Properties

Label 75.3.h.a.14.13
Level $75$
Weight $3$
Character 75.14
Analytic conductor $2.044$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(14,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 14.13
Character \(\chi\) \(=\) 75.14
Dual form 75.3.h.a.59.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.27392 - 0.925557i) q^{2} +(-1.60087 + 2.53717i) q^{3} +(-0.469852 + 1.44606i) q^{4} +(2.47338 + 4.34538i) q^{5} +(0.308913 + 4.71384i) q^{6} -3.45468i q^{7} +(2.68623 + 8.26736i) q^{8} +(-3.87443 - 8.12335i) q^{9} +(7.17279 + 3.24641i) q^{10} +(4.67438 + 6.43373i) q^{11} +(-2.91672 - 3.50704i) q^{12} +(9.39120 - 12.9259i) q^{13} +(-3.19750 - 4.40098i) q^{14} +(-14.9845 - 0.681003i) q^{15} +(6.15359 + 4.47085i) q^{16} +(-5.07678 - 15.6247i) q^{17} +(-12.4543 - 6.76248i) q^{18} +(-0.909136 - 2.79803i) q^{19} +(-7.44580 + 1.53497i) q^{20} +(8.76509 + 5.53049i) q^{21} +(11.9096 + 3.86965i) q^{22} +(3.91892 - 2.84726i) q^{23} +(-25.2760 - 6.41956i) q^{24} +(-12.7647 + 21.4956i) q^{25} -25.1586i q^{26} +(26.8128 + 3.17434i) q^{27} +(4.99566 + 1.62319i) q^{28} +(-2.93429 - 0.953408i) q^{29} +(-19.7194 + 13.0015i) q^{30} +(9.46440 + 29.1284i) q^{31} -22.7941 q^{32} +(-23.8065 + 1.56012i) q^{33} +(-20.9290 - 15.2058i) q^{34} +(15.0119 - 8.54475i) q^{35} +(13.5672 - 1.78588i) q^{36} +(36.9883 - 50.9101i) q^{37} +(-3.74791 - 2.72301i) q^{38} +(17.7610 + 44.5197i) q^{39} +(-29.2808 + 32.1211i) q^{40} +(5.01027 - 6.89605i) q^{41} +(16.2848 - 1.06719i) q^{42} -76.9353i q^{43} +(-11.4998 + 3.73651i) q^{44} +(25.7161 - 36.9281i) q^{45} +(2.35708 - 7.25436i) q^{46} +(-21.0904 + 64.9097i) q^{47} +(-21.1944 + 8.45545i) q^{48} +37.0652 q^{49} +(3.63417 + 39.1982i) q^{50} +(47.7698 + 12.1325i) q^{51} +(14.2791 + 19.6535i) q^{52} +(19.3602 - 59.5846i) q^{53} +(37.0953 - 20.7729i) q^{54} +(-16.3955 + 36.2250i) q^{55} +(28.5611 - 9.28005i) q^{56} +(8.55449 + 2.17266i) q^{57} +(-4.62048 + 1.50128i) q^{58} +(-63.2466 + 87.0514i) q^{59} +(8.02529 - 21.3485i) q^{60} +(-60.5497 + 43.9919i) q^{61} +(39.0169 + 28.3474i) q^{62} +(-28.0635 + 13.3849i) q^{63} +(-53.6522 + 38.9806i) q^{64} +(79.3960 + 8.83771i) q^{65} +(-28.8836 + 24.0217i) q^{66} +(-74.5516 + 24.2233i) q^{67} +24.9796 q^{68} +(0.950298 + 14.5010i) q^{69} +(11.2153 - 24.7797i) q^{70} +(-35.3941 - 11.5002i) q^{71} +(56.7510 - 53.8525i) q^{72} +(8.18118 + 11.2604i) q^{73} -99.0901i q^{74} +(-34.1033 - 66.7979i) q^{75} +4.47328 q^{76} +(22.2264 - 16.1485i) q^{77} +(63.8316 + 40.2757i) q^{78} +(23.1785 - 71.3362i) q^{79} +(-4.20735 + 37.7979i) q^{80} +(-50.9775 + 62.9467i) q^{81} -13.4223i q^{82} +(15.7098 + 48.3497i) q^{83} +(-12.1157 + 10.0763i) q^{84} +(55.3386 - 60.7065i) q^{85} +(-71.2080 - 98.0094i) q^{86} +(7.11637 - 5.91850i) q^{87} +(-40.6335 + 55.9272i) q^{88} +(-80.9329 - 111.395i) q^{89} +(-1.41877 - 70.8451i) q^{90} +(-44.6548 - 32.4436i) q^{91} +(2.27599 + 7.00477i) q^{92} +(-89.0550 - 22.6181i) q^{93} +(33.2101 + 102.210i) q^{94} +(9.90989 - 10.8712i) q^{95} +(36.4903 - 57.8324i) q^{96} +(-151.453 - 49.2101i) q^{97} +(47.2181 - 34.3059i) q^{98} +(34.1528 - 62.8986i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 5 q^{3} - 38 q^{4} + 5 q^{6} - 13 q^{9} - 20 q^{10} - 45 q^{12} - 10 q^{13} - 15 q^{15} + 22 q^{16} - 36 q^{19} + 54 q^{21} - 50 q^{22} - 20 q^{24} - 100 q^{25} + 100 q^{27} + 270 q^{28} - 5 q^{30}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27392 0.925557i 0.636960 0.462778i −0.221845 0.975082i \(-0.571208\pi\)
0.858804 + 0.512304i \(0.171208\pi\)
\(3\) −1.60087 + 2.53717i −0.533623 + 0.845722i
\(4\) −0.469852 + 1.44606i −0.117463 + 0.361514i
\(5\) 2.47338 + 4.34538i 0.494677 + 0.869077i
\(6\) 0.308913 + 4.71384i 0.0514855 + 0.785640i
\(7\) 3.45468i 0.493525i −0.969076 0.246763i \(-0.920633\pi\)
0.969076 0.246763i \(-0.0793668\pi\)
\(8\) 2.68623 + 8.26736i 0.335779 + 1.03342i
\(9\) −3.87443 8.12335i −0.430493 0.902594i
\(10\) 7.17279 + 3.24641i 0.717279 + 0.324641i
\(11\) 4.67438 + 6.43373i 0.424943 + 0.584884i 0.966783 0.255597i \(-0.0822722\pi\)
−0.541840 + 0.840482i \(0.682272\pi\)
\(12\) −2.91672 3.50704i −0.243060 0.292254i
\(13\) 9.39120 12.9259i 0.722400 0.994299i −0.277040 0.960858i \(-0.589354\pi\)
0.999441 0.0334405i \(-0.0106464\pi\)
\(14\) −3.19750 4.40098i −0.228393 0.314356i
\(15\) −14.9845 0.681003i −0.998969 0.0454002i
\(16\) 6.15359 + 4.47085i 0.384600 + 0.279428i
\(17\) −5.07678 15.6247i −0.298634 0.919101i −0.981976 0.189003i \(-0.939474\pi\)
0.683342 0.730098i \(-0.260526\pi\)
\(18\) −12.4543 6.76248i −0.691907 0.375693i
\(19\) −0.909136 2.79803i −0.0478493 0.147265i 0.924277 0.381722i \(-0.124669\pi\)
−0.972126 + 0.234457i \(0.924669\pi\)
\(20\) −7.44580 + 1.53497i −0.372290 + 0.0767483i
\(21\) 8.76509 + 5.53049i 0.417385 + 0.263357i
\(22\) 11.9096 + 3.86965i 0.541343 + 0.175893i
\(23\) 3.91892 2.84726i 0.170388 0.123794i −0.499323 0.866416i \(-0.666418\pi\)
0.669711 + 0.742622i \(0.266418\pi\)
\(24\) −25.2760 6.41956i −1.05317 0.267482i
\(25\) −12.7647 + 21.4956i −0.510589 + 0.859825i
\(26\) 25.1586i 0.967639i
\(27\) 26.8128 + 3.17434i 0.993065 + 0.117568i
\(28\) 4.99566 + 1.62319i 0.178416 + 0.0579710i
\(29\) −2.93429 0.953408i −0.101182 0.0328761i 0.257988 0.966148i \(-0.416940\pi\)
−0.359171 + 0.933272i \(0.616940\pi\)
\(30\) −19.7194 + 13.0015i −0.657313 + 0.433383i
\(31\) 9.46440 + 29.1284i 0.305303 + 0.939627i 0.979564 + 0.201133i \(0.0644625\pi\)
−0.674261 + 0.738494i \(0.735538\pi\)
\(32\) −22.7941 −0.712315
\(33\) −23.8065 + 1.56012i −0.721409 + 0.0472762i
\(34\) −20.9290 15.2058i −0.615558 0.447229i
\(35\) 15.0119 8.54475i 0.428911 0.244136i
\(36\) 13.5672 1.78588i 0.376868 0.0496077i
