73.2813i −0.215714 0.110530i
\(664\) −276.035 + 200.551i −0.415715 + 0.302035i
\(665\) −57.7186 257.111i −0.0867949 0.386633i
\(666\) 0.227268 0.688788i 0.000341243 0.00103422i
\(667\) 568.082 184.581i 0.851697 0.276733i
\(668\) −131.700 −0.197155
\(669\) 309.400 + 610.658i 0.462481 + 0.912793i
\(670\) 36.2669 + 31.9146i 0.0541298 + 0.0476337i
\(671\) 80.2679 + 26.0806i 0.119624 + 0.0388683i
\(672\) 132.213 822.655i 0.196746 1.22419i
\(673\) −157.836 217.242i −0.234526 0.322797i 0.675491 0.737368i \(-0.263932\pi\)
−0.910017 + 0.414571i \(0.863932\pi\)
\(674\) 1474.25i 2.18731i
\(675\) 531.286 + 416.366i 0.787090 + 0.616839i
\(676\) 208.692 0.308716
\(677\) −674.872 + 490.323i −0.996857 + 0.724259i −0.961412 0.275113i \(-0.911285\pi\)
−0.0354451 + 0.999372i \(0.511285\pi\)
\(678\) 404.193 + 64.9599i 0.596154 + 0.0958110i
\(679\) −115.975 + 356.933i −0.170802 + 0.525674i
\(680\) −163.661 276.157i −0.240678 0.406114i
\(681\) −831.498 + 421.291i −1.22100 + 0.618636i
\(682\) 843.580i 1.23692i
\(683\) −244.142 751.391i −0.357455 1.10013i −0.954572 0.297980i \(-0.903687\pi\)
0.597117 0.802154i \(-0.296313\pi\)
\(684\) −51.8968 17.1235i −0.0758724 0.0250343i
\(685\) −633.856 + 720.299i −0.925338 + 1.05153i
\(686\) −1026.61 1413.01i −1.49652 2.05978i
\(687\) −166.032 + 324.034i −0.241677 + 0.471665i
\(688\) −502.314 + 691.376i −0.730107 + 1.00491i
\(689\) −4.99968 6.88147i −0.00725643 0.00998762i
\(690\) −643.361 409.515i −0.932408 0.593499i
\(691\) −760.429 552.484i −1.10048 0.799543i −0.119339 0.992854i \(-0.538078\pi\)
−0.981138 + 0.193310i \(0.938078\pi\)
\(692\) 19.3513 + 59.5572i 0.0279643 + 0.0860653i
\(693\) −1391.25 + 445.064i −2.00758 + 0.642228i
\(694\) 414.375 + 1275.32i 0.597082 + 1.83763i
\(695\) 260.291 + 439.208i 0.374519 + 0.631954i
\(696\) 77.7813 483.970i 0.111755 0.695359i
\(697\) −773.962 251.475i −1.11042 0.360797i
\(698\) −870.783 + 632.661i −1.24754 + 0.906390i
\(699\) 186.020 + 1192.02i 0.266124 + 1.70532i
\(700\) 398.230 + 217.979i 0.568900 + 0.311398i
\(701\) 959.479i 1.36873i 0.729140 + 0.684365i \(0.239920\pi\)
−0.729140 + 0.684365i \(0.760080\pi\)
\(702\) −144.137 + 278.179i −0.205323 + 0.396266i
\(703\) 0.137868 + 0.0447961i 0.000196114 + 6.37213e-5i
\(704\) 333.752 + 108.443i 0.474079 + 0.154038i
\(705\) −62.2434 39.6194i −0.0882885 0.0561977i
\(706\) −126.704 389.956i −0.179468 0.552346i
\(707\) 327.532 0.463271
\(708\) −93.5872 184.712i −0.132185 0.260892i
\(709\) 394.579 + 286.678i 0.556529 + 0.404342i 0.830187 0.557485i \(-0.188234\pi\)
