Properties

Label 75.3.h.a.14.4
Level $75$
Weight $3$
Character 75.14
Analytic conductor $2.044$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(14,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 14.4
Character \(\chi\) \(=\) 75.14
Dual form 75.3.h.a.59.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.05424 + 1.49250i) q^{2} +(0.392507 + 2.97421i) q^{3} +(0.756307 - 2.32767i) q^{4} +(4.44388 + 2.29172i) q^{5} +(-5.24530 - 5.52394i) q^{6} +6.97211i q^{7} +(-1.21820 - 3.74924i) q^{8} +(-8.69188 + 2.33480i) q^{9} +(-12.5492 + 1.92472i) q^{10} +(-7.98507 - 10.9905i) q^{11} +(7.21985 + 1.33579i) q^{12} +(0.259763 - 0.357533i) q^{13} +(-10.4058 - 14.3224i) q^{14} +(-5.07180 + 14.1165i) q^{15} +(16.0184 + 11.6380i) q^{16} +(7.94771 + 24.4605i) q^{17} +(14.3706 - 17.7688i) q^{18} +(-3.70606 - 11.4061i) q^{19} +(8.69531 - 8.61066i) q^{20} +(-20.7365 + 2.73660i) q^{21} +(32.8065 + 10.6595i) q^{22} +(19.1473 - 13.9113i) q^{23} +(10.6729 - 5.09479i) q^{24} +(14.4961 + 20.3682i) q^{25} +1.12216i q^{26} +(-10.3558 - 24.9351i) q^{27} +(16.2288 + 5.27306i) q^{28} +(32.2785 + 10.4879i) q^{29} +(-10.6502 - 36.5685i) q^{30} +(7.00881 + 21.5709i) q^{31} -34.5066 q^{32} +(29.5539 - 28.0631i) q^{33} +(-52.8338 - 38.3860i) q^{34} +(-15.9781 + 30.9832i) q^{35} +(-1.13908 + 21.9977i) q^{36} +(-24.1765 + 33.2760i) q^{37} +(24.6367 + 17.8996i) q^{38} +(1.16534 + 0.632257i) q^{39} +(3.17866 - 19.4529i) q^{40} +(11.1774 - 15.3843i) q^{41} +(38.5136 - 36.5709i) q^{42} -40.7478i q^{43} +(-31.6215 + 10.2744i) q^{44} +(-43.9763 - 9.54376i) q^{45} +(-18.5706 + 57.1545i) q^{46} +(-7.83781 + 24.1223i) q^{47} +(-28.3266 + 52.2100i) q^{48} +0.389632 q^{49} +(-60.1779 - 20.2060i) q^{50} +(-69.6313 + 33.2391i) q^{51} +(-0.635761 - 0.875050i) q^{52} +(-22.0806 + 67.9572i) q^{53} +(58.4888 + 35.7667i) q^{54} +(-10.2975 - 67.1399i) q^{55} +(26.1401 - 8.49344i) q^{56} +(32.4694 - 15.4996i) q^{57} +(-81.9612 + 26.6308i) q^{58} +(16.0556 - 22.0987i) q^{59} +(29.0229 + 22.4819i) q^{60} +(77.8653 - 56.5725i) q^{61} +(-46.5923 - 33.8513i) q^{62} +(-16.2785 - 60.6007i) q^{63} +(6.81151 - 4.94885i) q^{64} +(1.97372 - 0.993530i) q^{65} +(-18.8268 + 101.758i) q^{66} +(92.0681 - 29.9148i) q^{67} +62.9471 q^{68} +(48.8907 + 51.4878i) q^{69} +(-13.4194 - 87.4943i) q^{70} +(-15.2176 - 4.94450i) q^{71} +(19.3422 + 29.7437i) q^{72} +(-23.6157 - 32.5042i) q^{73} -104.440i q^{74} +(-54.8896 + 51.1090i) q^{75} -29.3526 q^{76} +(76.6270 - 55.6728i) q^{77} +(-3.33753 + 0.440454i) q^{78} +(-3.55591 + 10.9440i) q^{79} +(44.5125 + 88.4274i) q^{80} +(70.0974 - 40.5876i) q^{81} +48.2853i q^{82} +(-9.61536 - 29.5930i) q^{83} +(-9.31328 + 50.3376i) q^{84} +(-20.7380 + 126.913i) q^{85} +(60.8159 + 83.7059i) q^{86} +(-18.5238 + 100.120i) q^{87} +(-31.4786 + 43.3265i) q^{88} +(-35.6526 - 49.0716i) q^{89} +(104.582 - 46.0292i) q^{90} +(2.49276 + 1.81110i) q^{91} +(-17.8998 - 55.0899i) q^{92} +(-61.4054 + 29.3124i) q^{93} +(-19.9017 - 61.2510i) q^{94} +(9.67024 - 59.1804i) q^{95} +(-13.5441 - 102.630i) q^{96} +(-125.919 - 40.9136i) q^{97} +(-0.800399 + 0.581524i) q^{98} +(95.0658 + 76.8845i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 5 q^{3} - 38 q^{4} + 5 q^{6} - 13 q^{9} - 20 q^{10} - 45 q^{12} - 10 q^{13} - 15 q^{15} + 22 q^{16} - 36 q^{19} + 54 q^{21} - 50 q^{22} - 20 q^{24} - 100 q^{25} + 100 q^{27} + 270 q^{28} - 5 q^{30}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.05424 + 1.49250i −1.02712 + 0.746248i −0.967731 0.251987i \(-0.918916\pi\)
−0.0593914 + 0.998235i \(0.518916\pi\)
\(3\) 0.392507 + 2.97421i 0.130836 + 0.991404i
\(4\) 0.756307 2.32767i 0.189077 0.581919i
\(5\) 4.44388 + 2.29172i 0.888775 + 0.458343i
\(6\) −5.24530 5.52394i −0.874217 0.920657i
\(7\) 6.97211i 0.996016i 0.867172 + 0.498008i \(0.165935\pi\)
−0.867172 + 0.498008i \(0.834065\pi\)
\(8\) −1.21820 3.74924i −0.152275 0.468655i
\(9\) −8.69188 + 2.33480i −0.965764 + 0.259422i
\(10\) −12.5492 + 1.92472i −1.25492 + 0.192472i
\(11\) −7.98507 10.9905i −0.725915 0.999136i −0.999307 0.0372335i \(-0.988145\pi\)
0.273392 0.961903i \(-0.411855\pi\)
\(12\) 7.21985 + 1.33579i 0.601655 + 0.111316i
\(13\) 0.259763 0.357533i 0.0199818 0.0275026i −0.798909 0.601452i \(-0.794589\pi\)
0.818891 + 0.573949i \(0.194589\pi\)
\(14\) −10.4058 14.3224i −0.743275 1.02303i
\(15\) −5.07180 + 14.1165i −0.338120 + 0.941103i
\(16\) 16.0184 + 11.6380i 1.00115 + 0.727376i
\(17\) 7.94771 + 24.4605i 0.467512 + 1.43885i 0.855795 + 0.517314i \(0.173068\pi\)
−0.388283 + 0.921540i \(0.626932\pi\)
\(18\) 14.3706 17.7688i 0.798364 0.987158i
\(19\) −3.70606 11.4061i −0.195056 0.600320i −0.999976 0.00693679i \(-0.997792\pi\)
0.804920 0.593383i \(-0.202208\pi\)
\(20\) 8.69531 8.61066i 0.434765 0.430533i
\(21\) −20.7365 + 2.73660i −0.987455 + 0.130315i
\(22\) 32.8065 + 10.6595i 1.49121 + 0.484522i
\(23\) 19.1473 13.9113i 0.832491 0.604840i −0.0877718 0.996141i \(-0.527975\pi\)
0.920263 + 0.391300i \(0.127975\pi\)
\(24\) 10.6729 5.09479i 0.444703 0.212283i
\(25\) 14.4961 + 20.3682i 0.579843 + 0.814729i
\(26\) 1.12216i 0.0431599i
\(27\) −10.3558 24.9351i −0.383549 0.923521i
\(28\) 16.2288 + 5.27306i 0.579600 + 0.188324i
\(29\) 32.2785 + 10.4879i 1.11305 + 0.361653i 0.807112 0.590398i \(-0.201029\pi\)
0.305941 + 0.952051i \(0.401029\pi\)
\(30\) −10.6502 36.5685i −0.355006 1.21895i
\(31\) 7.00881 + 21.5709i 0.226091 + 0.695835i 0.998179 + 0.0603203i \(0.0192122\pi\)
−0.772088 + 0.635515i \(0.780788\pi\)
\(32\) −34.5066 −1.07833
\(33\) 29.5539 28.0631i 0.895572 0.850398i
\(34\) −52.8338 38.3860i −1.55393 1.12900i
\(35\) −15.9781 + 30.9832i −0.456517 + 0.885234i
\(36\) −1.13908 + 21.9977i −0.0316410 + 0.611047i
\(37\) −24.1765 + 33.2760i −0.653418 + 0.899353i −0.999241 0.0389470i \(-0.987600\pi\)
0.345823 + 0.938300i \(0.387600\pi\)
\(38\) 24.6367 + 17.8996i 0.648333 + 0.471042i
\(39\) 1.16534 + 0.632257i 0.0298805 + 0.0162117i
\(40\) 3.17866 19.4529i 0.0794664 0.486323i
\(41\) 11.1774 15.3843i 0.272619 0.375227i −0.650653 0.759375i \(-0.725505\pi\)
0.923272 + 0.384148i \(0.125505\pi\)
\(42\) 38.5136 36.5709i 0.916989 0.870735i
\(43\) 40.7478i 0.947623i −0.880626 0.473811i \(-0.842878\pi\)
0.880626 0.473811i \(-0.157122\pi\)
\(44\) −31.6215 + 10.2744i −0.718670 + 0.233510i
\(45\) −43.9763 9.54376i −0.977252 0.212084i
\(46\) −18.5706 + 57.1545i −0.403709 + 1.24249i
\(47\) −7.83781 + 24.1223i −0.166762 + 0.513240i −0.999162 0.0409351i \(-0.986966\pi\)
0.832400 + 0.554175i \(0.186966\pi\)
\(48\) −28.3266 + 52.2100i −0.590138 + 1.08771i
\(49\) 0.389632 0.00795167
\(50\) −60.1779 20.2060i −1.20356 0.404119i
\(51\) −69.6313 + 33.2391i −1.36532 + 0.651747i
\(52\) −0.635761 0.875050i −0.0122262 0.0168279i
\(53\) −22.0806 + 67.9572i −0.416616 + 1.28221i 0.494182 + 0.869358i \(0.335468\pi\)
−0.910798 + 0.412853i \(0.864532\pi\)
\(54\) 58.4888 + 35.7667i 1.08313 + 0.662346i
\(55\) −10.2975 67.1399i −0.187228 1.22073i
\(56\) 26.1401 8.49344i 0.466788 0.151668i
\(57\) 32.4694 15.4996i 0.569639 0.271922i
\(58\) −81.9612 + 26.6308i −1.41312 + 0.459152i
\(59\) 16.0556 22.0987i 0.272129 0.374554i −0.650978 0.759097i \(-0.725641\pi\)
0.923107 + 0.384543i \(0.125641\pi\)
\(60\) 29.0229 + 22.4819i 0.483715 + 0.374699i
\(61\) 77.8653 56.5725i 1.27648 0.927418i 0.277040 0.960858i \(-0.410647\pi\)
0.999441 + 0.0334407i \(0.0106465\pi\)
\(62\) −46.5923 33.8513i −0.751488 0.545988i
\(63\) −16.2785 60.6007i −0.258389 0.961917i
\(64\) 6.81151 4.94885i 0.106430 0.0773258i
\(65\) 1.97372 0.993530i 0.0303649 0.0152851i
\(66\) −18.8268 + 101.758i −0.285254 + 1.54178i
\(67\) 92.0681 29.9148i 1.37415 0.446489i 0.473409 0.880843i \(-0.343023\pi\)
0.900742 + 0.434354i \(0.143023\pi\)
\(68\) 62.9471 0.925692
\(69\) 48.8907 + 51.4878i 0.708561 + 0.746200i
\(70\) −13.4194 87.4943i −0.191705 1.24992i