\(37\) 36.9883 50.9101i 0.999684 1.37595i 0.0741655 0.997246i \(-0.476371\pi\)
0.925519 0.378701i \(-0.123629\pi\)
\(38\) −3.74791 2.72301i −0.0986291 0.0716582i
\(39\) 17.7610 + 44.5197i 0.455411 + 1.14153i
\(40\) −29.2808 + 32.1211i −0.732020 + 0.803027i
\(41\) 5.01027 6.89605i 0.122202 0.168196i −0.743533 0.668699i \(-0.766851\pi\)
0.865735 + 0.500503i \(0.166851\pi\)
\(42\) 16.2848 1.06719i 0.387733 0.0254094i
\(43\) 76.9353i 1.78919i −0.446875 0.894597i \(-0.647463\pi\)
0.446875 0.894597i \(-0.352537\pi\)
\(44\) −11.4998 + 3.73651i −0.261359 + 0.0849207i
\(45\) 25.7161 36.9281i 0.571469 0.820624i
\(46\) 2.35708 7.25436i 0.0512409 0.157703i
\(47\) −21.0904 + 64.9097i −0.448733 + 1.38106i 0.429605 + 0.903017i \(0.358653\pi\)
−0.878338 + 0.478040i \(0.841347\pi\)
\(48\) −21.1944 + 8.45545i −0.441550 + 0.176155i
\(49\) 37.0652 0.756433
\(50\) 3.63417 + 39.1982i 0.0726834 + 0.783963i
\(51\) 47.7698 + 12.1325i 0.936663 + 0.237892i
\(52\) 14.2791 + 19.6535i 0.274598 + 0.377951i
\(53\) 19.3602 59.5846i 0.365287 1.12424i −0.584514 0.811384i \(-0.698715\pi\)
0.949801 0.312855i \(-0.101285\pi\)
\(54\) 37.0953 20.7729i 0.686950 0.384683i
\(55\) −16.3955 + 36.2250i −0.298100 + 0.658637i
\(56\) 28.5611 9.28005i 0.510019 0.165715i
\(57\) 8.55449 + 2.17266i 0.150079 + 0.0381168i
\(58\) −4.62048 + 1.50128i −0.0796634 + 0.0258842i
\(59\) −63.2466 + 87.0514i −1.07198 + 1.47545i −0.203915 + 0.978989i \(0.565367\pi\)
−0.868060 + 0.496459i \(0.834633\pi\)
\(60\) 8.02529 21.3485i 0.133755 0.355809i
\(61\) −60.5497 + 43.9919i −0.992617 + 0.721179i −0.960493 0.278305i \(-0.910227\pi\)
−0.0321247 + 0.999484i \(0.510227\pi\)
\(62\) 39.0169 + 28.3474i 0.629305 + 0.457217i
\(63\) −28.0635 + 13.3849i −0.445453 + 0.212459i
\(64\) −53.6522 + 38.9806i −0.838316 + 0.609072i
\(65\) 79.3960 + 8.83771i 1.22148 + 0.135965i
\(66\) −28.8836 + 24.0217i −0.437630 + 0.363966i
\(67\) −74.5516 + 24.2233i −1.11271 + 0.361541i −0.806981 0.590577i \(-0.798900\pi\)
−0.305729 + 0.952119i \(0.598900\pi\)
\(68\) 24.9796 0.367347
\(69\) 0.950298 + 14.5010i 0.0137724 + 0.210160i
\(70\) 11.2153 24.7797i 0.160219 0.353995i
\(71\) −35.3941 11.5002i −0.498508 0.161975i 0.0489616 0.998801i \(-0.484409\pi\)
−0.547470 + 0.836826i \(0.684409\pi\)
\(72\) 56.7510 53.8525i 0.788209 0.747952i
\(73\) 8.18118 + 11.2604i 0.112071 + 0.154252i 0.861368 0.507982i \(-0.169608\pi\)
−0.749297 + 0.662234i \(0.769608\pi\)
\(74\) 99.0901i 1.33906i
\(75\) −34.1033 66.7979i −0.454711 0.890639i
\(76\) 4.47328 0.0588589
\(77\) 22.2264 16.1485i 0.288655 0.209720i
\(78\) 63.8316 + 40.2757i 0.818354 + 0.516355i
\(79\) 23.1785 71.3362i 0.293399 0.902990i −0.690355 0.723471i \(-0.742546\pi\)
0.983754 0.179519i \(-0.0574543\pi\)
\(80\) −4.20735 + 37.7979i −0.0525918 + 0.472473i
\(81\) −50.9775 + 62.9467i −0.629352 + 0.777120i
\(82\) 13.4223i 0.163687i
\(83\) 15.7098 + 48.3497i 0.189274 + 0.582526i 0.999996 0.00290563i \(-0.000924893\pi\)
−0.810721 + 0.585432i \(0.800925\pi\)
\(84\) −12.1157 + 10.0763i −0.144235 + 0.119956i
\(85\) 55.3386 60.7065i 0.651042 0.714194i
\(86\) −71.2080 98.0094i −0.828000 1.13964i
\(87\) 7.11637 5.91850i 0.0817973 0.0680287i
\(88\) −40.6335 + 55.9272i −0.461744 + 0.635537i
\(89\) −80.9329 111.395i −0.909359 1.25163i −0.967385 0.253310i \(-0.918481\pi\)
0.0580262 0.998315i \(-0.481519\pi\)
\(90\) −1.41877 70.8451i −0.0157641 0.787168i
\(91\) −44.6548 32.4436i −0.490712 0.356523i
\(92\) 2.27599 + 7.00477i 0.0247390 + 0.0761388i
\(93\) −89.0550 22.6181i −0.957581 0.243205i
\(94\) 33.2101 + 102.210i 0.353299 + 1.08734i
\(95\) 9.90989 10.8712i 0.104315 0.114433i
\(96\) 36.4903 57.8324i 0.380108 0.602421i
\(97\) −151.453 49.2101i −1.56137 0.507320i −0.604198 0.796834i \(-0.706506\pi\)
−0.957174 + 0.289514i \(0.906506\pi\)
\(98\) 47.2181 34.3059i 0.481817 0.350061i
\(99\) 34.1528 62.8986i 0.344978 0.635340i
\(100\) −25.0863 28.5583i −0.250863 0.285583i
\(101\) 0.307054i 0.00304014i 0.999999 + 0.00152007i \(0.000483853\pi\)
−0.999999 + 0.00152007i \(0.999516\pi\)
\(102\) 72.0842 28.7578i 0.706708 0.281939i
\(103\) 21.0182 + 6.82924i 0.204060 + 0.0663033i 0.409264 0.912416i \(-0.365786\pi\)
−0.205203 + 0.978719i \(0.565786\pi\)
\(104\) 132.090 + 42.9186i 1.27010 + 0.412679i
\(105\) −2.35265 + 51.7667i −0.0224062 + 0.493016i
\(106\) −30.4856 93.8250i −0.287600 0.885142i
\(107\) −139.254 −1.30144 −0.650721 0.759317i \(-0.725533\pi\)
−0.650721 + 0.759317i \(0.725533\pi\)
\(108\) −17.1883 + 37.2813i −0.159151 + 0.345197i
\(109\) 81.6553 + 59.3261i 0.749131 + 0.544276i 0.895558 0.444946i \(-0.146777\pi\)
−0.146426 + 0.989222i \(0.546777\pi\)
\(110\) 12.6418 + 61.3227i 0.114925 + 0.557479i
\(111\) 69.9538 + 175.346i 0.630215 + 1.57969i
\(112\) 15.4453 21.2587i 0.137905 0.189810i
\(113\) 57.8390 + 42.0225i 0.511849 + 0.371880i 0.813525 0.581530i \(-0.197546\pi\)
−0.301675 + 0.953411i \(0.597546\pi\)
\(114\) 12.9086 5.14987i 0.113234 0.0451743i
\(115\) 22.0654 + 9.98683i 0.191873 + 0.0868420i
\(116\) 2.75736 3.79519i 0.0237704 0.0327171i
\(117\) −141.387 26.2075i −1.20844 0.223996i
\(118\) 169.435i 1.43589i
\(119\) −53.9784 + 17.5386i −0.453600 + 0.147383i
\(120\) −34.6218 125.712i −0.288515 1.04760i
\(121\) 17.8480 54.9305i 0.147504 0.453971i
\(122\) −36.4184 + 112.084i −0.298511 + 0.918724i
\(123\) 9.47563 + 23.7516i 0.0770377 + 0.193102i
\(124\) −46.5683 −0.375550
\(125\) −124.979 2.30075i −0.999831 0.0184060i
\(126\) −23.3622 + 43.0257i −0.185414 + 0.341474i
\(127\) 79.5270 + 109.460i 0.626197 + 0.861886i 0.997786 0.0665113i \(-0.0211868\pi\)
−0.371589 + 0.928397i \(0.621187\pi\)
\(128\) −4.09479 + 12.6025i −0.0319906 + 0.0984568i