−0.273658 + 0.961827i \(0.588234\pi\)
\(710\) −139.332 620.664i −0.196243 0.874175i
\(711\) 90.8794 123.896i 0.127819 0.174257i
\(712\) −264.977 + 364.709i −0.372158 + 0.512232i
\(713\) 492.799 + 358.040i 0.691163 + 0.502160i
\(714\) −671.108 + 668.064i −0.939927 + 0.935664i
\(715\) −29.9527 + 319.997i −0.0418919 + 0.447549i
\(716\) −77.1985 + 106.255i −0.107819 + 0.148400i
\(717\) −266.173 525.343i −0.371232 0.732696i
\(718\) 1077.52i 1.50073i
\(719\) 9.24954 3.00536i 0.0128644 0.00417991i −0.302578 0.953125i \(-0.597847\pi\)
0.315442 + 0.948945i \(0.397847\pi\)
\(720\) −764.432 + 448.347i −1.06171 + 0.622704i
\(721\) −182.567 + 561.883i −0.253213 + 0.779311i
\(722\) −247.635 + 762.141i −0.342984 + 1.05560i
\(723\) 763.735 + 767.215i 1.05634 + 1.06115i
\(724\) −159.159 −0.219834
\(725\) 601.267 + 329.115i 0.829334 + 0.453952i
\(726\) 49.7977 + 319.103i 0.0685919 + 0.439536i
\(727\) 542.782 + 747.076i 0.746606 + 1.02761i 0.998211 + 0.0597846i \(0.0190414\pi\)
−0.251606 + 0.967830i \(0.580959\pi\)
\(728\) 114.953 353.790i 0.157903 0.485975i
\(729\) 420.413 + 595.562i 0.576698 + 0.816957i
\(730\) 165.750 383.992i 0.227055 0.526016i
\(731\) 444.618 144.465i 0.608232 0.197627i
\(732\) −4.36808 27.9906i −0.00596732 0.0382385i
\(733\) −527.602 + 171.428i −0.719784 + 0.233872i −0.645929 0.763397i \(-0.723530\pi\)
−0.0738544 + 0.997269i \(0.523530\pi\)
\(734\) −541.331 + 745.078i −0.737508 + 1.01509i
\(735\) −407.301 + 1577.45i −0.554151 + 2.14619i
\(736\) 389.912 283.288i 0.529772 0.384902i
\(737\) 43.3004 + 31.4596i 0.0587522 + 0.0426860i
\(738\) −497.136 + 1506.69i −0.673626 + 2.04158i
\(739\) 1100.89 799.845i 1.48970 1.08233i 0.515440 0.856925i \(-0.327628\pi\)
0.974264 0.225408i \(-0.0723717\pi\)
\(740\) −0.214852 + 0.127329i −0.000290340 + 0.000172066i
\(741\) −55.7280 28.5546i −0.0752065 0.0385352i
\(742\) −47.6692 + 15.4887i −0.0642442 + 0.0208742i
\(743\) −124.104 −0.167031 −0.0835155 0.996506i \(-0.526615\pi\)
−0.0835155 + 0.996506i \(0.526615\pi\)
\(744\) 445.909 225.927i 0.599340 0.303665i
\(745\) 570.331 + 53.3847i 0.765545 + 0.0716573i
\(746\) 767.445 + 249.358i 1.02875 + 0.334260i
\(747\) 2.34240 515.281i 0.00313574 0.689801i
\(748\) 118.413 + 162.982i 0.158306 + 0.217890i
\(749\) 1871.46i 2.49861i
\(750\) −164.399 859.582i −0.219199 1.14611i
\(751\) 632.917 0.842766 0.421383 0.906883i \(-0.361545\pi\)
0.421383 + 0.906883i \(0.361545\pi\)
\(752\) 78.3697 56.9389i 0.104215 0.0757166i
\(753\) −160.634 + 999.497i −0.213326 + 1.32735i