\(71\) −15.2176 4.94450i −0.214333 0.0696409i 0.199883 0.979820i \(-0.435944\pi\)
−0.414215 + 0.910179i \(0.635944\pi\)
\(72\) 19.3422 + 29.7437i 0.268641 + 0.413106i
\(73\) −23.6157 32.5042i −0.323502 0.445263i 0.616030 0.787723i \(-0.288740\pi\)
−0.939533 + 0.342460i \(0.888740\pi\)
\(74\) 104.440i 1.41136i
\(75\) −54.8896 + 51.1090i −0.731861 + 0.681454i
\(76\) −29.3526 −0.386218
\(77\) 76.6270 55.6728i 0.995156 0.723023i
\(78\) −3.33753 + 0.440454i −0.0427889 + 0.00564685i
\(79\) −3.55591 + 10.9440i −0.0450115 + 0.138531i −0.971037 0.238931i \(-0.923203\pi\)
0.926025 + 0.377462i \(0.123203\pi\)
\(80\) 44.5125 + 88.4274i 0.556407 + 1.10534i
\(81\) 70.0974 40.5876i 0.865400 0.501081i
\(82\) 48.2853i 0.588845i
\(83\) −9.61536 29.5930i −0.115848 0.356543i 0.876275 0.481811i \(-0.160021\pi\)
−0.992123 + 0.125268i \(0.960021\pi\)
\(84\) −9.31328 + 50.3376i −0.110872 + 0.599258i
\(85\) −20.7380 + 126.913i −0.243976 + 1.49310i
\(86\) 60.8159 + 83.7059i 0.707162 + 0.973324i
\(87\) −18.5238 + 100.120i −0.212917 + 1.15080i
\(88\) −31.4786 + 43.3265i −0.357711 + 0.492347i
\(89\) −35.6526 49.0716i −0.400591 0.551367i 0.560301 0.828289i \(-0.310685\pi\)
−0.960892 + 0.276923i \(0.910685\pi\)
\(90\) 104.582 46.0292i 1.16202 0.511436i
\(91\) 2.49276 + 1.81110i 0.0273930 + 0.0199022i
\(92\) −17.8998 55.0899i −0.194563 0.598803i
\(93\) −61.4054 + 29.3124i −0.660273 + 0.315187i
\(94\) −19.9017 61.2510i −0.211720 0.651606i
\(95\) 9.67024 59.1804i 0.101792 0.622952i
\(96\) −13.5441 102.630i −0.141084 1.06906i
\(97\) −125.919 40.9136i −1.29813 0.421789i −0.423202 0.906035i \(-0.639094\pi\)
−0.874932 + 0.484246i \(0.839094\pi\)
\(98\) −0.800399 + 0.581524i −0.00816734 + 0.00593392i
\(99\) 95.0658 + 76.8845i 0.960261 + 0.776612i
\(100\) 58.3741 18.3375i 0.583741 0.183375i
\(101\) 182.040i 1.80238i −0.433423 0.901191i \(-0.642694\pi\)
0.433423 0.901191i \(-0.357306\pi\)
\(102\) 93.4304 172.206i 0.915984 1.68829i
\(103\) 33.2817 + 10.8139i 0.323123 + 0.104989i 0.466087 0.884739i \(-0.345663\pi\)
−0.142964 + 0.989728i \(0.545663\pi\)
\(104\) −1.65692 0.538366i −0.0159319 0.00517660i
\(105\) −98.4222 35.3612i −0.937354 0.336773i
\(106\) −56.0668 172.556i −0.528932 1.62789i
\(107\) −142.508 −1.33185 −0.665925 0.746018i \(-0.731963\pi\)
−0.665925 + 0.746018i \(0.731963\pi\)
\(108\) −65.8729 + 5.24639i −0.609934 + 0.0485777i
\(109\) 116.368 + 84.5460i 1.06759 + 0.775651i 0.975478 0.220097i \(-0.0706375\pi\)
0.0921144 + 0.995748i \(0.470637\pi\)
\(110\) 121.360 + 122.553i 1.10327 + 1.11412i
\(111\) −108.459 58.8448i −0.977112 0.530134i
\(112\) −81.1416 + 111.682i −0.724478 + 0.997159i
\(113\) 58.5612 + 42.5472i 0.518240 + 0.376524i 0.815941 0.578136i \(-0.196220\pi\)
−0.297700 + 0.954659i \(0.596220\pi\)
\(114\) −43.5671 + 80.3004i −0.382168 + 0.704390i
\(115\) 116.969 17.9400i 1.01712 0.156000i
\(116\) 48.8250 67.2018i 0.420905 0.579326i
\(117\) −1.42306 + 3.71413i −0.0121629 + 0.0317447i
\(118\) 69.3590i 0.587788i
\(119\) −170.542 + 55.4123i −1.43312 + 0.465650i
\(120\) 59.1047 + 1.81859i 0.492540 + 0.0151549i
\(121\) −19.6388 + 60.4419i −0.162304 + 0.499520i
\(122\) −75.5202 + 232.427i −0.619018 + 1.90514i
\(123\) 50.1434 + 27.2054i 0.407670 + 0.221182i
\(124\) 55.5109 0.447668
\(125\) 17.7405 + 123.735i 0.141924 + 0.989878i
\(126\) 123.886 + 100.193i 0.983225 + 0.795184i
\(127\) −104.138 143.334i −0.819984 1.12861i −0.989705 0.143119i \(-0.954287\pi\)
0.169721 0.985492i \(-0.445713\pi\)
\(128\) 36.0461 110.939i 0.281610 0.866707i
\(129\) 121.193 15.9938i 0.939477 0.123983i
\(130\) −2.57167 + 4.98672i −0.0197820 + 0.0383594i
\(131\) −110.681 + 35.9623i −0.844891 + 0.274522i −0.699304 0.714824i \(-0.746507\pi\)
−0.145586 + 0.989346i \(0.546507\pi\)
\(132\) −42.9700 90.0162i −0.325530 0.681941i
\(133\) 79.5245 25.8391i 0.597928 0.194279i
\(134\) −144.483 + 198.864i −1.07823 + 1.48406i
\(135\) 11.1242 134.541i 0.0824012 0.996599i
\(136\) 82.0264 59.5957i 0.603135 0.438203i
\(137\) 82.1209 + 59.6643i 0.599423 + 0.435506i 0.845674 0.533700i \(-0.179199\pi\)
−0.246251 + 0.969206i \(0.579199\pi\)
\(138\) −177.279 32.7994i −1.28463 0.237677i
\(139\) −13.3673 + 9.71192i −0.0961677 + 0.0698699i −0.634830 0.772652i \(-0.718930\pi\)
0.538662 + 0.842522i \(0.318930\pi\)
\(140\) 60.0345 + 60.6247i 0.428818 + 0.433033i
\(141\) −74.8212 13.8431i −0.530647 0.0981783i
\(142\) 38.6403 12.5550i 0.272115 0.0884155i
\(143\) −6.00370 −0.0419839
\(144\) −166.402 63.7566i −1.15557 0.442754i
\(145\) 119.406 + 120.580i 0.823493 + 0.831589i
\(146\) 97.0248 + 31.5253i 0.664553 + 0.215926i
\(147\) 0.152933 + 1.15885i 0.00104036 + 0.00788332i
\(148\) 59.1710 + 81.4419i 0.399804 + 0.550283i
\(149\) 163.472i 1.09713i −0.836109 0.548563i \(-0.815175\pi\)
0.836109 0.548563i \(-0.184825\pi\)
\(150\) 36.4766 186.913i 0.243177 1.24609i
\(151\) −94.5637 −0.626250 −0.313125 0.949712i \(-0.601376\pi\)
−0.313125 + 0.949712i \(0.601376\pi\)
\(152\) −38.2494 + 27.7898i −0.251641 + 0.182828i
\(153\) −126.191 194.052i −0.824777 1.26831i
\(154\) −74.3192 + 228.731i −0.482592 + 1.48527i
\(155\) −18.2881 + 111.921i −0.117988 + 0.722068i
\(156\) 2.35304 2.23435i 0.0150836 0.0143228i
\(157\) 105.152i 0.669756i −0.942262 0.334878i \(-0.891305\pi\)
0.942262 0.334878i \(-0.108695\pi\)
\(158\) −9.02911 27.7887i −0.0571462 0.175878i
\(159\) −210.786 38.9988i −1.32570 0.245275i
\(160\) −153.343 79.0793i −0.958393 0.494246i
\(161\) 96.9913 + 133.497i 0.602431 + 0.829175i
\(162\) −83.4204 + 187.997i −0.514941 + 1.16047i
\(163\) −36.7479 + 50.5791i −0.225447 + 0.310301i −0.906724 0.421725i \(-0.861425\pi\)
0.681277 + 0.732026i \(0.261425\pi\)
\(164\) −27.3562 37.6525i −0.166806 0.229589i
\(165\) 195.647 56.9799i 1.18574 0.345333i
\(166\) 63.9198 + 46.4404i 0.385059 + 0.279762i
\(167\) −37.6809 115.970i −0.225634 0.694431i −0.998227 0.0595283i \(-0.981040\pi\)
0.772592 0.634902i \(-0.218960\pi\)
\(168\) 35.5215 + 74.4125i 0.211437 + 0.442932i
\(169\) 52.1635 + 160.543i 0.308660 + 0.949957i
\(170\) −146.817 291.663i −0.863629 1.71566i
\(171\) 58.8435 + 90.4873i 0.344114 + 0.529166i
\(172\) −94.8476 30.8179i −0.551439 0.179174i
\(173\) 124.504 90.4577i 0.719678 0.522877i −0.166603 0.986024i \(-0.553280\pi\)
0.886281 + 0.463147i \(0.153280\pi\)
\(174\) −111.376 233.317i −0.640092 1.34090i
\(175\) −142.009 + 101.068i −0.811483 + 0.577533i
\(176\) 268.980i 1.52830i
\(177\) 72.0281 + 39.0789i 0.406938 + 0.220785i
\(178\) 146.478 + 47.5937i 0.822912 + 0.267380i
\(179\) 164.186 + 53.3472i 0.917239 + 0.298029i 0.729334 0.684158i \(-0.239830\pi\)
0.187905 + 0.982187i \(0.439830\pi\)
\(180\) −55.4744 + 95.1445i −0.308191 + 0.528581i
\(181\) −23.8974 73.5485i −0.132030 0.406345i 0.863087 0.505056i \(-0.168528\pi\)
−0.995116 + 0.0987106i \(0.968528\pi\)
\(182\) −7.82380 −0.0429879
\(183\) 198.821 + 209.383i 1.08645 + 1.14417i
\(184\) −75.4821 54.8410i −0.410229 0.298049i
\(185\) −183.696 + 92.4690i −0.992954 + 0.499832i
\(186\) 82.3931 151.862i 0.442973 0.816463i
\(187\) 205.370 282.668i 1.09824 1.51159i
\(188\) 50.2211 + 36.4877i 0.267133 + 0.194084i
\(189\) 173.850 72.2019i 0.919842 0.382021i
\(190\) 68.4615 + 136.004i 0.360324 + 0.715810i
\(191\) 51.5237 70.9163i 0.269758 0.371290i −0.652550 0.757746i \(-0.726301\pi\)
0.922308 + 0.386456i \(0.126301\pi\)
\(192\) 17.3925 + 18.3164i 0.0905860 + 0.0953980i
\(193\) 32.0812i 0.166224i −0.996540 0.0831119i \(-0.973514\pi\)
0.996540 0.0831119i \(-0.0264859\pi\)
\(194\) 319.732 103.887i 1.64810 0.535501i
\(195\) 3.72967 + 5.48030i 0.0191265 + 0.0281041i
\(196\) 0.294682 0.906937i 0.00150348 0.00462723i
\(197\) 90.4803 278.470i 0.459291 1.41355i −0.406732 0.913547i \(-0.633332\pi\)
0.866023 0.500004i \(-0.166668\pi\)
\(198\) −310.038 16.0543i −1.56585 0.0810823i
\(199\) 179.944 0.904241 0.452121 0.891957i \(-0.350668\pi\)