\(129\) 195.198 + 123.163i 1.51316 + 0.954755i
\(130\) 109.324 62.2270i 0.840953 0.478669i
\(131\) 123.408 40.0976i 0.942044 0.306089i 0.202565 0.979269i \(-0.435072\pi\)
0.739478 + 0.673180i \(0.235072\pi\)
\(132\) 8.92953 35.1586i 0.0676479 0.266353i
\(133\) −9.66630 + 3.14077i −0.0726790 + 0.0236148i
\(134\) −72.5527 + 99.8602i −0.541438 + 0.745225i
\(135\) 52.5245 + 124.363i 0.389071 + 0.921208i
\(136\) 115.538 83.9432i 0.849543 0.617229i
\(137\) 34.2523 + 24.8857i 0.250017 + 0.181648i 0.705734 0.708477i \(-0.250617\pi\)
−0.455718 + 0.890124i \(0.650617\pi\)
\(138\) 14.6321 + 17.5936i 0.106030 + 0.127490i
\(139\) 137.253 99.7198i 0.987428 0.717409i 0.0280720 0.999606i \(-0.491063\pi\)
0.959356 + 0.282197i \(0.0910632\pi\)
\(140\) 5.30281 + 25.7228i 0.0378772 + 0.183735i
\(141\) −130.924 157.422i −0.928537 1.11647i
\(142\) −55.7333 + 18.1088i −0.392488 + 0.127527i
\(143\) 127.060 0.888529
\(144\) 12.4766 67.3098i 0.0866428 0.467429i
\(145\) −3.11470 15.1088i −0.0214807 0.104198i
\(146\) 20.8443 + 6.77273i 0.142769 + 0.0463886i
\(147\) −59.3366 + 94.0406i −0.403650 + 0.639732i
\(148\) 56.2398 + 77.4074i 0.379999 + 0.523023i
\(149\) 227.208i 1.52489i −0.647054 0.762444i \(-0.723999\pi\)
0.647054 0.762444i \(-0.276001\pi\)
\(150\) −105.270 53.5307i −0.701801 0.356871i
\(151\) −68.4391 −0.453239 −0.226620 0.973983i \(-0.572767\pi\)
−0.226620 + 0.973983i \(0.572767\pi\)
\(152\) 20.6902 15.0323i 0.136120 0.0988969i
\(153\) −107.255 + 101.777i −0.701016 + 0.665212i
\(154\) 13.3684 41.1437i 0.0868077 0.267167i
\(155\) −103.165 + 113.172i −0.665582 + 0.730144i
\(156\) −72.7231 + 4.76577i −0.466174 + 0.0305498i
\(157\) 148.456i 0.945582i 0.881175 + 0.472791i \(0.156753\pi\)
−0.881175 + 0.472791i \(0.843247\pi\)
\(158\) −36.4981 112.330i −0.231001 0.710947i
\(159\) 120.183 + 144.507i 0.755868 + 0.908851i
\(160\) −56.3785 99.0490i −0.352366 0.619056i
\(161\) −9.83636 13.5386i −0.0610954 0.0840906i
\(162\) −6.68051 + 127.372i −0.0412377 + 0.786245i
\(163\) 91.0894 125.374i 0.558830 0.769164i −0.432347 0.901707i \(-0.642314\pi\)
0.991177 + 0.132543i \(0.0423144\pi\)
\(164\) 7.61799 + 10.4853i 0.0464512 + 0.0639345i
\(165\) −65.6619 99.5897i −0.397951 0.603574i
\(166\) 64.7634 + 47.0533i 0.390141 + 0.283454i
\(167\) −16.3877 50.4362i −0.0981300 0.302013i 0.889927 0.456103i \(-0.150755\pi\)
−0.988057 + 0.154090i \(0.950755\pi\)
\(168\) −22.1775 + 87.3204i −0.132009 + 0.519764i
\(169\) −26.6599 82.0507i −0.157751 0.485507i
\(170\) 14.3096 128.554i 0.0841741 0.756201i
\(171\) −19.2070 + 18.2260i −0.112322 + 0.106585i
\(172\) 111.253 + 36.1482i 0.646819 + 0.210164i
\(173\) −25.5804 + 18.5852i −0.147863 + 0.107429i −0.659257 0.751917i \(-0.729129\pi\)
0.511394 + 0.859346i \(0.329129\pi\)
\(174\) 3.58778 14.1263i 0.0206194 0.0811856i
\(175\) 74.2604 + 44.0980i 0.424345 + 0.251989i
\(176\) 60.4890i 0.343687i
\(177\) −119.614 299.825i −0.675788 1.69393i
\(178\) −206.204 66.9998i −1.15845 0.376403i
\(179\) 77.9997 + 25.3436i 0.435753 + 0.141585i 0.518675 0.854971i \(-0.326425\pi\)
−0.0829226 + 0.996556i \(0.526425\pi\)
\(180\) 41.3173 + 54.5377i 0.229541 + 0.302987i
\(181\) 27.7033 + 85.2621i 0.153057 + 0.471061i 0.997959 0.0638602i \(-0.0203412\pi\)
−0.844902 + 0.534922i \(0.820341\pi\)
\(182\) −86.9149 −0.477555
\(183\) −14.6827 224.050i −0.0802333 1.22432i
\(184\) 34.0664 + 24.7507i 0.185144 + 0.134515i
\(185\) 312.710 + 34.8083i 1.69032 + 0.188153i
\(186\) −134.383 + 53.6118i −0.722490 + 0.288236i
\(187\) 76.7944 105.698i 0.410665 0.565232i
\(188\) −83.9537 60.9959i −0.446562 0.324446i
\(189\) 10.9663 92.6294i 0.0580228 0.490103i
\(190\) 2.56252 23.0211i 0.0134870 0.121164i
\(191\) −0.866643 + 1.19283i −0.00453740 + 0.00624519i −0.811280 0.584658i \(-0.801229\pi\)
0.806742 + 0.590903i \(0.201229\pi\)
\(192\) −13.0101 198.527i −0.0677611 1.03400i
\(193\) 141.376i 0.732518i 0.930513 + 0.366259i \(0.119362\pi\)
−0.930513 + 0.366259i \(0.880638\pi\)
\(194\) −238.486 + 77.4887i −1.22931 + 0.399426i
\(195\) −149.525 + 187.293i −0.766797 + 0.960476i
\(196\) −17.4152 + 53.5984i −0.0888529 + 0.273461i
\(197\) −30.8463 + 94.9352i −0.156580 + 0.481905i −0.998318 0.0579827i \(-0.981533\pi\)
0.841737 + 0.539887i \(0.181533\pi\)
\(198\) −14.7083 111.738i −0.0742842 0.564334i
\(199\) −250.393 −1.25826 −0.629128 0.777301i \(-0.716588\pi\)
−0.629128 + 0.777301i \(0.716588\pi\)
\(200\) −212.001 47.7885i −1.06001 0.238943i
\(201\) 57.8889 227.928i 0.288004 1.13397i
\(202\) 0.284196 + 0.391162i 0.00140691 + 0.00193645i
\(203\) −3.29372 + 10.1370i −0.0162252 + 0.0499361i
\(204\) −39.9890 + 63.3773i −0.196025 + 0.310673i
\(205\) 42.3583 + 4.71498i 0.206626 + 0.0229999i
\(206\) 33.0964 10.7537i 0.160662 0.0522022i
\(207\) −38.3128 20.8032i −0.185086 0.100499i
\(208\) 115.579 37.5540i 0.555670 0.180548i
\(209\) 13.7521 18.9282i 0.0657997 0.0905655i
\(210\) 44.9160 + 68.1241i 0.213885 + 0.324401i
\(211\) 38.3969 27.8970i 0.181976 0.132213i −0.493068 0.869991i \(-0.664125\pi\)
0.675044 + 0.737778i \(0.264125\pi\)
\(212\) 77.0663 + 55.9920i 0.363520 + 0.264113i
\(213\) 85.8393 71.3903i 0.403001 0.335166i
\(214\) −177.399 + 128.888i −0.828966 + 0.602279i
\(215\) 334.313 190.291i 1.55495 0.885073i
\(216\) 45.7818 + 230.198i 0.211953 + 1.06573i
\(217\) 100.629 32.6965i 0.463730 0.150675i
\(218\) 158.932 0.729046
\(219\) −41.6666 + 2.73054i −0.190258 + 0.0124682i
\(220\) −44.6800 40.7292i −0.203091 0.185133i
\(221\) −249.640 81.1131i −1.12959 0.367028i
\(222\) 251.408 + 158.630i 1.13247 + 0.714551i
\(223\) −108.162 148.872i −0.485029 0.667586i 0.494432 0.869216i \(-0.335376\pi\)
−0.979462 + 0.201630i \(0.935376\pi\)
\(224\) 78.7462i 0.351545i