\(754\) −98.3147 + 302.581i −0.130391 + 0.401302i
\(755\) 76.4166 816.390i 0.101214 1.08131i
\(756\) 344.325 + 349.053i 0.455456 + 0.461710i
\(757\) 1271.62i 1.67981i 0.542734 + 0.839904i \(0.317389\pi\)
−0.542734 + 0.839904i \(0.682611\pi\)
\(758\) −270.505 832.529i −0.356867 1.09832i
\(759\) −751.959 385.297i −0.990723 0.507638i
\(760\) −63.7716 107.607i −0.0839100 0.141588i
\(761\) −706.088 971.847i −0.927843 1.27707i −0.960695 0.277606i \(-0.910459\pi\)
0.0328525 0.999460i \(-0.489541\pi\)
\(762\) −830.055 425.313i −1.08931 0.558154i
\(763\) 1098.86 1512.45i 1.44018 1.98224i
\(764\) −83.6686 115.160i −0.109514 0.150733i
\(765\) 482.479 + 47.3749i 0.630691 + 0.0619279i
\(766\) 239.992 + 174.364i 0.313305 + 0.227629i
\(767\) −73.3182 225.650i −0.0955908 0.294198i
\(768\) −113.690 728.527i −0.148034 0.948602i
\(769\) −164.777 507.132i −0.214275 0.659469i −0.999204 0.0398846i \(-0.987301\pi\)
0.784930 0.619585i \(-0.212699\pi\)
\(770\) 1738.79 + 750.550i 2.25817 + 0.974740i
\(771\) 565.527 + 90.8888i 0.733498 + 0.117884i
\(772\) −251.905 81.8489i −0.326302 0.106022i
\(773\) 816.217 593.017i 1.05591 0.767163i 0.0825815 0.996584i \(-0.473684\pi\)
0.973327 + 0.229422i \(0.0736835\pi\)
\(774\) −277.709 868.108i −0.358797 1.12159i
\(775\) 88.8804 + 693.335i 0.114684 + 0.894626i
\(776\) 178.150i 0.229575i
\(777\) −0.917567 0.921748i −0.00118091 0.00118629i
\(778\) 593.865 + 192.959i 0.763323 + 0.248019i
\(779\) −301.580 97.9892i −0.387137 0.125788i
\(780\) 100.358 39.5773i 0.128664 0.0507401i
\(781\) −217.778 670.253i −0.278846 0.858198i
\(782\) −547.742 −0.700437
\(783\) 519.878 + 527.017i 0.663957 + 0.673074i
\(784\) −1730.46 1257.25i −2.20722 1.60364i
\(785\) 364.484 + 34.1168i 0.464311 + 0.0434609i
\(786\) −1049.30 + 1044.54i −1.33499 + 1.32893i
\(787\) 527.782 726.430i 0.670625 0.923037i −0.329149 0.944278i \(-0.606762\pi\)
0.999774 + 0.0212413i \(0.00676184\pi\)
\(788\) 395.660 + 287.464i 0.502107 + 0.364802i
\(789\) −580.561 583.206i −0.735819 0.739171i
\(790\) −194.380 + 43.6361i −0.246050 + 0.0552356i
\(791\) 431.480 593.882i 0.545487 0.750799i
\(792\) −562.800 + 405.002i −0.710606 + 0.511366i
\(793\) 32.4604i 0.0409336i
\(794\) 160.129 52.0292i 0.201674 0.0655279i
\(795\) 21.6475 + 13.7791i 0.0272295 + 0.0173322i
\(796\) −5.65493 + 17.4041i −0.00710419 + 0.0218644i
\(797\) −24.0490 + 74.0152i −0.0301744 + 0.0928673i −0.965010 0.262215i \(-0.915547\pi\)
0.934835 + 0.355082i \(0.115547\pi\)
\(798\) −261.502 + 260.316i −0.327697 + 0.326210i