0.452121 + 0.891957i \(0.350668\pi\)
\(200\) 58.7061 79.1618i 0.293531 0.395809i
\(201\) 125.110 + 262.088i 0.622439 + 1.30392i
\(202\) 271.695 + 373.956i 1.34502 + 1.85127i
\(203\) −73.1231 + 225.050i −0.360212 + 1.10862i
\(204\) 24.7072 + 187.218i 0.121114 + 0.917735i
\(205\) 84.9273 42.7506i 0.414280 0.208540i
\(206\) −84.5083 + 27.4584i −0.410235 + 0.133293i
\(207\) −133.946 + 165.621i −0.647081 + 0.800100i
\(208\) 8.32196 2.70397i 0.0400094 0.0129999i
\(209\) −95.7654 + 131.810i −0.458208 + 0.630669i
\(210\) 254.960 74.2542i 1.21409 0.353591i
\(211\) −262.367 + 190.621i −1.24344 + 0.903415i −0.997823 0.0659506i \(-0.978992\pi\)
−0.245621 + 0.969366i \(0.578992\pi\)
\(212\) 141.482 + 102.793i 0.667370 + 0.484873i
\(213\) 8.73297 47.2012i 0.0409999 0.221602i
\(214\) 292.746 212.693i 1.36797 0.993891i
\(215\) 93.3824 181.078i 0.434337 0.842224i
\(216\) −80.8720 + 69.2023i −0.374407 + 0.320381i
\(217\) −150.395 + 48.8662i −0.693063 + 0.225190i
\(218\) −365.232 −1.67538
\(219\) 87.4051 82.9962i 0.399110 0.378978i
\(220\) −164.068 26.8091i −0.745764 0.121860i
\(221\) 10.8100 + 3.51237i 0.0489139 + 0.0158931i
\(222\) 310.628 40.9936i 1.39922 0.184656i
\(223\) −157.480 216.752i −0.706187 0.971983i −0.999871 0.0160803i \(-0.994881\pi\)
0.293684 0.955903i \(-0.405119\pi\)
\(224\) 240.584i 1.07403i
\(225\) −173.554 143.193i −0.771350 0.636411i
\(226\) −183.800 −0.813276
\(227\) −19.7762 + 14.3683i −0.0871199 + 0.0632963i −0.630493 0.776195i \(-0.717147\pi\)
0.543373 + 0.839492i \(0.317147\pi\)
\(228\) −11.5211 87.3007i −0.0505311 0.382898i
\(229\) −54.2684 + 167.021i −0.236980 + 0.729349i 0.759873 + 0.650072i \(0.225261\pi\)
−0.996853 + 0.0792770i \(0.974739\pi\)
\(230\) −213.508 + 211.429i −0.928294 + 0.919256i
\(231\) 195.659 + 206.053i 0.847010 + 0.892004i
\(232\) 133.796i 0.576708i
\(233\) 28.6275 + 88.1063i 0.122865 + 0.378139i 0.993506 0.113780i \(-0.0362958\pi\)
−0.870641 + 0.491918i \(0.836296\pi\)
\(234\) −2.62001 9.75365i −0.0111966 0.0416822i
\(235\) −90.1117 + 89.2344i −0.383454 + 0.379721i
\(236\) −39.2955 54.0856i −0.166506 0.229176i
\(237\) −33.9454 6.28044i −0.143229 0.0264998i
\(238\) 267.631 368.363i 1.12450 1.54774i
\(239\) −44.1110 60.7136i −0.184565 0.254032i 0.706702 0.707512i \(-0.250182\pi\)
−0.891266 + 0.453480i \(0.850182\pi\)
\(240\) −245.530 + 167.098i −1.02304 + 0.696242i
\(241\) −25.5230 18.5436i −0.105905 0.0769443i 0.533572 0.845754i \(-0.320849\pi\)
−0.639477 + 0.768810i \(0.720849\pi\)
\(242\) −49.8665 153.473i −0.206060 0.634187i
\(243\) 148.230 + 192.554i 0.609999 + 0.792402i
\(244\) −72.7922 224.031i −0.298329 0.918161i
\(245\) 1.73148 + 0.892926i 0.00706725 + 0.00364460i
\(246\) −143.611 + 18.9523i −0.583784 + 0.0770420i
\(247\) −5.04075 1.63784i −0.0204079 0.00663093i
\(248\) 72.3363 52.5554i 0.291679 0.211917i
\(249\) 84.2419 40.2136i 0.338321 0.161500i
\(250\) −221.117 227.704i −0.884467 0.910814i
\(251\) 349.893i 1.39400i 0.717072 + 0.696999i \(0.245482\pi\)
−0.717072 + 0.696999i \(0.754518\pi\)
\(252\) −153.370 7.94177i −0.608613 0.0315150i
\(253\) −305.785 99.3555i −1.20864 0.392710i
\(254\) 427.850 + 139.017i 1.68445 + 0.547310i
\(255\) −385.607 11.8647i −1.51219 0.0465284i
\(256\) 101.935 + 313.723i 0.398183 + 1.22548i
\(257\) 5.11640 0.0199082 0.00995408 0.999950i \(-0.496831\pi\)
0.00995408 + 0.999950i \(0.496831\pi\)
\(258\) −225.088 + 213.735i −0.872436 + 0.828428i
\(259\) −232.004 168.561i −0.895770 0.650815i
\(260\) −0.819876 5.34560i −0.00315337 0.0205600i
\(261\) −305.048 15.7959i −1.16877 0.0605207i
\(262\) 173.691 239.066i 0.662945 0.912465i
\(263\) 239.867 + 174.274i 0.912043 + 0.662638i 0.941531 0.336927i \(-0.109387\pi\)
−0.0294874 + 0.999565i \(0.509387\pi\)
\(264\) −141.218 76.6180i −0.534916 0.290220i
\(265\) −253.862 + 251.391i −0.957970 + 0.948644i
\(266\) −124.798 + 171.770i −0.469165 + 0.645751i
\(267\) 131.956 125.299i 0.494215 0.469286i
\(268\) 236.929i 0.884065i
\(269\) −217.290 + 70.6018i −0.807769 + 0.262460i −0.683653 0.729808i \(-0.739610\pi\)
−0.124116 + 0.992268i \(0.539610\pi\)
\(270\) 177.950 + 292.983i 0.659074 + 1.08512i
\(271\) 77.2828 237.852i 0.285176 0.877682i −0.701170 0.712995i \(-0.747338\pi\)
0.986346 0.164688i \(-0.0526616\pi\)
\(272\) −157.363 + 484.313i −0.578540 + 1.78056i
\(273\) −4.40816 + 8.12488i −0.0161471 + 0.0297615i
\(274\) −257.745 −0.940676
\(275\) 108.105 321.961i 0.393108 1.17077i
\(276\) 156.823 74.8610i 0.568200 0.271235i
\(277\) 194.827 + 268.157i 0.703348 + 0.968075i 0.999915 + 0.0130633i \(0.00415828\pi\)
−0.296567 + 0.955012i \(0.595842\pi\)
\(278\) 12.9647 39.9013i 0.0466357 0.143530i
\(279\) −111.283 171.127i −0.398865 0.613360i
\(280\) 135.628 + 22.1620i 0.484386 + 0.0791499i
\(281\) −460.102 + 149.496i −1.63737 + 0.532015i −0.975949 0.217998i \(-0.930047\pi\)
−0.661423 + 0.750013i \(0.730047\pi\)
\(282\) 174.362 83.2332i 0.618305 0.295153i
\(283\) 473.697 153.914i 1.67384 0.543864i 0.690141 0.723675i \(-0.257549\pi\)
0.983701 + 0.179811i \(0.0575487\pi\)
\(284\) −23.0184 + 31.6821i −0.0810506 + 0.111557i
\(285\) 179.811 + 5.53259i 0.630915 + 0.0194126i
\(286\) 12.3331 8.96049i 0.0431226 0.0313304i
\(287\) 107.261 + 77.9298i 0.373732 + 0.271533i
\(288\) 299.927 80.5659i 1.04141 0.279743i
\(289\) −301.345 + 218.940i −1.04272 + 0.757579i
\(290\) −425.256 69.4879i −1.46640 0.239613i
\(291\) 72.2615 390.569i 0.248321 1.34216i
\(292\) −93.5199 + 30.3865i −0.320274 + 0.104063i
\(293\) −340.665 −1.16268 −0.581339 0.813662i \(-0.697471\pi\)
−0.581339 + 0.813662i \(0.697471\pi\)
\(294\) −2.04374 2.15230i −0.00695149 0.00732076i
\(295\) 121.993 61.4088i 0.413536 0.208165i
\(296\) 154.212 + 50.1064i 0.520985 + 0.169278i
\(297\) −191.357 + 312.924i −0.644299 + 1.05361i
\(298\) 243.981 + 335.811i 0.818728 + 1.12688i
\(299\) 10.4595i 0.0349814i
\(300\) 77.4518 + 166.419i 0.258173 + 0.554731i
\(301\) 284.098 0.943848
\(302\) 194.257 141.136i 0.643235 0.467338i
\(303\) 541.427 71.4522i 1.78689 0.235816i
\(304\) 73.3792 225.838i 0.241379 0.742888i
\(305\) 475.672 72.9557i 1.55958 0.239199i
\(306\) 548.848 + 210.290i 1.79362 + 0.687222i
\(307\) 206.808i 0.673641i 0.941569 + 0.336821i \(0.109352\pi\)
−0.941569 + 0.336821i \(0.890648\pi\)
\(308\) −71.6346 220.469i −0.232580 0.715807i
\(309\) −19.0995 + 103.231i −0.0618105 + 0.334082i
\(310\) −129.473 257.207i −0.417654 0.829701i
\(311\) 114.814 + 158.028i 0.369177 + 0.508128i 0.952677 0.303985i \(-0.0983172\pi\)
−0.583500 + 0.812113i \(0.698317\pi\)
\(312\) 0.950862 5.13935i 0.00304764 0.0164723i
\(313\) −277.776 + 382.326i −0.887464 + 1.22149i 0.0868331 + 0.996223i \(0.472325\pi\)
−0.974297 + 0.225267i \(0.927675\pi\)
\(314\) 156.938 + 216.007i 0.499804 + 0.687921i
\(315\) 66.5402 306.608i 0.211239 0.973358i
\(316\) 22.7846 + 16.5540i 0.0721032 + 0.0523860i
\(317\) 15.1899 + 46.7499i 0.0479178 + 0.147476i 0.972153 0.234349i \(-0.0752958\pi\)
−0.924235 + 0.381825i \(0.875296\pi\)
\(318\) 491.211 234.484i 1.54469 0.737371i
\(319\) −142.479 438.504i −0.446641 1.37462i
\(320\) 41.6109 6.38203i 0.130034 0.0199438i
\(321\) −55.9354 423.849i −0.174254 1.32040i
\(322\) −398.488 129.477i −1.23754 0.402101i
\(323\) 249.544 181.304i 0.772582 0.561314i
\(324\) −41.4595 193.861i −0.127961 0.598335i
\(325\) 11.0479 + 0.108085i 0.0339934 + 0.000332570i
\(326\) 158.748i 0.486957i
\(327\) −205.783 + 379.287i −0.629305 + 1.15990i
\(328\) −71.2957 23.1654i −0.217365 0.0706262i
\(329\) −168.183 54.6461i −0.511196 0.166098i
\(330\) −316.863 + 409.052i −0.960192 + 1.23955i
\(331\) 6.07919 + 18.7098i 0.0183661 + 0.0565252i 0.959820 0.280618i \(-0.0905394\pi\)
−0.941453 + 0.337143i \(0.890539\pi\)
\(332\) −76.1551 −0.229383
\(333\) 132.446 345.678i 0.397736 1.03807i
\(334\) 250.490 + 181.992i 0.749971 + 0.544886i
\(335\) 477.696 + 78.0567i 1.42596 + 0.233005i