\(225\) 224.072 + 20.4090i 0.995878 + 0.0907068i
\(226\) 112.576 0.498126
\(227\) 174.859 127.043i 0.770305 0.559659i −0.131749 0.991283i \(-0.542059\pi\)
0.902054 + 0.431624i \(0.142059\pi\)
\(228\) −7.16113 + 11.3494i −0.0314085 + 0.0497783i
\(229\) −32.4904 + 99.9953i −0.141880 + 0.436661i −0.996597 0.0824337i \(-0.973731\pi\)
0.854717 + 0.519094i \(0.173731\pi\)
\(230\) 37.3529 7.70038i 0.162404 0.0334799i
\(231\) 5.38969 + 82.2438i 0.0233320 + 0.356034i
\(232\) 26.8199i 0.115603i
\(233\) 62.4520 + 192.208i 0.268034 + 0.824925i 0.990979 + 0.134019i \(0.0427883\pi\)
−0.722944 + 0.690906i \(0.757212\pi\)
\(234\) −204.372 + 97.4754i −0.873386 + 0.416562i
\(235\) −334.222 + 68.9006i −1.42222 + 0.293194i
\(236\) −96.1648 132.359i −0.407478 0.560845i
\(237\) 143.886 + 173.008i 0.607114 + 0.729991i
\(238\) −52.5311 + 72.3028i −0.220719 + 0.303793i
\(239\) 44.7563 + 61.6017i 0.187265 + 0.257748i 0.892319 0.451406i \(-0.149077\pi\)
−0.705054 + 0.709154i \(0.749077\pi\)
\(240\) −89.1641 71.1842i −0.371517 0.296601i
\(241\) 191.906 + 139.428i 0.796290 + 0.578538i 0.909823 0.414996i \(-0.136217\pi\)
−0.113534 + 0.993534i \(0.536217\pi\)
\(242\) −28.1044 86.4964i −0.116134 0.357423i
\(243\) −78.0980 230.108i −0.321391 0.946947i
\(244\) −35.1654 108.228i −0.144120 0.443557i
\(245\) 91.6765 + 161.063i 0.374190 + 0.657398i
\(246\) 34.0546 + 21.4874i 0.138433 + 0.0873470i
\(247\) −44.7049 14.5255i −0.180992 0.0588078i
\(248\) −215.392 + 156.491i −0.868515 + 0.631013i
\(249\) −147.821 37.5432i −0.593657 0.150776i
\(250\) −161.342 + 112.744i −0.645370 + 0.450976i
\(251\) 329.960i 1.31458i 0.753637 + 0.657291i \(0.228298\pi\)
−0.753637 + 0.657291i \(0.771702\pi\)
\(252\) −6.16963 46.8704i −0.0244826 0.185994i
\(253\) 36.6370 + 11.9041i 0.144810 + 0.0470517i
\(254\) 202.622 + 65.8359i 0.797724 + 0.259196i
\(255\) 65.4327 + 237.586i 0.256599 + 0.931712i
\(256\) −75.5254 232.443i −0.295021 0.907981i
\(257\) 113.930 0.443306 0.221653 0.975126i \(-0.428855\pi\)
0.221653 + 0.975126i \(0.428855\pi\)
\(258\) 362.661 23.7663i 1.40566 0.0921175i
\(259\) −175.878 127.783i −0.679065 0.493370i
\(260\) −50.0842 + 110.659i −0.192632 + 0.425610i
\(261\) 3.62384 + 27.5302i 0.0138844 + 0.105480i
\(262\) 120.099 165.302i 0.458393 0.630923i
\(263\) −190.229 138.210i −0.723304 0.525511i 0.164134 0.986438i \(-0.447517\pi\)
−0.887438 + 0.460927i \(0.847517\pi\)
\(264\) −76.8478 192.626i −0.291090 0.729645i
\(265\) 306.803 63.2481i 1.15775 0.238672i
\(266\) −9.40713 + 12.9478i −0.0353651 + 0.0486760i
\(267\) 412.190 27.0121i 1.54378 0.101169i
\(268\) 119.187i 0.444728i
\(269\) −158.804 + 51.5986i −0.590350 + 0.191816i −0.588932 0.808183i \(-0.700451\pi\)
−0.00141812 + 0.999999i \(0.500451\pi\)
\(270\) 182.017 + 109.814i 0.674137 + 0.406719i
\(271\) −164.547 + 506.424i −0.607185 + 1.86872i −0.126174 + 0.992008i \(0.540270\pi\)
−0.481011 + 0.876715i \(0.659730\pi\)
\(272\) 38.6153 118.846i 0.141968 0.436933i
\(273\) 153.801 61.3586i 0.563374 0.224757i
\(274\) 66.6678 0.243313
\(275\) −197.964 + 18.3538i −0.719869 + 0.0667410i
\(276\) −21.4158 5.43916i −0.0775935 0.0197071i
\(277\) −11.6322 16.0104i −0.0419935 0.0577991i 0.787504 0.616310i \(-0.211373\pi\)
−0.829497 + 0.558511i \(0.811373\pi\)
\(278\) 82.5524 254.070i 0.296951 0.913921i
\(279\) 199.951 189.739i 0.716671 0.680067i
\(280\) 110.968 + 101.156i 0.396314 + 0.361270i
\(281\) 25.0374 8.13516i 0.0891012 0.0289507i −0.264127 0.964488i \(-0.585084\pi\)
0.353228 + 0.935537i \(0.385084\pi\)
\(282\) −312.489 79.3655i −1.10812 0.281438i
\(283\) −46.4423 + 15.0900i −0.164107 + 0.0533216i −0.389918 0.920849i \(-0.627497\pi\)
0.225811 + 0.974171i \(0.427497\pi\)
\(284\) 33.2600 45.7784i 0.117113 0.161192i
\(285\) 11.7175 + 42.5464i 0.0411141 + 0.149285i
\(286\) 161.864 117.601i 0.565957 0.411192i
\(287\) −23.8236 17.3089i −0.0830091 0.0603097i
\(288\) 88.3141 + 185.164i 0.306646 + 0.642931i
\(289\) 15.4477 11.2234i 0.0534523 0.0388354i
\(290\) −17.9519 16.3645i −0.0619031 0.0564293i
\(291\) 367.311 305.483i 1.26224 1.04977i
\(292\) −20.1272 + 6.53971i −0.0689286 + 0.0223963i
\(293\) −290.824 −0.992572 −0.496286 0.868159i \(-0.665303\pi\)
−0.496286 + 0.868159i \(0.665303\pi\)
\(294\) 11.4499 + 174.720i 0.0389453 + 0.594284i
\(295\) −534.705 59.5189i −1.81256 0.201759i
\(296\) 520.251 + 169.040i 1.75760 + 0.571080i
\(297\) 104.910 + 187.344i 0.353233 + 0.630788i
\(298\) −210.294 289.445i −0.705685 0.971293i
\(299\) 77.3946i 0.258845i
\(300\) 112.617 17.9301i 0.375390 0.0597671i
\(301\) −265.787 −0.883012
\(302\) −87.1860 + 63.3443i −0.288695 + 0.209749i
\(303\) −0.779047 0.491554i −0.00257111 0.00162229i
\(304\) 6.91513 21.2826i 0.0227471 0.0700085i
\(305\) −340.924 154.303i −1.11778 0.505910i
\(306\) −42.4340 + 228.927i −0.138673 + 0.748128i
\(307\) 273.816i 0.891909i 0.895056 + 0.445954i \(0.147136\pi\)
−0.895056 + 0.445954i \(0.852864\pi\)
\(308\) 12.9084 + 39.7281i 0.0419105 + 0.128987i
\(309\) −50.9744 + 42.3940i −0.164966 + 0.137198i
\(310\) −26.6767 + 239.658i −0.0860539 + 0.773089i
\(311\) 18.4022 + 25.3284i 0.0591710 + 0.0814418i 0.837577 0.546319i \(-0.183971\pi\)
−0.778406 + 0.627761i \(0.783971\pi\)
\(312\) −320.350 + 266.427i −1.02676 + 0.853933i
\(313\) 11.2273 15.4531i 0.0358700 0.0493709i −0.790705 0.612197i \(-0.790286\pi\)
0.826575 + 0.562826i \(0.190286\pi\)
\(314\) 137.405 + 189.121i 0.437595 + 0.602297i
\(315\) −127.575 88.8408i −0.404999 0.282034i
\(316\) 92.2657 + 67.0350i 0.291980 + 0.212136i
\(317\) −103.121 317.375i −0.325304 1.00118i −0.971303 0.237845i \(-0.923559\pi\)
0.645999 0.763338i \(-0.276441\pi\)
\(318\) 286.853 + 72.8546i 0.902054 + 0.229102i