\(799\) −52.9925 −0.0663235
\(800\) 543.462 + 102.639i 0.679327 + 0.128298i
\(801\) −207.439 648.447i −0.258975 0.809547i
\(802\) −350.528 482.460i −0.437067 0.601572i
\(803\) 143.187 440.685i 0.178316 0.548799i
\(804\) 2.85072 17.7377i 0.00354567 0.0220618i
\(805\) −1176.45 + 697.205i −1.46142 + 0.866093i
\(806\) −308.568 + 100.260i −0.382838 + 0.124392i
\(807\) −413.099 + 64.4663i −0.511894 + 0.0798839i
\(808\) 147.865 48.0443i 0.183001 0.0594607i
\(809\) −503.318 + 692.758i −0.622148 + 0.856314i −0.997507 0.0705660i \(-0.977519\pi\)
0.375359 + 0.926880i \(0.377519\pi\)
\(810\) 96.6382 940.221i 0.119306 1.16077i
\(811\) 859.986 624.817i 1.06040 0.770427i 0.0862396 0.996274i \(-0.472515\pi\)
0.974163 + 0.225847i \(0.0725149\pi\)
\(812\) 402.803 + 292.654i 0.496063 + 0.360411i
\(813\) 480.861 938.464i 0.591465 1.15432i
\(814\) −0.842883 + 0.612390i −0.00103548 + 0.000752322i
\(815\) 73.1910 + 64.4074i 0.0898049 + 0.0790274i
\(816\) −290.251 + 566.463i −0.355700 + 0.694195i
\(817\) 173.249 56.2919i 0.212055 0.0689007i
\(818\) 1667.15 2.03808
\(819\) 328.148 + 456.002i 0.400669 + 0.556779i
\(820\) 469.978 278.526i 0.573144 0.339666i
\(821\) −711.389 231.144i −0.866491 0.281540i −0.158154 0.987414i \(-0.550554\pi\)
−0.708337 + 0.705874i \(0.750554\pi\)
\(822\) 1326.50 + 213.189i 1.61375 + 0.259354i
\(823\) −458.192 630.647i −0.556733 0.766278i 0.434173 0.900829i \(-0.357041\pi\)
−0.990907 + 0.134552i \(0.957041\pi\)
\(824\) 280.443i 0.340343i
\(825\) −270.097 931.209i −0.327391 1.12874i
\(826\) −1398.10 −1.69261
\(827\) −551.236 + 400.497i −0.666549 + 0.484276i −0.868868 0.495043i \(-0.835152\pi\)
0.202319 + 0.979320i \(0.435152\pi\)
\(828\) −1.28923 + 283.605i −0.00155704 + 0.342518i
\(829\) 131.487 404.674i 0.158609 0.488147i −0.839900 0.542741i \(-0.817386\pi\)
0.998509 + 0.0545941i \(0.0173865\pi\)
\(830\) −441.355 + 501.545i −0.531753 + 0.604271i
\(831\) −540.396 1066.57i −0.650296 1.28348i
\(832\) 134.969i 0.162223i
\(833\) 361.585 + 1112.84i 0.434075 + 1.33595i
\(834\) 326.002 636.236i 0.390890 0.762872i
\(835\) 444.193 99.7166i 0.531968 0.119421i
\(836\) 46.1406 + 63.5070i 0.0551921 + 0.0759653i
\(837\) −123.179 + 744.813i −0.147167 + 0.889860i
\(838\) 6.86018 9.44223i 0.00818637 0.0112676i
\(839\) −795.202 1094.50i −0.947797 1.30453i −0.952499 0.304542i \(-0.901497\pi\)
0.00470187 0.999989i \(-0.498503\pi\)
\(840\) 68.9471 + 1120.12i 0.0820798 + 1.33348i
\(841\) −72.2106 52.4640i −0.0858627 0.0623829i