\(336\) −364.014 197.496i −1.08338 0.587787i
\(337\) 274.595 377.948i 0.814822 1.12151i −0.175739 0.984437i \(-0.556232\pi\)
0.990561 0.137070i \(-0.0437684\pi\)
\(338\) −346.766 251.940i −1.02594 0.745385i
\(339\) −103.559 + 190.873i −0.305483 + 0.563048i
\(340\) 279.729 + 144.257i 0.822732 + 0.424285i
\(341\) 181.109 249.275i 0.531112 0.731013i
\(342\) −255.931 98.0593i −0.748336 0.286723i
\(343\) 344.350i 1.00394i
\(344\) −152.773 + 49.6390i −0.444108 + 0.144299i
\(345\) 99.2686 + 340.849i 0.287735 + 0.987969i
\(346\) −120.755 + 371.644i −0.349002 + 1.07412i
\(347\) 79.0960 243.432i 0.227942 0.701534i −0.770037 0.637999i \(-0.779762\pi\)
0.997980 0.0635354i \(-0.0202376\pi\)
\(348\) 219.037 + 118.839i 0.629416 + 0.341491i
\(349\) −17.4643 −0.0500411 −0.0250205 0.999687i \(-0.507965\pi\)
−0.0250205 + 0.999687i \(0.507965\pi\)
\(350\) 140.878 419.567i 0.402509 1.19876i
\(351\) −11.6052 2.77466i −0.0330632 0.00790502i
\(352\) 275.537 + 379.245i 0.782776 + 1.07740i
\(353\) −22.0131 + 67.7494i −0.0623601 + 0.191925i −0.977383 0.211478i \(-0.932172\pi\)
0.915023 + 0.403402i \(0.132172\pi\)
\(354\) −206.288 + 27.2239i −0.582735 + 0.0769037i
\(355\) −56.2938 56.8472i −0.158574 0.160133i
\(356\) −141.187 + 45.8745i −0.396593 + 0.128861i
\(357\) −231.747 485.477i −0.649151 1.35988i
\(358\) −416.898 + 135.458i −1.16452 + 0.378375i
\(359\) 90.9521 125.185i 0.253348 0.348704i −0.663332 0.748325i \(-0.730858\pi\)
0.916680 + 0.399621i \(0.130858\pi\)
\(360\) 17.7902 + 176.504i 0.0494171 + 0.490289i
\(361\) 175.691 127.647i 0.486680 0.353594i
\(362\) 158.862 + 115.420i 0.438845 + 0.318840i
\(363\) −187.475 34.6860i −0.516461 0.0955536i
\(364\) 6.10094 4.43260i 0.0167608 0.0121775i
\(365\) −30.4547 198.565i −0.0834376 0.544014i
\(366\) −720.930 133.384i −1.96976 0.364437i
\(367\) −421.585 + 136.981i −1.14873 + 0.373246i −0.820666 0.571408i \(-0.806397\pi\)
−0.328067 + 0.944654i \(0.606397\pi\)
\(368\) 468.608 1.27339
\(369\) −61.2329 + 159.815i −0.165943 + 0.433104i
\(370\) 239.348 464.120i 0.646886 1.25438i
\(371\) −473.805 153.949i −1.27710 0.414956i
\(372\) 21.7884 + 165.101i 0.0585710 + 0.443820i
\(373\) −77.8079 107.093i −0.208600 0.287114i 0.691878 0.722014i \(-0.256784\pi\)
−0.900478 + 0.434901i \(0.856784\pi\)
\(374\) 887.184i 2.37215i
\(375\) −361.050 + 101.331i −0.962800 + 0.270216i
\(376\) 99.9882 0.265926
\(377\) 12.1346 8.81628i 0.0321872 0.0233854i
\(378\) −249.369 + 407.791i −0.659708 + 1.07881i
\(379\) 128.165 394.451i 0.338166 1.04077i −0.626976 0.779039i \(-0.715707\pi\)
0.965141 0.261729i \(-0.0842926\pi\)
\(380\) −130.439 67.2678i −0.343261 0.177020i
\(381\) 385.430 365.988i 1.01163 0.960598i
\(382\) 222.578i 0.582666i
\(383\) −101.612 312.730i −0.265306 0.816527i −0.991623 0.129167i \(-0.958770\pi\)
0.726317 0.687360i \(-0.241230\pi\)
\(384\) 344.103 + 63.6646i 0.896102 + 0.165793i
\(385\) 468.107 71.7955i 1.21586 0.186482i
\(386\) 47.8811 + 65.9026i 0.124044 + 0.170732i
\(387\) 95.1379 + 354.175i 0.245834 + 0.915180i
\(388\) −190.467 + 262.155i −0.490894 + 0.675658i
\(389\) −88.8453 122.285i −0.228394 0.314358i 0.679404 0.733764i \(-0.262238\pi\)
−0.907799 + 0.419406i \(0.862238\pi\)
\(390\) −15.8410 5.69135i −0.0406179 0.0145932i
\(391\) 492.455 + 357.790i 1.25948 + 0.915063i
\(392\) −0.474650 1.46082i −0.00121084 0.00372659i
\(393\) −150.403 315.072i −0.382704 0.801711i
\(394\) 229.746 + 707.086i 0.583112 + 1.79463i
\(395\) −40.8825 + 40.4845i −0.103500 + 0.102492i
\(396\) 250.861 163.134i 0.633488 0.411954i
\(397\) −559.798 181.889i −1.41007 0.458159i −0.497637 0.867386i \(-0.665799\pi\)
−0.912433 + 0.409226i \(0.865799\pi\)
\(398\) −369.649 + 268.566i −0.928766 + 0.674788i
\(399\) 108.065 + 226.381i 0.270839 + 0.567370i
\(400\) −4.84247 + 494.971i −0.0121062 + 1.23743i
\(401\) 28.4184i 0.0708688i 0.999372 + 0.0354344i \(0.0112815\pi\)
−0.999372 + 0.0354344i \(0.988719\pi\)
\(402\) −648.173 351.667i −1.61237 0.874794i
\(403\) 9.53295 + 3.09744i 0.0236550 + 0.00768596i
\(404\) −423.731 137.679i −1.04884 0.340789i
\(405\) 404.519 19.7227i 0.998814 0.0486979i
\(406\) −185.673 571.443i −0.457323 1.40749i
\(407\) 558.771 1.37290
\(408\) 209.446 + 220.572i 0.513348 + 0.540618i
\(409\) −208.962 151.820i −0.510910 0.371198i 0.302258 0.953226i \(-0.402259\pi\)
−0.813169 + 0.582028i \(0.802259\pi\)
\(410\) −110.656 + 214.574i −0.269893 + 0.523351i
\(411\) −145.221 + 267.664i −0.353337 + 0.651250i
\(412\) 50.3423 69.2903i 0.122190 0.168180i
\(413\) 154.074 + 111.942i 0.373061 + 0.271045i
\(414\) 27.9693 540.139i 0.0675587 1.30468i
\(415\) 25.0894 153.543i 0.0604564 0.369984i
\(416\) −8.96354 + 12.3373i −0.0215470 + 0.0296569i
\(417\) −34.1321 35.9452i −0.0818515 0.0861996i
\(418\) 413.699i 0.989710i
\(419\) 225.854 73.3843i 0.539030 0.175141i −0.0268343 0.999640i \(-0.508543\pi\)
0.565864 + 0.824498i \(0.308543\pi\)
\(420\) −156.747 + 202.351i −0.373206 + 0.481788i
\(421\) 132.441 407.611i 0.314586 0.968197i −0.661338 0.750088i \(-0.730011\pi\)
0.975924 0.218109i \(-0.0699889\pi\)
\(422\) 254.465 783.163i 0.602997 1.85584i
\(423\) 11.8045 227.968i 0.0279067 0.538931i
\(424\) 281.686 0.664354
\(425\) −383.007 + 516.462i −0.901192 + 1.21520i
\(426\) 52.5079 + 109.997i 0.123258 + 0.258208i
\(427\) 394.430 + 542.886i 0.923723 + 1.27140i
\(428\) −107.780 + 331.712i −0.251822 + 0.775029i
\(429\) −2.35649 17.8563i −0.00549299 0.0416230i
\(430\) 78.4280 + 511.351i 0.182391 + 1.18919i
\(431\) −631.269 + 205.112i −1.46466 + 0.475898i −0.929491 0.368846i \(-0.879753\pi\)
−0.535172 + 0.844743i \(0.679753\pi\)
\(432\) 124.312 519.940i 0.287758 1.20356i
\(433\) −559.669 + 181.848i −1.29254 + 0.419971i −0.872980 0.487756i \(-0.837815\pi\)
−0.419559 + 0.907728i \(0.637815\pi\)
\(434\) 236.015 324.847i 0.543813 0.748495i
\(435\) −311.764 + 402.469i −0.716698 + 0.925216i
\(436\) 284.805 206.923i 0.653223 0.474594i
\(437\) −229.635 166.839i −0.525480 0.381783i
\(438\) −55.6799 + 300.946i −0.127123 + 0.687092i
\(439\) −248.454 + 180.512i −0.565954 + 0.411190i −0.833633 0.552318i \(-0.813743\pi\)
0.267679 + 0.963508i \(0.413743\pi\)
\(440\) −239.179 + 120.398i −0.543589 + 0.273631i
\(441\) −3.38663 + 0.909712i −0.00767944 + 0.00206284i
\(442\) −27.4485 + 8.91857i −0.0621008 + 0.0201778i
\(443\) −567.297 −1.28058 −0.640290 0.768133i \(-0.721186\pi\)
−0.640290 + 0.768133i \(0.721186\pi\)
\(444\) −219.000 + 207.954i −0.493244 + 0.468364i
\(445\) −45.9775 299.774i −0.103320 0.673649i
\(446\) 647.003 + 210.224i 1.45068 + 0.471355i
\(447\) 486.200 64.1639i 1.08770 0.143543i
\(448\) 34.5040 + 47.4906i 0.0770178 + 0.106006i
\(449\) 21.4607i 0.0477967i −0.999714 0.0238983i \(-0.992392\pi\)
0.999714 0.0238983i \(-0.00760780\pi\)
\(450\) 570.236 + 35.1244i 1.26719 + 0.0780542i
\(451\) −258.333 −0.572801
\(452\) 143.326 104.133i 0.317093 0.230382i
\(453\) −37.1169 281.253i −0.0819359 0.620867i
\(454\) 19.1806 59.0318i 0.0422480 0.130026i
\(455\) 6.92701 + 13.7610i 0.0152242 + 0.0302440i
\(456\) −97.6659 102.854i −0.214180 0.225557i
\(457\) 442.410i 0.968075i 0.875047 + 0.484037i \(0.160830\pi\)
−0.875047 + 0.484037i \(0.839170\pi\)
\(458\) −137.797 424.097i −0.300868 0.925976i
\(459\) 527.620 451.485i 1.14950 0.983628i
\(460\) 46.7060 285.834i 0.101535 0.621378i
\(461\) 270.395 + 372.166i 0.586540 + 0.807303i 0.994393 0.105745i \(-0.0337227\pi\)
−0.407854 + 0.913047i \(0.633723\pi\)
\(462\) −709.465 131.263i −1.53564 0.284118i
\(463\) 110.953 152.714i 0.239640 0.329836i −0.672209 0.740361i \(-0.734655\pi\)
0.911849 + 0.410525i \(0.134655\pi\)
\(464\) 394.990 + 543.658i 0.851272 + 1.17168i
\(465\) −340.054 10.4631i −0.731299 0.0225013i
\(466\) −190.306 138.266i −0.408382 0.296707i
\(467\) 38.8708 + 119.632i 0.0832352 + 0.256172i 0.984010 0.178116i \(-0.0570002\pi\)