\(319\) −7.58200 23.3350i −0.0237680 0.0731505i
\(320\) −302.088 136.725i −0.944026 0.427267i
\(321\) 222.928 353.312i 0.694480 1.10066i
\(322\) −25.0615 8.14296i −0.0778306 0.0252887i
\(323\) −39.1030 + 28.4100i −0.121062 + 0.0879567i
\(324\) −67.0726 103.292i −0.207014 0.318803i
\(325\) 157.974 + 366.865i 0.486073 + 1.12882i
\(326\) 244.024i 0.748541i
\(327\) −281.240 + 112.200i −0.860060 + 0.343119i
\(328\) 70.4709 + 22.8974i 0.214850 + 0.0698091i
\(329\) 224.242 + 72.8606i 0.681587 + 0.221461i
\(330\) −175.824 66.0953i −0.532800 0.200289i
\(331\) −29.9792 92.2664i −0.0905715 0.278750i 0.895503 0.445056i \(-0.146816\pi\)
−0.986074 + 0.166306i \(0.946816\pi\)
\(332\) −77.2977 −0.232824
\(333\) −556.869 103.221i −1.67228 0.309974i
\(334\) −67.5581 49.0839i −0.202270 0.146958i
\(335\) −289.654 264.042i −0.864639 0.788185i
\(336\) 29.2109 + 73.2198i 0.0869371 + 0.217916i
\(337\) 35.9558 49.4890i 0.106694 0.146852i −0.752331 0.658785i \(-0.771071\pi\)
0.859025 + 0.511934i \(0.171071\pi\)
\(338\) −109.905 79.8507i −0.325163 0.236245i
\(339\) −199.211 + 79.4746i −0.587642 + 0.234438i
\(340\) 61.7841 + 108.546i 0.181718 + 0.319252i
\(341\) −143.164 + 197.049i −0.419836 + 0.577855i
\(342\) −7.59897 + 40.9957i −0.0222192 + 0.119870i
\(343\) 297.327i 0.866844i
\(344\) 636.052 206.666i 1.84899 0.600773i
\(345\) −60.6621 + 39.9960i −0.175832 + 0.115931i
\(346\) −15.3856 + 47.3522i −0.0444672 + 0.136856i
\(347\) 110.008 338.571i 0.317027 0.975709i −0.657885 0.753119i \(-0.728549\pi\)
0.974912 0.222591i \(-0.0714513\pi\)
\(348\) 5.21484 + 13.0715i 0.0149852 + 0.0375618i
\(349\) 120.930 0.346506 0.173253 0.984877i \(-0.444572\pi\)
0.173253 + 0.984877i \(0.444572\pi\)
\(350\) 135.417 12.5549i 0.386906 0.0358711i
\(351\) 292.835 316.768i 0.834288 0.902472i
\(352\) −106.548 146.651i −0.302693 0.416622i
\(353\) −131.712 + 405.367i −0.373121 + 1.14835i 0.571617 + 0.820520i \(0.306316\pi\)
−0.944738 + 0.327827i \(0.893684\pi\)
\(354\) −429.884 271.243i −1.21436 0.766223i
\(355\) −37.5702 182.245i −0.105832 0.513367i
\(356\) 199.110 64.6946i 0.559296 0.181726i
\(357\) 41.9139 165.029i 0.117406 0.462267i
\(358\) 122.822 39.9074i 0.343079 0.111473i
\(359\) −103.927 + 143.043i −0.289491 + 0.398450i −0.928849 0.370460i \(-0.879200\pi\)
0.639358 + 0.768909i \(0.279200\pi\)
\(360\) 374.377 + 113.407i 1.03994 + 0.315020i
\(361\) 285.053 207.103i 0.789620 0.573692i
\(362\) 114.207 + 82.9761i 0.315488 + 0.229216i
\(363\) 110.796 + 133.220i 0.305222 + 0.366997i
\(364\) 67.8964 49.3296i 0.186529 0.135521i
\(365\) −28.6957 + 63.4017i −0.0786183 + 0.173703i
\(366\) −226.075 271.832i −0.617693 0.742710i
\(367\) 257.659 83.7185i 0.702068 0.228116i 0.0638366 0.997960i \(-0.479666\pi\)
0.638231 + 0.769845i \(0.279666\pi\)
\(368\) 36.8451 0.100122
\(369\) −75.4310 13.9819i −0.204420 0.0378913i
\(370\) 430.585 245.088i 1.16374 0.662400i
\(371\) −205.846 66.8833i −0.554840 0.180278i
\(372\) 74.5497 118.151i 0.200402 0.317611i
\(373\) 371.550 + 511.394i 0.996111 + 1.37103i 0.927681 + 0.373374i \(0.121799\pi\)
0.0684302 + 0.997656i \(0.478201\pi\)
\(374\) 205.729i 0.550077i
\(375\) 205.912 313.409i 0.549099 0.835757i
\(376\) −593.286 −1.57789
\(377\) −39.8801 + 28.9746i −0.105783 + 0.0768558i
\(378\) −71.7636 128.152i −0.189851 0.339027i
\(379\) −8.13290 + 25.0305i −0.0214588 + 0.0660435i −0.961212 0.275809i \(-0.911054\pi\)
0.939754 + 0.341852i \(0.111054\pi\)
\(380\) 11.0641 + 19.4381i 0.0291161 + 0.0511529i
\(381\) −405.030 + 26.5429i −1.06307 + 0.0696663i
\(382\) 2.32170i 0.00607775i
\(383\) 8.00232 + 24.6286i 0.0208938 + 0.0643045i 0.960960 0.276688i \(-0.0892369\pi\)
−0.940066 + 0.340993i \(0.889237\pi\)
\(384\) −25.4194 30.5641i −0.0661962 0.0795940i
\(385\) 125.146 + 56.6411i 0.325054 + 0.147120i
\(386\) 130.851 + 180.102i 0.338993 + 0.466584i
\(387\) −624.972 + 298.081i −1.61492 + 0.770234i
\(388\) 142.321 195.888i 0.366807 0.504867i
\(389\) −92.7133 127.609i −0.238338 0.328044i 0.673047 0.739600i \(-0.264985\pi\)
−0.911384 + 0.411556i \(0.864985\pi\)
\(390\) −17.1331 + 376.990i −0.0439311 + 0.966642i
\(391\) −64.3831 46.7770i −0.164663 0.119634i
\(392\) 99.5656 + 306.432i 0.253994 + 0.781713i
\(393\) −95.8254 + 377.297i −0.243830 + 0.960043i
\(394\) 48.5722 + 149.490i 0.123280 + 0.379416i
\(395\) 367.313 75.7222i 0.929906 0.191702i
\(396\) 74.9082 + 78.9400i 0.189162 + 0.199343i
\(397\) −468.010 152.066i −1.17887 0.383037i −0.346921 0.937894i \(-0.612773\pi\)
−0.831945 + 0.554858i \(0.812773\pi\)
\(398\) −318.981 + 231.753i −0.801459 + 0.582294i
\(399\) 7.50583 29.5530i 0.0188116 0.0740677i
\(400\) −174.653 + 75.2061i −0.436632 + 0.188015i
\(401\) 590.500i 1.47257i 0.676672 + 0.736285i \(0.263421\pi\)
−0.676672 + 0.736285i \(0.736579\pi\)
\(402\) −137.215 343.941i −0.341330 0.855576i
\(403\) 465.393 + 151.215i 1.15482 + 0.375224i
\(404\) −0.444018 0.144270i −0.00109905 0.000357104i
\(405\) −399.615 65.8255i −0.986703 0.162532i
\(406\) 5.18645 + 15.9623i 0.0127745 + 0.0393159i
\(407\) 500.439 1.22958
\(408\) 28.0168 + 427.521i 0.0686686 + 1.04785i
\(409\) 602.755 + 437.927i 1.47373 + 1.07073i 0.979511 + 0.201390i \(0.0645457\pi\)
0.494218 + 0.869338i \(0.335454\pi\)
\(410\) 58.3251 33.1985i 0.142256 0.0809720i
\(411\) −117.973 + 47.0649i −0.287038 + 0.114513i
\(412\) −19.7509 + 27.1848i −0.0479391 + 0.0659826i
\(413\) 300.735 + 218.496i 0.728171 + 0.529047i
\(414\) −68.0620 + 8.95911i −0.164401 + 0.0216404i
\(415\) −171.242 + 187.852i −0.412631 + 0.452656i
\(416\) −214.064 + 294.634i −0.514576 + 0.708254i
\(417\) 33.2824 + 507.871i 0.0798139 + 1.21792i
\(418\) 36.8414i 0.0881373i
\(419\) 187.721 60.9941i 0.448020 0.145571i −0.0763126 0.997084i \(-0.524315\pi\)