\(842\) −80.9242 249.059i −0.0961095 0.295795i
\(843\) 523.278 81.6603i 0.620733 0.0968687i
\(844\) −161.903 498.285i −0.191828 0.590385i
\(845\) −703.871 + 158.011i −0.832983 + 0.186996i
\(846\) −0.469652 + 103.314i −0.000555145 + 0.122121i
\(847\) 550.780 + 178.959i 0.650272 + 0.211286i
\(848\) −27.2560 + 19.8026i −0.0321415 + 0.0233522i
\(849\) 955.469 149.106i 1.12541 0.175626i
\(850\) −431.118 457.410i −0.507197 0.538130i
\(851\) 0.752308i 0.000884028i
\(852\) −167.650 + 166.889i −0.196772 + 0.195880i
\(853\) 1153.47 + 374.784i 1.35225 + 0.439372i 0.893448 0.449167i \(-0.148279\pi\)
0.458800 + 0.888539i \(0.348279\pi\)
\(854\) −181.915 59.1076i −0.213015 0.0692127i
\(855\) 188.001 + 18.4600i 0.219884 + 0.0215906i
\(856\) −274.516 844.873i −0.320696 0.987002i
\(857\) 549.363 0.641031 0.320515 0.947243i \(-0.396144\pi\)
0.320515 + 0.947243i \(0.396144\pi\)
\(858\) 401.450 203.401i 0.467890 0.237064i
\(859\) 414.050 + 300.825i 0.482013 + 0.350203i 0.802105 0.597183i \(-0.203714\pi\)
−0.320091 + 0.947387i \(0.603714\pi\)
\(860\) −124.377 + 288.142i −0.144624 + 0.335049i
\(861\) 2007.13 + 2016.28i 2.33116 + 2.34178i
\(862\) −604.110 + 831.486i −0.700823 + 0.964601i
\(863\) −342.771 249.038i −0.397185 0.288572i 0.371208 0.928550i \(-0.378944\pi\)
−0.768394 + 0.639978i \(0.778944\pi\)
\(864\) 530.350 + 274.798i 0.613830 + 0.318053i
\(865\) −110.362 186.221i −0.127586 0.215285i
\(866\) −1011.62 + 1392.38i −1.16816 + 1.60783i
\(867\) −462.795 + 234.482i −0.533789 + 0.270453i
\(868\) 507.743i 0.584957i
\(869\) −209.910 + 68.2038i −0.241553 + 0.0784854i
\(870\) −58.9675 957.992i −0.0677787 1.10114i
\(871\) 6.36113 19.5775i 0.00730325 0.0224771i
\(872\) 274.227 843.984i 0.314480 0.967871i
\(873\) −216.942 159.130i −0.248502 0.182279i
\(874\) −213.432 −0.244201
\(875\) −1508.18 433.674i −1.72364 0.495627i
\(876\) −153.673 + 23.9815i −0.175426 + 0.0273762i
\(877\) −65.6432 90.3501i −0.0748497 0.103022i 0.769951 0.638103i \(-0.220281\pi\)
−0.844800 + 0.535082i \(0.820281\pi\)
\(878\) 134.305 413.349i 0.152967 0.470784i
\(879\) −979.457 157.414i −1.11429 0.179083i
\(880\) 1267.44 + 118.636i 1.44027 + 0.134814i
\(881\) −264.217 + 85.8494i −0.299906 + 0.0974454i −0.455105 0.890438i \(-0.650398\pi\)
0.155199 + 0.987883i \(0.450398\pi\)
\(882\) 2172.81 695.084i 2.46350 0.788077i
\(883\) −998.750 + 324.514i −1.13109 + 0.367513i −0.813989 0.580880i \(-0.802709\pi\)
−0.317098 + 0.948393i \(0.602709\pi\)
\(884\) 45.5426 62.6840i 0.0515188 0.0709095i