−0.900774 + 0.434288i \(0.857000\pi\)
\(468\) 7.56902 + 6.12145i 0.0161731 + 0.0130800i
\(469\) 208.569 + 641.910i 0.444710 + 1.36868i
\(470\) 51.9295 317.801i 0.110488 0.676172i
\(471\) 312.743 41.2728i 0.663999 0.0876280i
\(472\) −102.412 33.2757i −0.216975 0.0704994i
\(473\) −447.839 + 325.374i −0.946805 + 0.687894i
\(474\) 79.1056 37.7618i 0.166889 0.0796662i
\(475\) 178.598 240.829i 0.375996 0.507009i
\(476\) 438.874i 0.922004i
\(477\) 33.2557 642.229i 0.0697184 1.34639i
\(478\) 181.229 + 58.8850i 0.379141 + 0.123190i
\(479\) 518.995 + 168.632i 1.08350 + 0.352049i 0.795730 0.605651i \(-0.207087\pi\)
0.287766 + 0.957701i \(0.407087\pi\)
\(480\) 175.010 487.114i 0.364605 1.01482i
\(481\) 5.61714 + 17.2878i 0.0116781 + 0.0359413i
\(482\) 80.1068 0.166197
\(483\) −358.979 + 340.871i −0.743228 + 0.705738i
\(484\) 125.836 + 91.4253i 0.259992 + 0.188895i
\(485\) −465.806 470.386i −0.960425 0.969867i
\(486\) −591.886 174.320i −1.21787 0.358683i
\(487\) −183.292 + 252.279i −0.376369 + 0.518027i −0.954618 0.297833i \(-0.903736\pi\)
0.578249 + 0.815860i \(0.303736\pi\)
\(488\) −306.959 223.019i −0.629015 0.457006i
\(489\) −164.857 89.4433i −0.337130 0.182911i
\(490\) −4.88956 + 0.749932i −0.00997870 + 0.00153047i
\(491\) 207.347 285.389i 0.422296 0.581241i −0.543867 0.839171i \(-0.683041\pi\)
0.966163 + 0.257931i \(0.0830406\pi\)
\(492\) 101.249 96.1419i 0.205791 0.195410i
\(493\) 872.905i 1.77060i
\(494\) 12.7994 4.15878i 0.0259097 0.00841858i
\(495\) 246.263 + 559.529i 0.497501 + 1.13036i
\(496\) −138.773 + 427.099i −0.279784 + 0.861087i
\(497\) 34.4736 106.099i 0.0693634 0.213479i
\(498\) −113.035 + 208.339i −0.226977 + 0.418352i
\(499\) 80.4065 0.161135 0.0805677 0.996749i \(-0.474327\pi\)
0.0805677 + 0.996749i \(0.474327\pi\)
\(500\) 301.431 + 52.2873i 0.602863 + 0.104575i
\(501\) 330.129 157.590i 0.658940 0.314551i
\(502\) −522.214 718.766i −1.04027 1.43181i
\(503\) −154.019 + 474.023i −0.306201 + 0.942391i 0.673025 + 0.739620i \(0.264995\pi\)
−0.979226 + 0.202771i \(0.935005\pi\)
\(504\) −207.376 + 134.856i −0.411461 + 0.267571i
\(505\) 417.185 808.965i 0.826110 1.60191i
\(506\) 776.444 252.282i 1.53448 0.498581i
\(507\) −457.014 + 218.160i −0.901408 + 0.430295i
\(508\) −412.394 + 133.995i −0.811800 + 0.263770i
\(509\) 137.249 188.907i 0.269645 0.371134i −0.652625 0.757681i \(-0.726332\pi\)
0.922270 + 0.386547i \(0.126332\pi\)
\(510\) 809.840 551.144i 1.58792 1.08067i
\(511\) 226.623 164.651i 0.443489 0.322214i
\(512\) −300.150 218.071i −0.586230 0.425921i
\(513\) −246.032 + 210.530i −0.479594 + 0.410390i
\(514\) −10.5103 + 7.63620i −0.0204481 + 0.0148564i
\(515\) 123.117 + 124.328i 0.239063 + 0.241413i
\(516\) 54.4305 294.193i 0.105485 0.570142i
\(517\) 327.702 106.477i 0.633852 0.205951i
\(518\) 728.170 1.40573
\(519\) 317.909 + 334.797i 0.612542 + 0.645081i
\(520\) −6.12937 6.18963i −0.0117873 0.0119031i
\(521\) 216.308 + 70.2826i 0.415178 + 0.134899i 0.509155 0.860675i \(-0.329958\pi\)
−0.0939771 + 0.995574i \(0.529958\pi\)
\(522\) 650.219 422.835i 1.24563 0.810028i
\(523\) −146.764 202.004i −0.280620 0.386241i 0.645319 0.763913i \(-0.276725\pi\)
−0.925939 + 0.377672i \(0.876725\pi\)
\(524\) 284.827i 0.543563i
\(525\) −356.338 382.696i −0.678739 0.728945i
\(526\) −752.849 −1.43127
\(527\) −471.932 + 342.878i −0.895506 + 0.650623i
\(528\) 800.004 105.577i 1.51516 0.199956i
\(529\) 9.62402 29.6197i 0.0181929 0.0559918i
\(530\) 146.295 895.306i 0.276029 1.68926i
\(531\) −87.9575 + 229.565i −0.165645 + 0.432327i
\(532\) 204.649i 0.384679i
\(533\) −2.59694 7.99256i −0.00487231 0.0149954i
\(534\) −84.0600 + 454.339i −0.157416 + 0.850821i
\(535\) −633.288 326.588i −1.18372 0.610445i
\(536\) −224.315 308.743i −0.418498 0.576013i
\(537\) −94.2218 + 509.262i −0.175460 + 0.948347i
\(538\) 340.994 469.337i 0.633817 0.872374i
\(539\) −3.11124 4.28225i −0.00577224 0.00794481i
\(540\) −304.754 127.648i −0.564360 0.236385i
\(541\) 95.2741 + 69.2207i 0.176107 + 0.127950i 0.672347 0.740236i \(-0.265286\pi\)
−0.496240 + 0.868186i \(0.665286\pi\)
\(542\) 196.235 + 603.950i 0.362058 + 1.11430i
\(543\) 209.369 99.9441i 0.385578 0.184059i
\(544\) −274.248 844.049i −0.504133 1.55156i
\(545\) 323.368 + 642.393i 0.593335 + 1.17870i
\(546\) −3.07090 23.2696i −0.00562436 0.0426184i
\(547\) 689.808 + 224.132i 1.26108 + 0.409748i 0.861877 0.507117i \(-0.169289\pi\)
0.399198 + 0.916865i \(0.369289\pi\)
\(548\) 200.988 146.026i 0.366766 0.266471i
\(549\) −544.710 + 673.521i −0.992187 + 1.22681i
\(550\) 258.451 + 822.731i 0.469911 + 1.49588i
\(551\) 407.040i 0.738730i
\(552\) 133.481 246.025i 0.241814 0.445698i
\(553\) −76.3025 24.7922i −0.137979 0.0448322i
\(554\) −800.446 260.081i −1.44485 0.469460i
\(555\) −347.125 510.058i −0.625450 0.919023i
\(556\) 12.4964 + 38.4600i 0.0224755 + 0.0691726i
\(557\) 66.5010 0.119391 0.0596957 0.998217i \(-0.480987\pi\)
0.0596957 + 0.998217i \(0.480987\pi\)
\(558\) 484.010 + 185.447i 0.867402 + 0.332343i
\(559\) −14.5687 10.5848i −0.0260621 0.0189352i
\(560\) −616.526 + 310.347i −1.10094 + 0.554190i
\(561\) 921.324 + 499.866i 1.64229 + 0.891027i
\(562\) 722.039 993.801i 1.28477 1.76833i
\(563\) −420.897 305.800i −0.747598 0.543161i 0.147484 0.989064i \(-0.452883\pi\)
−0.895081 + 0.445903i \(0.852883\pi\)
\(564\) −88.8102 + 163.690i −0.157465 + 0.290230i
\(565\) 162.732 + 323.280i 0.288022 + 0.572177i
\(566\) −743.374 + 1023.17i −1.31338 + 1.80772i
\(567\) 282.981 + 488.727i 0.499085 + 0.861953i
\(568\) 63.0778i 0.111053i
\(569\) 364.152 118.320i 0.639985 0.207944i 0.0289921 0.999580i \(-0.490770\pi\)
0.610993 + 0.791636i \(0.290770\pi\)
\(570\) −377.633 + 257.002i −0.662513 + 0.450880i
\(571\) −276.902 + 852.217i −0.484942 + 1.49250i 0.347122 + 0.937820i \(0.387159\pi\)
−0.832065 + 0.554679i \(0.812841\pi\)
\(572\) −4.54064 + 13.9747i −0.00793818 + 0.0244312i
\(573\) 231.144 + 125.407i 0.403392 + 0.218861i
\(574\) −336.651 −0.586499
\(575\) 560.909 + 188.337i 0.975494 + 0.327542i
\(576\) −47.6502 + 58.9183i −0.0827261 + 0.102289i
\(577\) −518.759 714.010i −0.899062 1.23745i −0.970766 0.240026i \(-0.922844\pi\)
0.0717049 0.997426i \(-0.477156\pi\)
\(578\) 292.270 899.513i 0.505657 1.55625i
\(579\) 95.4163 12.5921i 0.164795 0.0217480i
\(580\) 370.980 186.744i 0.639620 0.321972i
\(581\) 206.326 67.0394i 0.355122 0.115386i
\(582\) 434.479 + 910.174i 0.746528 + 1.56387i
\(583\) 923.199 299.965i 1.58353 0.514520i
\(584\) −93.0973 + 128.137i −0.159413 + 0.219413i
\(585\) −14.8356 + 13.2439i −0.0253601 + 0.0226391i
\(586\) 699.808 508.440i 1.19421 0.867646i
\(587\) −313.505 227.774i −0.534079 0.388031i 0.287802 0.957690i \(-0.407075\pi\)
−0.821881 + 0.569659i \(0.807075\pi\)
\(588\) 2.81309 + 0.520466i 0.00478416 + 0.000885147i
\(589\) 220.064 159.886i 0.373624 0.271453i
\(590\) −158.951 + 308.223i −0.269409 + 0.522411i
\(591\) 863.742 + 159.806i 1.46149 + 0.270400i
\(592\) −774.534 + 251.661i −1.30834 + 0.425104i
\(593\) 134.959 0.227586 0.113793 0.993504i \(-0.463700\pi\)
0.113793 + 0.993504i \(0.463700\pi\)
\(594\) −73.9433 928.421i −0.124484 1.56300i
\(595\) −884.855 144.588i −1.48715 0.243004i
\(596\) −380.509 123.635i −0.638439 0.207441i
\(597\) 70.6293 + 535.192i 0.118307 + 0.896469i
\(598\) 15.6107 + 21.4863i 0.0261048 + 0.0359302i
\(599\) 279.184i 0.466083i −0.972467 0.233041i \(-0.925132\pi\)
0.972467 0.233041i \(-0.0748678\pi\)
\(600\) 258.486 + 143.533i 0.430811 + 0.239222i
\(601\) −135.279 −0.225089 −0.112545 0.993647i \(-0.535900\pi\)
−0.112545 + 0.993647i \(0.535900\pi\)
\(602\) −583.607 + 424.015i −0.969447 + 0.704344i
\(603\) −730.400 + 474.976i −1.21128 + 0.787688i
\(604\) −71.5193 + 220.114i −0.118409 + 0.364427i
\(605\) −225.788 + 223.590i −0.373203 + 0.369570i
\(606\) −1005.58 + 954.858i −1.65937 + 1.57567i