0.524333 + 0.851513i \(0.324315\pi\)
\(420\) −73.7522 27.7248i −0.175601 0.0660114i
\(421\) 47.9058 147.439i 0.113791 0.350211i −0.877902 0.478840i \(-0.841058\pi\)
0.991693 + 0.128629i \(0.0410575\pi\)
\(422\) 23.0943 71.0770i 0.0547259 0.168429i
\(423\) 608.997 80.1633i 1.43971 0.189511i
\(424\) 544.614 1.28447
\(425\) 400.667 + 90.3169i 0.942745 + 0.212510i
\(426\) 43.2766 170.395i 0.101588 0.399987i
\(427\) 151.978 + 209.180i 0.355920 + 0.489882i
\(428\) 65.4290 201.370i 0.152871 0.470490i
\(429\) −203.406 + 322.371i −0.474140 + 0.751449i
\(430\) 249.764 551.841i 0.580846 1.28335i
\(431\) −218.609 + 71.0303i −0.507213 + 0.164804i −0.551434 0.834218i \(-0.685919\pi\)
0.0442213 + 0.999022i \(0.485919\pi\)
\(432\) 150.803 + 139.409i 0.349081 + 0.322707i
\(433\) −526.213 + 170.977i −1.21527 + 0.394866i −0.845358 0.534200i \(-0.820613\pi\)
−0.369915 + 0.929066i \(0.620613\pi\)
\(434\) 97.9313 134.791i 0.225648 0.310578i
\(435\) 43.3197 + 16.2846i 0.0995854 + 0.0374359i
\(436\) −124.155 + 90.2038i −0.284759 + 0.206889i
\(437\) −11.5296 8.37671i −0.0263834 0.0191687i
\(438\) −50.5526 + 42.0433i −0.115417 + 0.0959892i
\(439\) 42.8442 31.1281i 0.0975950 0.0709069i −0.537918 0.842997i \(-0.680789\pi\)
0.635513 + 0.772091i \(0.280789\pi\)
\(440\) −343.528 38.2387i −0.780745 0.0869061i
\(441\) −143.607 301.094i −0.325639 0.682752i
\(442\) −393.096 + 127.725i −0.889359 + 0.288970i
\(443\) −260.488 −0.588009 −0.294004 0.955804i \(-0.594988\pi\)
−0.294004 + 0.955804i \(0.594988\pi\)
\(444\) −286.428 + 18.7705i −0.645108 + 0.0422760i
\(445\) 283.874 627.207i 0.637920 1.40945i
\(446\) −275.578 89.5408i −0.617888 0.200764i
\(447\) 576.466 + 363.731i 1.28963 + 0.813716i
\(448\) 134.665 + 185.351i 0.300592 + 0.413730i
\(449\) 757.399i 1.68686i 0.537241 + 0.843429i \(0.319467\pi\)
−0.537241 + 0.843429i \(0.680533\pi\)
\(450\) 304.340 181.392i 0.676311 0.403094i
\(451\) 67.7872 0.150304
\(452\) −87.9427 + 63.8941i −0.194563 + 0.141359i
\(453\) 109.562 173.642i 0.241859 0.383315i
\(454\) 105.171 323.684i 0.231655 0.712961i
\(455\) 30.5314 274.288i 0.0671020 0.602830i
\(456\) 5.01717 + 76.5593i 0.0110026 + 0.167893i
\(457\) 28.8112i 0.0630442i −0.999503 0.0315221i \(-0.989965\pi\)
0.999503 0.0315221i \(-0.0100355\pi\)
\(458\) 51.1611 + 157.458i 0.111705 + 0.343794i
\(459\) −86.5243 435.057i −0.188506 0.947837i
\(460\) −24.8090 + 27.2155i −0.0539326 + 0.0591642i
\(461\) 7.46952 + 10.2809i 0.0162029 + 0.0223013i 0.817042 0.576579i \(-0.195613\pi\)
−0.800839 + 0.598880i \(0.795613\pi\)
\(462\) 82.9873 + 99.7835i 0.179626 + 0.215982i
\(463\) −275.156 + 378.719i −0.594289 + 0.817969i −0.995171 0.0981613i \(-0.968704\pi\)
0.400882 + 0.916130i \(0.368704\pi\)
\(464\) −13.7939 18.9856i −0.0297282 0.0409173i
\(465\) −121.983 442.921i −0.262329 0.952519i
\(466\) 257.458 + 187.054i 0.552485 + 0.401404i
\(467\) −109.488 336.968i −0.234449 0.721559i −0.997194 0.0748600i \(-0.976149\pi\)
0.762745 0.646699i \(-0.223851\pi\)
\(468\) 104.329 192.140i 0.222924 0.410556i
\(469\) 83.6836 + 257.552i 0.178430 + 0.549151i
\(470\) −362.001 + 397.115i −0.770215 + 0.844926i
\(471\) −376.658 237.659i −0.799699 0.504584i
\(472\) −889.580 289.042i −1.88470 0.612378i
\(473\) 494.981 359.624i 1.04647 0.760305i
\(474\) 343.428 + 87.2233i 0.724531 + 0.184015i
\(475\) 71.7504 + 16.1737i 0.151053 + 0.0340499i
\(476\) 86.2964i 0.181295i
\(477\) −559.037 + 73.5869i −1.17198 + 0.154270i
\(478\) 114.032 + 37.0512i 0.238560 + 0.0775129i
\(479\) −845.986 274.877i −1.76615 0.573857i −0.768342 0.640039i \(-0.778918\pi\)
−0.997808 + 0.0661825i \(0.978918\pi\)
\(480\) 341.559 + 15.5228i 0.711580 + 0.0323393i
\(481\) −310.693 956.213i −0.645931 1.98797i
\(482\) 373.521 0.774940
\(483\) 50.0964 3.28297i 0.103719 0.00679705i
\(484\) 71.0467 + 51.6185i 0.146791 + 0.106650i
\(485\) −160.765 779.837i −0.331474 1.60791i
\(486\) −312.469 220.855i −0.642939 0.454434i
\(487\) 367.869 506.328i 0.755377 1.03969i −0.242207 0.970225i \(-0.577871\pi\)
0.997585 0.0694630i \(-0.0221286\pi\)
\(488\) −526.347 382.414i −1.07858 0.783635i
\(489\) 172.272 + 431.816i 0.352294 + 0.883059i
\(490\) 265.861 + 120.329i 0.542574 + 0.245569i
\(491\) 87.2230 120.052i 0.177644 0.244505i −0.710905 0.703288i \(-0.751714\pi\)
0.888548 + 0.458783i \(0.151714\pi\)
\(492\) −38.7983 + 2.54257i −0.0788583 + 0.00516783i
\(493\) 50.6877i 0.102815i
\(494\) −70.3947 + 22.8726i −0.142499 + 0.0463009i
\(495\) 357.792 7.16529i 0.722812 0.0144753i
\(496\) −71.9887 + 221.559i −0.145139 + 0.446691i
\(497\) −39.7296 + 122.275i −0.0799388 + 0.246026i
\(498\) −223.060 + 88.9892i −0.447911 + 0.178693i
\(499\) −162.393 −0.325437 −0.162719 0.986673i \(-0.552026\pi\)
−0.162719 + 0.986673i \(0.552026\pi\)
\(500\) 62.0486 179.645i 0.124097 0.359291i
\(501\) 154.200 + 39.1634i 0.307784 + 0.0781704i
\(502\) 305.397 + 420.342i 0.608360 + 0.837335i
\(503\) 89.5586 275.633i 0.178049 0.547978i −0.821711 0.569905i \(-0.806980\pi\)
0.999760 + 0.0219268i \(0.00698008\pi\)
\(504\) −186.043 196.057i −0.369133 0.389001i
\(505\) −1.33427 + 0.759463i −0.00264211 + 0.00150389i
\(506\) 57.6904 18.7448i 0.114013 0.0370450i
\(507\) 250.855 + 63.7119i 0.494784 + 0.125664i
\(508\) −195.651 + 63.5708i −0.385139 + 0.125139i
\(509\) 229.058 315.271i 0.450016 0.619394i −0.522385 0.852710i \(-0.674958\pi\)
0.972401 + 0.233316i \(0.0749577\pi\)
\(510\) 303.256 + 242.104i 0.594619 + 0.474714i
\(511\) 38.9011 28.2633i 0.0761275 0.0553098i
\(512\) −354.234 257.366i −0.691863 0.502668i
\(513\) −15.4945 77.9089i −0.0302038 0.151869i
\(514\) 145.137 105.448i 0.282368 0.205152i
\(515\) 22.3105 + 108.224i 0.0433214 + 0.210143i