\(885\) 455.504 + 552.132i 0.514693 + 0.623878i
\(886\) 896.236 651.153i 1.01155 0.734936i
\(887\) −527.586 383.313i −0.594798 0.432146i 0.249231 0.968444i \(-0.419822\pi\)
−0.844029 + 0.536298i \(0.819822\pi\)
\(888\) −0.549444 0.281531i −0.000618744 0.000317039i
\(889\) −1353.02 + 983.027i −1.52196 + 1.10577i
\(890\) −349.822 + 810.429i −0.393059 + 0.910594i
\(891\) 9.52025 1047.11i 0.0106849 1.17521i
\(892\) −313.911 + 101.996i −0.351918 + 0.114345i
\(893\) −20.6489 −0.0231231
\(894\) −362.521 715.504i −0.405505 0.800340i
\(895\) 179.923 416.824i 0.201031 0.465726i
\(896\) −1812.97 589.070i −2.02341 0.657444i
\(897\) −51.5650 + 320.847i −0.0574860 + 0.357689i
\(898\) 289.543 + 398.521i 0.322431 + 0.443788i
\(899\) 766.615i 0.852742i
\(900\) −237.849 + 222.144i −0.264276 + 0.246826i
\(901\) 18.4301 0.0204552
\(902\) 1843.76 1339.57i 2.04408 1.48511i
\(903\) −1613.65 259.339i −1.78699 0.287197i
\(904\) 107.679 331.401i 0.119114 0.366594i
\(905\) 536.809 120.508i 0.593160 0.133158i
\(906\) −1024.20 + 518.925i −1.13046 + 0.572765i
\(907\) 1.34888i 0.00148718i 1.00000 0.000743592i \(0.000236693\pi\)
−1.00000 0.000743592i \(0.999763\pi\)
\(908\) −138.882 427.435i −0.152954 0.470743i
\(909\) −73.5722 + 222.978i −0.0809375 + 0.245300i
\(910\) 67.8831 725.224i 0.0745968 0.796949i
\(911\) 460.782 + 634.213i 0.505798 + 0.696172i 0.983204 0.182511i \(-0.0584226\pi\)
−0.477405 + 0.878683i \(0.658423\pi\)
\(912\) −113.098 + 220.727i −0.124011 + 0.242025i
\(913\) −435.062 + 598.812i −0.476519 + 0.655873i
\(914\) 485.052 + 667.617i 0.530692 + 0.730435i
\(915\) 35.9256 + 91.0986i 0.0392630 + 0.0995613i
\(916\) −142.022 103.185i −0.155046 0.112648i
\(917\) 820.406 + 2524.95i 0.894663 + 2.75349i
\(918\) −304.057 606.942i −0.331217 0.661157i
\(919\) 10.8003 + 33.2399i 0.0117522 + 0.0361697i 0.956761 0.290876i \(-0.0939468\pi\)
−0.945008 + 0.327046i \(0.893947\pi\)
\(920\) −428.839 + 487.322i −0.466129 + 0.529698i
\(921\) 80.9192 503.494i 0.0878602 0.546682i
\(922\) 662.740 + 215.337i 0.718807 + 0.233555i
\(923\) −219.284 + 159.319i −0.237578 + 0.172610i
\(924\) −108.593 695.863i −0.117525 0.753098i
\(925\) 0.628240 0.592128i 0.000679179 0.000640139i
\(926\) 1211.45i 1.30826i
\(927\) −341.510 250.501i −0.368403 0.270228i
\(928\) 576.873 + 187.437i 0.621630 + 0.201980i
\(929\) 317.359 + 103.116i 0.341613 + 0.110997i 0.474799 0.880094i \(-0.342521\pi\)
−0.133186 + 0.991091i \(0.542521\pi\)
\(930\) 755.019 622.883i 0.811848 0.669767i
\(931\) 140.894 + 433.627i 0.151336 + 0.465765i