\(607\) 206.038i 0.339436i 0.985493 + 0.169718i \(0.0542857\pi\)
−0.985493 + 0.169718i \(0.945714\pi\)
\(608\) 127.883 + 393.585i 0.210335 + 0.647343i
\(609\) −698.047 129.150i −1.14622 0.212069i
\(610\) −868.260 + 859.807i −1.42338 + 1.40952i
\(611\) 6.58855 + 9.06837i 0.0107832 + 0.0148418i
\(612\) −547.128 + 146.969i −0.894000 + 0.240145i
\(613\) 187.514 258.091i 0.305896 0.421030i −0.628200 0.778052i \(-0.716208\pi\)
0.934096 + 0.357022i \(0.116208\pi\)
\(614\) −308.660 424.834i −0.502703 0.691912i
\(615\) 160.484 + 235.812i 0.260950 + 0.383434i
\(616\) −302.078 219.472i −0.490386 0.356286i
\(617\) 134.643 + 414.390i 0.218223 + 0.671620i 0.998909 + 0.0466971i \(0.0148696\pi\)
−0.780687 + 0.624923i \(0.785130\pi\)
\(618\) −114.837 240.568i −0.185821 0.389269i
\(619\) 67.3502 + 207.283i 0.108805 + 0.334867i 0.990605 0.136757i \(-0.0436679\pi\)
−0.881800 + 0.471624i \(0.843668\pi\)
\(620\) 246.683 + 127.215i 0.397876 + 0.205186i
\(621\) −545.166 333.376i −0.877883 0.536837i
\(622\) −471.712 153.268i −0.758379 0.246412i
\(623\) 342.133 248.574i 0.549170 0.398995i
\(624\) 11.3086 + 23.6899i 0.0181228 + 0.0379647i
\(625\) −204.728 + 590.518i −0.327565 + 0.944829i
\(626\) 1199.97i 1.91689i
\(627\) −429.619 233.090i −0.685197 0.371755i
\(628\) −244.759 79.5270i −0.389743 0.126635i
\(629\) −1006.10 326.901i −1.59952 0.519715i
\(630\) 320.921 + 729.158i 0.509399 + 1.15739i
\(631\) −327.690 1008.53i −0.519319 1.59830i −0.775283 0.631614i \(-0.782393\pi\)
0.255964 0.966686i \(-0.417607\pi\)
\(632\) 45.3633 0.0717774
\(633\) −669.927 705.514i −1.05834 1.11456i
\(634\) −100.978 73.3647i −0.159271 0.115717i
\(635\) −134.296 875.612i −0.211490 1.37892i
\(636\) −250.195 + 461.146i −0.393389 + 0.725072i
\(637\) 0.101212 0.139306i 0.000158889 0.000218691i
\(638\) 947.151 + 688.146i 1.48456 + 1.07860i
\(639\) 143.814 + 7.44693i 0.225061 + 0.0116540i
\(640\) 414.424 410.390i 0.647538 0.641234i
\(641\) 2.10516 2.89750i 0.00328417 0.00452028i −0.807372 0.590043i \(-0.799111\pi\)
0.810656 + 0.585523i \(0.199111\pi\)
\(642\) 747.498 + 787.206i 1.16433 + 1.22618i
\(643\) 885.019i 1.37639i −0.725526 0.688195i \(-0.758403\pi\)
0.725526 0.688195i \(-0.241597\pi\)
\(644\) 384.093 124.799i 0.596418 0.193788i
\(645\) 575.218 + 206.665i 0.891811 + 0.320410i
\(646\) −242.028 + 744.887i −0.374657 + 1.15308i
\(647\) −195.799 + 602.607i −0.302626 + 0.931386i 0.677927 + 0.735129i \(0.262879\pi\)
−0.980553 + 0.196257i \(0.937121\pi\)
\(648\) −237.565 213.368i −0.366613 0.329272i
\(649\) −371.081 −0.571773
\(650\) −22.8563 + 16.2669i −0.0351636 + 0.0250259i
\(651\) −204.370 428.126i −0.313932 0.657643i
\(652\) 89.9390 + 123.790i 0.137943 + 0.189863i
\(653\) 193.035 594.101i 0.295612 0.909802i −0.687403 0.726277i \(-0.741249\pi\)
0.983015 0.183525i \(-0.0587508\pi\)
\(654\) −143.356 1086.28i −0.219199 1.66097i
\(655\) −574.267 93.8366i −0.876743 0.143262i
\(656\) 358.086 116.349i 0.545863 0.177362i
\(657\) 281.155 + 227.385i 0.427938 + 0.346095i
\(658\) 427.049 138.757i 0.649010 0.210876i
\(659\) 319.722 440.059i 0.485162 0.667768i −0.494325 0.869277i \(-0.664585\pi\)
0.979487 + 0.201509i \(0.0645846\pi\)
\(660\) 15.3382 498.496i 0.0232397 0.755297i
\(661\) −138.017 + 100.275i −0.208801 + 0.151703i −0.687271 0.726401i \(-0.741191\pi\)
0.478470 + 0.878104i \(0.341191\pi\)
\(662\) −40.4125 29.3614i −0.0610461 0.0443526i
\(663\) −6.20355 + 33.5298i −0.00935679 + 0.0505729i
\(664\) −99.2379 + 72.1005i −0.149455 + 0.108585i
\(665\) 412.613 + 67.4220i 0.620470 + 0.101386i
\(666\) 243.847 + 907.783i 0.366137 + 1.36304i
\(667\) 763.948 248.222i 1.14535 0.372146i
\(668\) −298.439 −0.446764
\(669\) 582.855 553.455i 0.871233 0.827287i
\(670\) −1097.80 + 552.611i −1.63851 + 0.824793i
\(671\) −1243.52 404.044i −1.85323 0.602152i
\(672\) 715.547 94.4309i 1.06480 0.140522i
\(673\) 251.764 + 346.524i 0.374092 + 0.514894i 0.954007 0.299783i \(-0.0969143\pi\)
−0.579915 + 0.814677i \(0.696914\pi\)
\(674\) 1186.23i 1.75998i
\(675\) 357.764 572.390i 0.530021 0.847985i
\(676\) 413.143 0.611158
\(677\) 391.318 284.309i 0.578018 0.419955i −0.259991 0.965611i \(-0.583720\pi\)
0.838009 + 0.545656i \(0.183720\pi\)
\(678\) −72.1430 546.661i −0.106406 0.806285i
\(679\) 285.254 877.922i 0.420109 1.29296i
\(680\) 501.092 76.8545i 0.736899 0.113021i
\(681\) −50.4966 53.1790i −0.0741506 0.0780896i
\(682\) 782.377i 1.14718i
\(683\) 354.430 + 1090.82i 0.518931 + 1.59711i 0.776013 + 0.630716i \(0.217239\pi\)
−0.257082 + 0.966389i \(0.582761\pi\)
\(684\) 255.129 68.5323i 0.372995 0.100193i
\(685\) 228.201 + 453.339i 0.333141 + 0.661809i
\(686\) −513.941 707.379i −0.749185 1.03117i
\(687\) −518.056 95.8488i −0.754085 0.139518i
\(688\) 474.223 652.713i 0.689278 0.948710i
\(689\) 18.5612 + 25.5473i 0.0269394 + 0.0370789i
\(690\) −712.638 552.029i −1.03281 0.800043i
\(691\) 350.566 + 254.701i 0.507331 + 0.368597i 0.811810 0.583922i \(-0.198482\pi\)
−0.304479 + 0.952519i \(0.598482\pi\)
\(692\) −116.393 358.219i −0.168197 0.517658i
\(693\) −536.048 + 662.810i −0.773518 + 0.956435i
\(694\) 200.839 + 618.120i 0.289394 + 0.890663i
\(695\) −81.6597 + 12.5245i −0.117496 + 0.0180208i
\(696\) 397.939 52.5160i 0.571751 0.0754540i
\(697\) 465.143 + 151.134i 0.667350 + 0.216835i
\(698\) 35.8760 26.0654i 0.0513983 0.0373430i
\(699\) −250.810 + 119.727i −0.358813 + 0.171283i
\(700\) 127.851 + 406.991i 0.182644 + 0.581415i
\(701\) 708.515i 1.01072i 0.862909 + 0.505360i \(0.168640\pi\)
−0.862909 + 0.505360i \(0.831360\pi\)
\(702\) 27.9810 11.6208i 0.0398590 0.0165539i
\(703\) 469.149 + 152.436i 0.667352 + 0.216836i
\(704\) −108.781 35.3450i −0.154518 0.0502060i
\(705\) −300.772 232.986i −0.426627 0.330477i
\(706\) −55.8954 172.028i −0.0791719 0.243666i
\(707\) 1269.21 1.79520
\(708\) 145.438 138.102i 0.205421 0.195060i
\(709\) 869.199 + 631.510i 1.22595 + 0.890705i 0.996580 0.0826343i \(-0.0263333\pi\)
0.229370 + 0.973339i \(0.426333\pi\)
\(710\) 200.485 + 32.7598i 0.282374 + 0.0461406i
\(711\) 5.35556 103.426i 0.00753244 0.145465i
\(712\) −140.549 + 193.449i −0.197400 + 0.271698i
\(713\) 434.280 + 315.523i 0.609088 + 0.442528i
\(714\) 1200.64 + 651.407i 1.68156 + 0.912335i
\(715\) −26.6797 13.7588i −0.0373142 0.0192430i
\(716\) 248.350 341.824i 0.346857 0.477408i
\(717\) 163.261 155.026i 0.227700 0.216215i
\(718\) 392.906i 0.547223i
\(719\) −1266.77 + 411.597i −1.76184 + 0.572458i −0.997389 0.0722178i \(-0.976992\pi\)
−0.764456 + 0.644676i \(0.776992\pi\)
\(720\) −593.358 664.673i −0.824108 0.923156i
\(721\) −75.3955 + 232.044i −0.104571 + 0.321836i
\(722\) −170.400 + 524.437i −0.236011 + 0.726367i
\(723\) 45.1346 83.1895i 0.0624268 0.115061i
\(724\) −189.271 −0.261424
\(725\) 254.291 + 809.490i 0.350747 + 1.11654i
\(726\) 436.889 208.553i 0.601775 0.287263i
\(727\) 319.388 + 439.600i 0.439323 + 0.604676i 0.970062 0.242859i \(-0.0780853\pi\)
−0.530738 + 0.847536i \(0.678085\pi\)
\(728\) 3.75355 11.5522i 0.00515598 0.0158685i
\(729\) −514.514 + 516.446i −0.705781 + 0.708430i
\(730\) 358.919 + 362.448i 0.491670 + 0.496504i
\(731\) 996.712 323.851i 1.36349 0.443025i
\(732\) 637.745 304.433i 0.871237 0.415893i
\(733\) 803.163 260.963i 1.09572 0.356021i 0.295266 0.955415i \(-0.404592\pi\)
0.800454 + 0.599394i \(0.204592\pi\)
\(734\) 661.595 910.607i 0.901355 1.24061i
\(735\) −1.97614 + 5.50026i −0.00268862 + 0.00748334i
\(736\) −660.708 + 480.032i −0.897701 + 0.652218i
\(737\) −1063.95 773.004i −1.44362 1.04885i
\(738\) −112.736 419.690i −0.152759 0.568685i
\(739\) 472.107 343.005i 0.638845 0.464148i −0.220608 0.975363i \(-0.570804\pi\)
0.859453 + 0.511214i \(0.170804\pi\)
\(740\) 76.3068 + 497.521i 0.103117 + 0.672325i
\(741\) 2.89275 15.6351i 0.00390385 0.0211000i
\(742\) 1203.08 390.904i 1.62140 0.526825i
\(743\) −96.0790 −0.129312 −0.0646561 0.997908i \(-0.520595\pi\)