\(516\) −269.815 + 224.398i −0.522898 + 0.434881i
\(517\) −516.196 + 167.722i −0.998444 + 0.324414i
\(518\) −342.324 −0.660858
\(519\) −6.20299 94.6542i −0.0119518 0.182378i
\(520\) 140.211 + 680.136i 0.269637 + 1.30795i
\(521\) 62.7140 + 20.3770i 0.120372 + 0.0391113i 0.368584 0.929595i \(-0.379843\pi\)
−0.248211 + 0.968706i \(0.579843\pi\)
\(522\) 30.0972 + 31.7171i 0.0576575 + 0.0607608i
\(523\) −195.827 269.533i −0.374430 0.515359i 0.579668 0.814853i \(-0.303182\pi\)
−0.954098 + 0.299494i \(0.903182\pi\)
\(524\) 197.295i 0.376516i
\(525\) −230.765 + 117.816i −0.439553 + 0.224411i
\(526\) −370.257 −0.703911
\(527\) 407.075 295.757i 0.772438 0.561209i
\(528\) −153.471 96.8349i −0.290664 0.183400i
\(529\) −156.219 + 480.793i −0.295310 + 0.908871i
\(530\) 332.303 364.537i 0.626987 0.687806i
\(531\) 952.193 + 176.499i 1.79321 + 0.332390i
\(532\) 15.4537i 0.0290484i
\(533\) −42.0850 129.524i −0.0789588 0.243010i
\(534\) 500.095 415.916i 0.936508 0.778870i
\(535\) −344.430 605.114i −0.643794 1.13105i
\(536\) −400.525 551.276i −0.747249 1.02850i
\(537\) −189.168 + 157.326i −0.352269 + 0.292973i
\(538\) −154.546 + 212.715i −0.287261 + 0.395381i
\(539\) 173.257 + 238.467i 0.321441 + 0.442426i
\(540\) −204.515 + 17.5212i −0.378731 + 0.0324467i
\(541\) −127.353 92.5277i −0.235404 0.171031i 0.463829 0.885925i \(-0.346475\pi\)
−0.699233 + 0.714894i \(0.746475\pi\)
\(542\) 259.104 + 797.441i 0.478052 + 1.47129i
\(543\) −260.674 66.2055i −0.480062 0.121925i
\(544\) 115.720 + 356.151i 0.212721 + 0.654689i
\(545\) −55.8295 + 501.560i −0.102439 + 0.920294i
\(546\) 139.139 220.518i 0.254834 0.403879i
\(547\) 60.8679 + 19.7772i 0.111276 + 0.0361557i 0.364126 0.931350i \(-0.381368\pi\)
−0.252850 + 0.967506i \(0.581368\pi\)
\(548\) −52.0797 + 37.8381i −0.0950359 + 0.0690477i
\(549\) 591.957 + 321.422i 1.07825 + 0.585469i
\(550\) −235.203 + 206.608i −0.427641 + 0.375651i
\(551\) 9.07702i 0.0164737i
\(552\) −117.333 + 46.8096i −0.212559 + 0.0847999i
\(553\) −246.444 80.0744i −0.445648 0.144800i
\(554\) −29.6370 9.62964i −0.0534964 0.0173820i
\(555\) −588.923 + 737.674i −1.06112 + 1.32914i
\(556\) 79.7121 + 245.329i 0.143367 + 0.441239i
\(557\) −934.176 −1.67716 −0.838578 0.544781i \(-0.816613\pi\)
−0.838578 + 0.544781i \(0.816613\pi\)
\(558\) 79.1077 426.778i 0.141770 0.764835i
\(559\) −994.457 722.515i −1.77899 1.29251i
\(560\) 130.579 + 14.5350i 0.233178 + 0.0259554i
\(561\) 145.237 + 364.050i 0.258889 + 0.648930i
\(562\) 24.3661 33.5371i 0.0433561 0.0596746i
\(563\) 583.167 + 423.696i 1.03582 + 0.752568i 0.969465 0.245228i \(-0.0788627\pi\)
0.0663559 + 0.997796i \(0.478863\pi\)
\(564\) 289.156 115.358i 0.512688 0.204535i
\(565\) −39.5458 + 355.270i −0.0699925 + 0.628797i
\(566\) −45.1971 + 62.2084i −0.0798535 + 0.109909i
\(567\) 217.461 + 176.111i 0.383528 + 0.310601i
\(568\) 323.508i 0.569556i
\(569\) 560.605 182.152i 0.985246 0.320126i 0.228291 0.973593i \(-0.426686\pi\)
0.756955 + 0.653467i \(0.226686\pi\)
\(570\) 54.3062 + 43.3554i 0.0952741 + 0.0760621i
\(571\) 23.9750 73.7873i 0.0419877 0.129225i −0.927865 0.372915i \(-0.878358\pi\)
0.969853 + 0.243691i \(0.0783582\pi\)
\(572\) −59.6993 + 183.735i −0.104369 + 0.321216i
\(573\) −1.63903 4.10839i −0.00286044 0.00716996i
\(574\) −46.3697 −0.0807835
\(575\) 11.1797 + 120.584i 0.0194429 + 0.209711i
\(576\) 524.525 + 284.808i 0.910633 + 0.494458i
\(577\) 618.037 + 850.656i 1.07112 + 1.47427i 0.868935 + 0.494926i \(0.164805\pi\)
0.202187 + 0.979347i \(0.435195\pi\)
\(578\) 9.29123 28.5955i 0.0160748 0.0494731i
\(579\) −358.694 226.324i −0.619507 0.390888i
\(580\) 23.3116 + 2.59485i 0.0401924 + 0.00447388i
\(581\) 167.033 54.2722i 0.287492 0.0934117i
\(582\) 185.183 729.127i 0.318183 1.25280i
\(583\) 473.848 153.963i 0.812776 0.264087i
\(584\) −71.1175 + 97.8849i −0.121777 + 0.167611i
\(585\) −235.823 679.202i −0.403116 1.16103i
\(586\) −370.486 + 269.174i −0.632228 + 0.459341i
\(587\) −229.514 166.752i −0.390994 0.284074i 0.374868 0.927078i \(-0.377688\pi\)
−0.765863 + 0.643004i \(0.777688\pi\)
\(588\) −108.109 129.989i −0.183858 0.221070i
\(589\) 72.8979 52.9634i 0.123766 0.0899210i
\(590\) −736.259 + 419.077i −1.24790 + 0.710301i
\(591\) −191.486 230.241i −0.324003 0.389579i
\(592\) 455.222 147.911i 0.768957 0.249849i
\(593\) 924.858 1.55962 0.779812 0.626013i \(-0.215314\pi\)
0.779812 + 0.626013i \(0.215314\pi\)
\(594\) 307.044 + 141.561i 0.516910 + 0.238318i
\(595\) −209.721 191.177i −0.352473 0.321306i
\(596\) 328.556 + 106.754i 0.551269 + 0.179118i
\(597\) 400.847 635.289i 0.671435 1.06414i
\(598\) −71.6331 98.5945i −0.119788 0.164874i
\(599\) 620.049i 1.03514i 0.855641 + 0.517570i \(0.173163\pi\)
−0.855641 + 0.517570i \(0.826837\pi\)
\(600\) 460.634 461.379i 0.767723 0.768965i
\(601\) 738.329 1.22850 0.614251 0.789111i \(-0.289458\pi\)
0.614251 + 0.789111i \(0.289458\pi\)
\(602\) −338.591 + 246.001i −0.562443 + 0.408639i
\(603\) 485.619 + 511.757i 0.805339 + 0.848685i
\(604\) 32.1563 98.9669i 0.0532389 0.163852i
\(605\) 282.839 58.3079i 0.467503 0.0963766i
\(606\) −1.44740 + 0.0948530i −0.00238846 + 0.000156523i
\(607\) 43.7863i 0.0721355i −0.999349 0.0360678i \(-0.988517\pi\)
0.999349 0.0360678i \(-0.0114832\pi\)
\(608\) 20.7229 + 63.7786i 0.0340838 + 0.104899i
\(609\) −20.4465 24.5848i −0.0335739 0.0403691i
\(610\) −577.126 + 118.976i −0.946108 + 0.195042i
\(611\) 640.950 + 882.192i 1.04902 + 1.44385i
\(612\) −96.7817 202.918i −0.158140 0.331565i
\(613\) −99.1056 + 136.407i −0.161673 + 0.222524i −0.882166 0.470938i \(-0.843916\pi\)
0.720493 + 0.693462i \(0.243916\pi\)
\(614\) 253.432 + 348.820i 0.412756 + 0.568110i
\(615\) −79.7728 + 99.9220i −0.129712 + 0.162475i