\(932\) −581.690 −0.624131
\(933\) −621.559 1226.76i −0.666194 1.31486i
\(934\) 805.331 + 585.108i 0.862239 + 0.626453i
\(935\) −522.783 460.044i −0.559127 0.492026i
\(936\) 215.032 + 157.728i 0.229735 + 0.168513i
\(937\) −156.678 + 215.649i −0.167213 + 0.230148i −0.884397 0.466735i \(-0.845430\pi\)
0.717185 + 0.696883i \(0.245430\pi\)
\(938\) −98.1335 71.2981i −0.104620 0.0760108i
\(939\) 679.461 676.379i 0.723600 0.720318i
\(940\) 23.5015 26.7065i 0.0250016 0.0284112i
\(941\) 53.2570 73.3019i 0.0565961 0.0778979i −0.779781 0.626053i \(-0.784670\pi\)
0.836377 + 0.548155i \(0.184670\pi\)
\(942\) −231.678 457.261i −0.245943 0.485415i
\(943\) 1645.64i 1.74511i
\(944\) −893.751 + 290.397i −0.946770 + 0.307624i
\(945\) −1425.62 916.571i −1.50859 0.969916i
\(946\) −404.573 + 1245.15i −0.427667 + 1.31622i
\(947\) −406.796 + 1251.99i −0.429562 + 1.32206i 0.468995 + 0.883201i \(0.344616\pi\)
−0.898557 + 0.438856i \(0.855384\pi\)
\(948\) 52.2664 + 52.5046i 0.0551334 + 0.0553846i
\(949\) −178.213 −0.187791
\(950\) −167.988 178.233i −0.176830 0.187614i
\(951\) −113.541 727.566i −0.119391 0.765053i
\(952\) 473.765 + 652.081i 0.497652 + 0.684959i
\(953\) 533.396 1641.62i 0.559702 1.72259i −0.123488 0.992346i \(-0.539408\pi\)
0.683190 0.730240i \(-0.260592\pi\)
\(954\) 0.163339 35.9314i 0.000171215 0.0376640i
\(955\) 369.389 + 325.059i 0.386795 + 0.340376i
\(956\) 270.055 87.7461i 0.282484 0.0917846i
\(957\) −163.959 1050.65i −0.171326 1.09786i
\(958\) −654.627 + 212.701i −0.683326 + 0.222026i
\(959\) 1416.05 1949.03i 1.47660 2.03236i
\(960\) 149.378 + 378.786i 0.155602 + 0.394568i
\(961\) 144.991 105.342i 0.150875 0.109617i
\(962\) 0.324179 + 0.235530i 0.000336984 + 0.000244834i
\(963\) 1274.05 + 420.378i 1.32300 + 0.436529i
\(964\) −422.269 + 306.797i −0.438039 + 0.318254i
\(965\) 911.591 + 85.3277i 0.944654 + 0.0884225i
\(966\) 1704.20 + 873.216i 1.76418 + 0.903950i
\(967\) −692.020 + 224.851i −0.715636 + 0.232524i −0.644130 0.764916i \(-0.722780\pi\)
−0.0715060 + 0.997440i \(0.522780\pi\)
\(968\) 274.902 0.283989
\(969\) 121.028 61.3206i 0.124900 0.0632823i
\(970\) 76.4067 + 340.358i 0.0787698 + 0.350885i
\(971\) 1094.40 + 355.593i 1.12709 + 0.366213i 0.812468 0.583005i \(-0.198123\pi\)
0.314619 + 0.949218i \(0.398123\pi\)
\(972\) −314.973 + 156.003i −0.324046 + 0.160497i
\(973\) −753.489 1037.09i −0.774397 1.06587i
\(974\) 1548.00i 1.58932i
\(975\) −308.520 + 209.472i −0.316430 + 0.214843i
\(976\) −128.568 −0.131730