−0.0646561 + 0.997908i \(0.520595\pi\)
\(744\) 184.703 + 194.515i 0.248257 + 0.261445i
\(745\) 374.631 726.449i 0.502861 0.975099i
\(746\) 319.673 + 103.868i 0.428516 + 0.139233i
\(747\) 152.669 + 234.769i 0.204377 + 0.314283i
\(748\) −502.636 691.820i −0.671974 0.924893i
\(749\) 993.582i 1.32654i
\(750\) 590.449 747.024i 0.787265 0.996032i
\(751\) −665.080 −0.885592 −0.442796 0.896622i \(-0.646013\pi\)
−0.442796 + 0.896622i \(0.646013\pi\)
\(752\) −406.285 + 295.183i −0.540272 + 0.392531i
\(753\) −1040.66 + 137.336i −1.38201 + 0.182385i
\(754\) −11.7691 + 36.2216i −0.0156089 + 0.0480392i
\(755\) −420.229 216.713i −0.556595 0.287038i
\(756\) −36.5785 459.273i −0.0483842 0.607504i
\(757\) 710.689i 0.938822i −0.882980 0.469411i \(-0.844466\pi\)
0.882980 0.469411i \(-0.155534\pi\)
\(758\) 325.434 + 1001.58i 0.429333 + 1.32135i
\(759\) 175.482 948.467i 0.231201 1.24963i
\(760\) −233.662 + 35.8377i −0.307450 + 0.0471548i
\(761\) 89.4370 + 123.099i 0.117526 + 0.161760i 0.863727 0.503960i \(-0.168124\pi\)
−0.746201 + 0.665721i \(0.768124\pi\)
\(762\) −245.531 + 1327.08i −0.322220 + 1.74158i
\(763\) −589.464 + 811.328i −0.772561 + 1.06334i
\(764\) −126.102 173.565i −0.165055 0.227179i
\(765\) −116.065 1151.53i −0.151719 1.50527i
\(766\) 675.484 + 490.768i 0.881832 + 0.640689i
\(767\) −3.73035 11.4808i −0.00486356 0.0149685i
\(768\) −893.069 + 426.314i −1.16285 + 0.555097i
\(769\) −298.261 917.953i −0.387856 1.19370i −0.934387 0.356259i \(-0.884052\pi\)
0.546532 0.837439i \(-0.315948\pi\)
\(770\) −854.452 + 846.134i −1.10968 + 1.09887i
\(771\) 2.00822 + 15.2173i 0.00260470 + 0.0197370i
\(772\) −74.6746 24.2633i −0.0967288 0.0314291i
\(773\) 728.420 529.228i 0.942329 0.684642i −0.00665109 0.999978i \(-0.502117\pi\)
0.948980 + 0.315336i \(0.102117\pi\)
\(774\) −724.041 585.568i −0.935453 0.756548i
\(775\) −337.760 + 455.450i −0.435820 + 0.587678i
\(776\) 521.941i 0.672605i
\(777\) 410.273 756.192i 0.528022 0.973220i
\(778\) 365.020 + 118.602i 0.469177 + 0.152445i
\(779\) −216.899 70.4747i −0.278432 0.0904681i
\(780\) 15.5771 4.53667i 0.0199707 0.00581624i
\(781\) 67.1711 + 206.731i 0.0860065 + 0.264701i
\(782\) −1545.62 −1.97650
\(783\) −72.7533 913.478i −0.0929160 1.16664i
\(784\) 6.24126 + 4.53454i 0.00796080 + 0.00578386i
\(785\) 240.978 467.281i 0.306978 0.595262i
\(786\) 779.208 + 422.760i 0.991358 + 0.537863i
\(787\) −358.857 + 493.925i −0.455981 + 0.627605i −0.973669 0.227965i \(-0.926793\pi\)
0.517688 + 0.855570i \(0.326793\pi\)
\(788\) −579.756 421.217i −0.735731 0.534540i
\(789\) −424.178 + 781.820i −0.537615 + 0.990900i
\(790\) 23.5597 144.182i 0.0298224 0.182509i
\(791\) −296.644 + 408.295i −0.375024 + 0.516176i
\(792\) 172.449 450.085i 0.217739 0.568289i
\(793\) 42.5349i 0.0536380i
\(794\) 1421.43 461.851i 1.79021 0.581676i
\(795\) −847.332 656.367i −1.06583 0.825619i
\(796\) 136.093 418.851i 0.170971 0.526195i
\(797\) 181.689 559.182i 0.227966 0.701608i −0.770011 0.638031i \(-0.779749\pi\)
0.997977 0.0635770i \(-0.0202509\pi\)
\(798\) −559.864 303.755i −0.701583 0.380645i
\(799\) −652.337 −0.816441
\(800\) −500.210 702.837i −0.625262 0.878547i
\(801\) 424.461 + 343.283i 0.529913 + 0.428568i
\(802\) −42.4143 58.3783i −0.0528857 0.0727909i
\(803\) −168.665 + 519.096i −0.210043 + 0.646446i
\(804\) 704.678 92.9965i 0.876466 0.115667i
\(805\) 125.080 + 815.521i 0.155379 + 1.01307i
\(806\) −24.2059 + 7.86498i −0.0300322 + 0.00975804i
\(807\) −295.272 618.554i −0.365889 0.766486i
\(808\) −682.513 + 221.762i −0.844694 + 0.274458i
\(809\) −324.701 + 446.913i −0.401361 + 0.552426i −0.961085 0.276253i \(-0.910907\pi\)
0.559724 + 0.828679i \(0.310907\pi\)
\(810\) −801.546 + 644.259i −0.989563 + 0.795381i
\(811\) −52.3347 + 38.0234i −0.0645311 + 0.0468846i −0.619583 0.784931i \(-0.712698\pi\)
0.555052 + 0.831816i \(0.312698\pi\)
\(812\) 468.539 + 340.413i 0.577018 + 0.419228i
\(813\) 737.756 + 136.497i 0.907449 + 0.167893i
\(814\) −1147.85 + 833.963i −1.41014 + 1.02453i
\(815\) −279.216 + 140.552i −0.342596 + 0.172456i
\(816\) −1502.22 277.934i −1.84095 0.340606i
\(817\) −464.772 + 151.014i −0.568877 + 0.184839i
\(818\) 655.850 0.801773
\(819\) −25.8953 9.92174i −0.0316182 0.0121145i
\(820\) −35.2785 230.016i −0.0430225 0.280507i
\(821\) 253.051 + 82.2212i 0.308223 + 0.100148i 0.459044 0.888413i \(-0.348192\pi\)
−0.150822 + 0.988561i \(0.548192\pi\)
\(822\) −101.167 766.589i −0.123074 0.932590i
\(823\) 215.463 + 296.559i 0.261802 + 0.360339i 0.919601 0.392854i \(-0.128512\pi\)
−0.657799 + 0.753194i \(0.728512\pi\)
\(824\) 137.954i 0.167420i
\(825\) 1000.01 + 195.155i 1.21213 + 0.236551i
\(826\) −483.579 −0.585446
\(827\) 125.593 91.2487i 0.151866 0.110337i −0.509258 0.860614i \(-0.670080\pi\)
0.661123 + 0.750277i \(0.270080\pi\)
\(828\) 284.207 + 437.042i 0.343245 + 0.527829i
\(829\) −255.989 + 787.854i −0.308793 + 0.950367i 0.669441 + 0.742865i \(0.266533\pi\)
−0.978235 + 0.207502i \(0.933467\pi\)
\(830\) 177.623 + 352.862i 0.214004 + 0.425134i
\(831\) −721.084 + 684.711i −0.867731 + 0.823961i
\(832\) 3.72087i 0.00447220i
\(833\) 3.09668 + 9.53060i 0.00371750 + 0.0114413i
\(834\) 123.764 + 22.8983i 0.148398 + 0.0274560i
\(835\) 98.3210 601.710i 0.117750 0.720611i
\(836\) 234.382 + 322.599i 0.280361 + 0.385884i
\(837\) 465.290 398.149i 0.555902 0.475686i
\(838\) −354.433 + 487.835i −0.422951 + 0.582142i
\(839\) 555.403 + 764.447i 0.661982 + 0.911140i 0.999545 0.0301628i \(-0.00960258\pi\)
−0.337563 + 0.941303i \(0.609603\pi\)
\(840\) −12.6794 + 412.085i −0.0150946 + 0.490577i
\(841\) 251.524 + 182.743i 0.299077 + 0.217292i
\(842\) 336.292 + 1035.00i 0.399396 + 1.22922i
\(843\) −625.226 1309.76i −0.741668 1.55369i
\(844\) 245.273 + 754.872i 0.290608 + 0.894398i
\(845\) −136.110 + 832.976i −0.161078 + 0.985771i
\(846\) 315.991 + 485.920i 0.373512 + 0.574373i
\(847\) −421.408 136.924i −0.497530 0.161657i
\(848\) −1144.58 + 831.588i −1.34974 + 0.980646i
\(849\) 643.701 + 1348.46i 0.758187 + 1.58830i
\(850\) 15.9721 1632.57i 0.0187907 1.92068i
\(851\) 973.473i 1.14392i
\(852\) −103.264 56.0261i −0.121202 0.0657583i
\(853\) −387.900 126.036i −0.454748 0.147757i 0.0726819 0.997355i \(-0.476844\pi\)
−0.527430 + 0.849599i \(0.676844\pi\)
\(854\) −1620.51 526.536i −1.89755 0.616552i
\(855\) 54.1219 + 536.967i 0.0633005 + 0.628032i
\(856\) 173.603 + 534.296i 0.202808 + 0.624178i
\(857\) −1424.88 −1.66264 −0.831320 0.555795i \(-0.812414\pi\)
−0.831320 + 0.555795i \(0.812414\pi\)
\(858\) 31.4912 + 33.1641i 0.0367031 + 0.0386528i
\(859\) 796.733 + 578.860i 0.927512 + 0.673877i 0.945382 0.325964i \(-0.105689\pi\)
−0.0178705 + 0.999840i \(0.505689\pi\)
\(860\) −350.865 354.315i −0.407983 0.411994i
\(861\) −189.679 + 349.606i −0.220301 + 0.406046i
\(862\) 990.653 1363.52i 1.14925 1.58181i
\(863\) −135.978 98.7941i −0.157565 0.114478i 0.506209 0.862411i \(-0.331046\pi\)
−0.663774 + 0.747933i \(0.731046\pi\)
\(864\) 357.344 + 860.424i 0.413592 + 0.995861i
\(865\) 760.585 116.654i 0.879289 0.134860i
\(866\) 878.291 1208.86i 1.01419 1.39592i
\(867\) −769.455 810.329i −0.887491 0.934636i
\(868\) 387.028i 0.445885i
\(869\) 148.674 48.3070i 0.171086 0.0555892i
\(870\) 39.7558 1292.08i 0.0456963 1.48514i
\(871\) 13.2204 40.6882i 0.0151784 0.0467143i
\(872\) 175.224 539.284i 0.200945 0.618445i
\(873\) 1190.00 + 61.6201i 1.36311 + 0.0705843i
\(874\) 720.733 0.824637
\(875\) −862.692 + 123.689i −0.985934 + 0.141359i
\(876\) −127.083 266.221i −0.145072 0.303905i
\(877\) −124.112 170.825i −0.141519 0.194784i 0.732374 0.680902i \(-0.238412\pi\)
−0.873893 + 0.486119i \(0.838412\pi\)
\(878\) 240.971 741.632i 0.274454 0.844684i
\(879\) −133.713 1013.21i −0.152120 1.15268i
\(880\) 616.426 1195.31i 0.700484 1.35831i
\(881\) 1227.02 398.682i 1.39276 0.452534i 0.485914 0.874007i \(-0.338487\pi\)
0.906841 + 0.421473i \(0.138487\pi\)
\(882\) 5.59923 6.92331i 0.00634833 0.00784955i
\(883\) 364.163 118.324i 0.412416 0.134002i −0.0954580 0.995433i \(-0.530432\pi\)
0.507874 + 0.861431i \(0.330432\pi\)
\(884\) 16.3513 22.5057i 0.0184970 0.0254589i
\(885\) 230.526 + 338.730i 0.260481 + 0.382746i
\(886\) 1165.37 846.689i 1.31531 0.955631i
\(887\) −100.370 72.9232i −0.113157 0.0822133i 0.529768 0.848143i \(-0.322279\pi\)
−0.642925 + 0.765930i \(0.722279\pi\)
\(888\) −88.4979 + 478.325i −0.0996598 + 0.538654i
\(889\) 999.338 726.062i 1.12412 0.816717i
\(890\) 541.860 + 547.188i 0.608832 + 0.614817i
\(891\) −1005.81 446.311i −1.12886 0.500911i
\(892\) −623.632 + 202.630i −0.699139 + 0.227164i
\(893\) 304.188 0.340636
\(894\) −903.009 + 857.460i −1.01008 + 0.959127i
\(895\) 607.365 + 613.336i 0.678620 + 0.685291i
\(896\) 773.476 + 251.318i 0.863254 + 0.280488i
\(897\) 31.1086 4.10541i 0.0346807 0.00457682i
\(898\) 32.0300 + 44.0855i 0.0356682 + 0.0490930i
\(899\) 769.785i 0.856268i
\(900\) −464.566 + 295.679i −0.516184 + 0.328532i
\(901\) −1837.76 −2.03969
\(902\) 530.680 385.561i 0.588337 0.427452i
\(903\) 111.511 + 844.968i 0.123489 + 0.935735i
\(904\) 88.1802 271.391i 0.0975444 0.300211i
\(905\) 62.3555 381.606i 0.0689011 0.421665i
\(906\) 496.016 + 522.365i 0.547479 + 0.576561i
\(907\) 479.783i 0.528978i 0.964389 + 0.264489i \(0.0852033\pi\)
−0.964389 + 0.264489i \(0.914797\pi\)
\(908\) 18.4877 + 56.8994i 0.0203609 + 0.0626646i
\(909\) 425.028 + 1582.27i 0.467578 + 1.74067i
\(910\) −34.7680 17.9299i −0.0382066 0.0197032i
\(911\) −576.910 794.048i −0.633271 0.871623i 0.364963 0.931022i \(-0.381082\pi\)
−0.998234 + 0.0593992i \(0.981082\pi\)
\(912\) 700.491 + 129.602i 0.768083 + 0.142108i
\(913\) −248.463 + 341.980i −0.272139 + 0.374567i
\(914\) −660.295 908.818i −0.722424 0.994331i
\(915\) 403.691 + 1386.11i 0.441192 + 1.51488i
\(916\) 347.727 + 252.638i 0.379614 + 0.275806i
\(917\) −250.733 771.678i −0.273428 0.841525i
\(918\) −410.020 + 1714.93i −0.446645 + 1.86812i
\(919\) −277.843 855.113i −0.302332 0.930482i −0.980659 0.195722i \(-0.937295\pi\)
0.678327 0.734760i \(-0.262705\pi\)
\(920\) −209.753 416.690i −0.227993 0.452924i
\(921\) −615.091 + 81.1736i −0.667851 + 0.0881364i
\(922\) −1110.91 360.958i −1.20490 0.391494i
\(923\) −5.72080 + 4.15640i −0.00619805 + 0.00450315i
\(924\) 627.603 299.592i 0.679224 0.324234i
\(925\) −1028.24 10.0596i −1.11161 0.0108753i
\(926\) 479.309i 0.517613i
\(927\) −314.528 16.2868i −0.339297 0.0175694i
\(928\) −1113.82 361.903i −1.20024 0.389981i
\(929\) 1487.83 + 483.425i 1.60154 + 0.520371i 0.967487 0.252920i \(-0.0813910\pi\)
0.634051 + 0.773291i \(0.281391\pi\)
\(930\) 714.170 486.035i 0.767924 0.522618i
\(931\) −1.44400 4.44417i −0.00155102 0.00477355i
\(932\) 226.734 0.243277
\(933\) −424.943 + 403.508i −0.455459 + 0.432485i
\(934\) −258.401 187.739i −0.276660 0.201005i
\(935\) 1560.44 785.491i 1.66892 0.840098i
\(936\) 15.6587 + 0.810835i 0.0167294 + 0.000866277i
\(937\) −374.955 + 516.081i −0.400165 + 0.550780i −0.960785 0.277293i \(-0.910563\pi\)
0.560620 + 0.828073i \(0.310563\pi\)
\(938\) −1386.50 1007.35i −1.47814 1.07393i
\(939\) −1246.15 676.100i −1.32710 0.720021i
\(940\) 139.557 + 277.239i 0.148464 + 0.294936i
\(941\) 419.935 577.992i 0.446265 0.614231i −0.525325 0.850902i \(-0.676056\pi\)
0.971590 + 0.236671i \(0.0760562\pi\)
\(942\) −580.852 + 551.552i −0.616615 + 0.585512i
\(943\) 450.060i 0.477264i
\(944\) 514.369 167.129i 0.544883 0.177043i
\(945\) 938.034 + 77.5589i 0.992629 + 0.0820729i
\(946\) 434.351 1336.79i 0.459145 1.41310i
\(947\) 85.6580 263.628i 0.0904520 0.278383i −0.895590 0.444881i \(-0.853246\pi\)
0.986042 + 0.166498i \(0.0532460\pi\)
\(948\) −40.2920 + 74.2638i −0.0425021 + 0.0783374i
\(949\) −17.7558 −0.0187100
\(950\) −7.44786 + 761.279i −0.00783985 + 0.801346i
\(951\) −133.082 + 63.5278i −0.139939 + 0.0668010i
\(952\) 415.508 + 571.897i 0.436458 + 0.600733i
\(953\) 230.629 709.802i 0.242003 0.744808i −0.754112 0.656745i \(-0.771933\pi\)
0.996115 0.0880621i \(-0.0280674\pi\)
\(954\) 890.209 + 1368.93i 0.933133 + 1.43494i
\(955\) 391.485 197.066i 0.409932 0.206351i
\(956\) −174.683 + 56.7579i −0.182723 + 0.0593702i
\(957\) 1248.28 595.878i 1.30437 0.622652i
\(958\) −1317.82 + 428.187i −1.37560 + 0.446959i
\(959\) −415.987 + 572.556i −0.433771 + 0.597035i
\(960\) 35.3141 + 121.255i 0.0367855 + 0.126307i
\(961\) 361.285 262.489i 0.375947 0.273141i
\(962\) −37.3409 27.1298i −0.0388159 0.0282014i
\(963\) 1238.66 332.728i 1.28625 0.345511i
\(964\) −62.4667 + 45.3847i −0.0647995 + 0.0470796i
\(965\) 73.5211 142.565i 0.0761876 0.147736i
\(966\) 228.681 1236.01i 0.236730 1.27951i
\(967\) −1240.43 + 403.039i −1.28276 + 0.416793i −0.869551 0.493844i \(-0.835591\pi\)
−0.413207 + 0.910637i \(0.635591\pi\)
\(968\) 250.535 0.258817
\(969\) 637.185 + 671.034i 0.657570 + 0.692501i
\(970\) 1658.93 + 271.073i 1.71024 + 0.279457i
\(971\) −721.884 234.554i −0.743444 0.241560i −0.0872862 0.996183i \(-0.527819\pi\)
−0.656158 + 0.754624i \(0.727819\pi\)
\(972\) 560.310 199.401i 0.576450 0.205145i
\(973\) −67.7126 93.1984i −0.0695916 0.0957846i
\(974\) 791.805i 0.812942i
\(975\) 4.01490 + 32.9011i 0.00411784 + 0.0337447i
\(976\) 1905.67 1.95253
\(977\) −961.944 + 698.893i −0.984589 + 0.715346i −0.958730 0.284319i \(-0.908232\pi\)
−0.0258599 + 0.999666i \(0.508232\pi\)
\(978\) 472.150 62.3097i 0.482771 0.0637113i
\(979\) −254.633 + 783.680i −0.260095 + 0.800491i
\(980\) 3.38797 3.35499i 0.00345711 0.00342346i
\(981\) −1208.85 463.168i −1.23226 0.472139i
\(982\) 895.724i 0.912143i
\(983\) −441.654 1359.27i −0.449292 1.38278i −0.877708 0.479196i \(-0.840928\pi\)
0.428416 0.903581i \(-0.359072\pi\)
\(984\) 40.9147 221.141i 0.0415800 0.224737i
\(985\) 1040.26 1030.13i 1.05610 1.04582i
\(986\) −1302.81 1793.16i −1.32131 1.81862i
\(987\) 96.5159 521.662i 0.0977871 0.528533i
\(988\) −7.62472 + 10.4945i −0.00771732 + 0.0106220i
\(989\) −566.856 780.210i −0.573160 0.788888i
\(990\) −1340.98 781.863i −1.35452 0.789761i
\(991\) −751.395 545.920i −0.758219 0.550878i 0.140145 0.990131i \(-0.455243\pi\)
−0.898363 + 0.439253i \(0.855243\pi\)
\(992\) −241.850 744.338i −0.243800 0.750341i
\(993\) −53.2609 + 25.4246i −0.0536363 + 0.0256038i
\(994\) 87.5349 + 269.405i 0.0880633 + 0.271031i
\(995\) 799.649 + 412.381i 0.803667 + 0.414453i
\(996\) −29.8914 226.501i −0.0300115 0.227411i
\(997\) −695.228 225.893i −0.697320 0.226573i −0.0611574 0.998128i \(-0.519479\pi\)
−0.636162 + 0.771555i \(0.719479\pi\)
\(998\) −165.175 + 120.006i −0.165506 + 0.120247i
\(999\) 1080.11 + 258.241i 1.08119 + 0.258500i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.h.a.14.4 72
3.2 odd 2 inner 75.3.h.a.14.15 yes 72
5.2 odd 4 375.3.j.b.176.8 144
5.3 odd 4 375.3.j.b.176.29 144
5.4 even 2 375.3.h.a.74.15 72
15.2 even 4 375.3.j.b.176.30 144
15.8 even 4 375.3.j.b.176.7 144
15.14 odd 2 375.3.h.a.74.4 72
25.9 even 10 inner 75.3.h.a.59.15 yes 72
25.12 odd 20 375.3.j.b.326.30 144
25.13 odd 20 375.3.j.b.326.7 144
25.16 even 5 375.3.h.a.299.4 72
75.38 even 20 375.3.j.b.326.29 144
75.41 odd 10 375.3.h.a.299.15 72
75.59 odd 10 inner 75.3.h.a.59.4 yes 72
75.62 even 20 375.3.j.b.326.8 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.h.a.14.4 72 1.1 even 1 trivial
75.3.h.a.14.15 yes 72 3.2 odd 2 inner
75.3.h.a.59.4 yes 72 75.59 odd 10 inner
75.3.h.a.59.15 yes 72 25.9 even 10 inner
375.3.h.a.74.4 72 15.14 odd 2
375.3.h.a.74.15 72 5.4 even 2
375.3.h.a.299.4 72 25.16 even 5
375.3.h.a.299.15 72 75.41 odd 10
375.3.j.b.176.7 144 15.8 even 4
375.3.j.b.176.8 144 5.2 odd 4
375.3.j.b.176.29 144 5.3 odd 4
375.3.j.b.176.30 144 15.2 even 4
375.3.j.b.326.7 144 25.13 odd 20
375.3.j.b.326.8 144 75.62 even 20
375.3.j.b.326.29 144 75.38 even 20
375.3.j.b.326.30 144 25.12 odd 20