\(977\) 214.381 155.757i 0.219428 0.159424i −0.472641 0.881255i \(-0.656699\pi\)
0.692069 + 0.721831i \(0.256699\pi\)
\(978\) 21.6625 134.788i 0.0221498 0.137820i
\(979\) −302.202 + 930.083i −0.308685 + 0.950034i
\(980\) −721.196 311.305i −0.735914 0.317658i
\(981\) 782.814 + 1087.82i 0.797976 + 1.10888i
\(982\) 1252.31i 1.27526i
\(983\) 500.620 + 1540.75i 0.509277 + 1.56739i 0.793459 + 0.608624i \(0.208278\pi\)
−0.284181 + 0.958771i \(0.591722\pi\)
\(984\) 1201.88 + 615.834i 1.22142 + 0.625848i
\(985\) −1552.13 669.976i −1.57576 0.680179i
\(986\) −405.191 557.697i −0.410944 0.565616i
\(987\) 164.876 + 84.4812i 0.167048 + 0.0855940i
\(988\) 17.7460 24.4253i 0.0179615 0.0247219i
\(989\) −555.674 764.819i −0.561854 0.773326i
\(990\) −901.537 + 1015.14i −0.910643 + 1.02540i
\(991\) −262.932 191.031i −0.265320 0.192766i 0.447169 0.894449i \(-0.352432\pi\)
−0.712489 + 0.701683i \(0.752432\pi\)
\(992\) 191.146 + 588.286i 0.192687 + 0.593030i
\(993\) 69.4657 + 445.135i 0.0699554 + 0.448273i
\(994\) 493.560 + 1519.02i 0.496540 + 1.52819i
\(995\) 5.89528 62.9818i 0.00592491 0.0632982i
\(996\) 245.299 + 39.4233i 0.246284 + 0.0395816i
\(997\) 779.958 + 253.424i 0.782305 + 0.254186i 0.672824 0.739803i \(-0.265081\pi\)
0.109481 + 0.993989i \(0.465081\pi\)
\(998\) 1493.87 1085.36i 1.49687 1.08754i
\(999\) 0.833618 0.417614i 0.000834452 0.000418032i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.h.a.14.5 72
3.2 odd 2 inner 75.3.h.a.14.14 yes 72
5.2 odd 4 375.3.j.b.176.9 144
5.3 odd 4 375.3.j.b.176.28 144
5.4 even 2 375.3.h.a.74.14 72
15.2 even 4 375.3.j.b.176.27 144
15.8 even 4 375.3.j.b.176.10 144
15.14 odd 2 375.3.h.a.74.5 72
25.9 even 10 inner 75.3.h.a.59.14 yes 72
25.12 odd 20 375.3.j.b.326.27 144
25.13 odd 20 375.3.j.b.326.10 144
25.16 even 5 375.3.h.a.299.5 72
75.38 even 20 375.3.j.b.326.28 144
75.41 odd 10 375.3.h.a.299.14 72
75.59 odd 10 inner 75.3.h.a.59.5 yes 72
75.62 even 20 375.3.j.b.326.9 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.h.a.14.5 72 1.1 even 1 trivial
75.3.h.a.14.14 yes 72 3.2 odd 2 inner
75.3.h.a.59.5 yes 72 75.59 odd 10 inner
75.3.h.a.59.14 yes 72 25.9 even 10 inner
375.3.h.a.74.5 72 15.14 odd 2
375.3.h.a.74.14 72 5.4 even 2
375.3.h.a.299.5 72 25.16 even 5
375.3.h.a.299.14 72 75.41 odd 10
375.3.j.b.176.9 144 5.2 odd 4
375.3.j.b.176.10 144 15.8 even 4
375.3.j.b.176.27 144 15.2 even 4
375.3.j.b.176.28 144 5.3 odd 4
375.3.j.b.326.9 144 75.62 even 20
375.3.j.b.326.10 144 25.13 odd 20
375.3.j.b.326.27 144 25.12 odd 20
375.3.j.b.326.28 144 75.38 even 20