\(616\) 193.211 + 140.376i 0.313653 + 0.227883i
\(617\) 29.9101 + 92.0539i 0.0484767 + 0.149196i 0.972365 0.233467i \(-0.0750071\pi\)
−0.923888 + 0.382663i \(0.875007\pi\)
\(618\) −25.6991 + 101.186i −0.0415844 + 0.163732i
\(619\) −268.240 825.556i −0.433343 1.33369i −0.894775 0.446518i \(-0.852664\pi\)
0.461431 0.887176i \(-0.347336\pi\)
\(620\) −115.181 202.357i −0.185776 0.326382i
\(621\) 114.115 63.9029i 0.183760 0.102903i
\(622\) 46.8858 + 15.2341i 0.0753790 + 0.0244921i
\(623\) −384.833 + 279.597i −0.617709 + 0.448792i
\(624\) −89.7467 + 353.363i −0.143825 + 0.566287i
\(625\) −299.123 548.772i −0.478597 0.878035i
\(626\) 30.0775i 0.0480471i
\(627\) 26.0086 + 65.1931i 0.0414810 + 0.103976i
\(628\) −214.676 69.7525i −0.341841 0.111071i
\(629\) −983.237 319.473i −1.56317 0.507906i
\(630\) −244.747 + 4.90140i −0.388487 + 0.00778000i
\(631\) 177.485 + 546.241i 0.281275 + 0.865676i 0.987490 + 0.157679i \(0.0504010\pi\)
−0.706215 + 0.707997i \(0.749599\pi\)
\(632\) 652.025 1.03169
\(633\) 9.31087 + 142.079i 0.0147091 + 0.224453i
\(634\) −425.117 308.866i −0.670532 0.487170i
\(635\) −278.943 + 616.311i −0.439280 + 0.970569i
\(636\) −265.434 + 105.894i −0.417349 + 0.166500i
\(637\) 348.087 479.101i 0.546447 0.752120i
\(638\) −31.2567 22.7093i −0.0489917 0.0355946i
\(639\) 43.7116 + 332.075i 0.0684062 + 0.519679i
\(640\) −64.8906 + 13.3773i −0.101392 + 0.0209021i
\(641\) 666.711 917.650i 1.04011 1.43159i 0.143034 0.989718i \(-0.454314\pi\)
0.897078 0.441873i \(-0.145686\pi\)
\(642\) −43.0175 656.423i −0.0670054 1.02247i
\(643\) 21.4999i 0.0334368i −0.999860 0.0167184i \(-0.994678\pi\)
0.999860 0.0167184i \(-0.00532189\pi\)
\(644\) 24.1992 7.86280i 0.0375764 0.0122093i
\(645\) −52.3932 + 1152.84i −0.0812298 + 1.78735i
\(646\) −23.5190 + 72.3841i −0.0364072 + 0.112050i
\(647\) 230.085 708.129i 0.355619 1.09448i −0.600031 0.799976i \(-0.704845\pi\)
0.955650 0.294505i \(-0.0951547\pi\)
\(648\) −657.341 252.360i −1.01441 0.389445i
\(649\) −855.703 −1.31849
\(650\) 540.800 + 321.143i 0.832000 + 0.494066i
\(651\) −78.1381 + 307.656i −0.120028 + 0.472590i
\(652\) 138.499 + 190.628i 0.212422 + 0.292374i
\(653\) −290.386 + 893.717i −0.444696 + 1.36863i 0.438121 + 0.898916i \(0.355644\pi\)
−0.882817 + 0.469717i \(0.844356\pi\)
\(654\) −254.429 + 403.237i −0.389036 + 0.616570i
\(655\) 479.474 + 437.077i 0.732022 + 0.667293i
\(656\) 61.6624 20.0353i 0.0939975 0.0305416i
\(657\) 59.7749 110.086i 0.0909816 0.167559i
\(658\) 353.103 114.730i 0.536630 0.174362i
\(659\) 695.825 957.721i 1.05588 1.45329i 0.172283 0.985047i \(-0.444886\pi\)
0.883597 0.468247i \(-0.155114\pi\)
\(660\) 174.864 48.1585i 0.264945 0.0729674i
\(661\) 676.253 491.327i 1.02308 0.743308i 0.0561650 0.998422i \(-0.482113\pi\)
0.966911 + 0.255113i \(0.0821127\pi\)
\(662\) −123.589 89.7925i −0.186690 0.135638i
\(663\) 605.439 503.528i 0.913181 0.759469i
\(664\) −357.524 + 259.757i −0.538440 + 0.391200i
\(665\) −37.5564 34.2355i −0.0564757 0.0514819i
\(666\) −804.943 + 383.918i −1.20862 + 0.576453i
\(667\) −14.2138 + 4.61835i −0.0213101 + 0.00692407i
\(668\) 80.6334 0.120709
\(669\) 550.865 36.0999i 0.823415 0.0539610i
\(670\) −613.382 68.2766i −0.915495 0.101905i
\(671\) −566.064 183.925i −0.843612 0.274106i
\(672\) −199.792 126.062i −0.297310 0.187593i
\(673\) −188.307 259.183i −0.279803 0.385116i 0.645866 0.763451i \(-0.276497\pi\)
−0.925669 + 0.378335i \(0.876497\pi\)
\(674\) 96.3241i 0.142914i
\(675\) −410.492 + 535.837i −0.608136 + 0.793833i
\(676\) 131.176 0.194048
\(677\) −418.668 + 304.180i −0.618416 + 0.449306i −0.852368 0.522943i \(-0.824834\pi\)
0.233952 + 0.972248i \(0.424834\pi\)
\(678\) −180.220 + 285.625i −0.265811 + 0.421276i
\(679\) −170.005 + 523.221i −0.250375 + 0.770576i
\(680\) 650.535 + 294.433i 0.956669 + 0.432989i
\(681\) 42.4016 + 647.026i 0.0622638 + 0.950111i
\(682\) 383.531i 0.562362i
\(683\) −170.064 523.402i −0.248995 0.766328i −0.994954 0.100336i \(-0.968008\pi\)
0.745958 0.665993i \(-0.231992\pi\)
\(684\) −17.3314 36.3380i −0.0253383 0.0531257i
\(685\) −23.4190 + 210.391i −0.0341884 + 0.307141i
\(686\) −275.193 378.771i −0.401157 0.552145i
\(687\) −201.692 242.513i −0.293583 0.353003i
\(688\) 343.966 473.429i 0.499951 0.688123i
\(689\) −588.368 809.819i −0.853945 1.17535i
\(690\) −40.2600 + 107.098i −0.0583479 + 0.155214i
\(691\) 600.331 + 436.166i 0.868786 + 0.631210i 0.930261 0.366899i \(-0.119581\pi\)
−0.0614752 + 0.998109i \(0.519581\pi\)
\(692\) −14.8563 45.7230i −0.0214686 0.0660737i
\(693\) −217.294 117.987i −0.313556 0.170255i
\(694\) −173.225 533.131i −0.249604 0.768201i
\(695\) 772.799 + 349.770i 1.11194 + 0.503266i
\(696\) 68.0466 + 42.9352i 0.0977681 + 0.0616885i
\(697\) −133.185 43.2744i −0.191083 0.0620866i
\(698\) 154.056 111.928i 0.220710 0.160355i
\(699\) −587.640 149.248i −0.840687 0.213517i
\(700\) −98.6597 + 86.6652i −0.140942 + 0.123807i
\(701\) 684.914i 0.977053i −0.872549 0.488527i \(-0.837535\pi\)
0.872549 0.488527i \(-0.162465\pi\)
\(702\) 79.8619 674.572i 0.113763 0.960929i
\(703\) −176.075 57.2104i −0.250463 0.0813804i
\(704\) −501.581 162.974i −0.712473 0.231497i
\(705\) 360.234 958.279i 0.510970 1.35926i
\(706\) 207.400 + 638.311i 0.293767 + 0.904123i
\(707\) 1.06077 0.00150039
\(708\) 489.765 32.0959i 0.691759 0.0453331i
\(709\) 648.335 + 471.043i 0.914435 + 0.664376i 0.942133 0.335240i \(-0.108817\pi\)
−0.0276973 + 0.999616i \(0.508817\pi\)
\(710\) −216.540 197.392i −0.304986 0.278018i
\(711\) −669.293 + 88.1000i −0.941340 + 0.123910i
\(712\) 703.536 968.334i 0.988112 1.36002i
\(713\) 120.026 + 87.2043i 0.168340 + 0.122306i
\(714\) −99.3490 249.028i −0.139144 0.348778i
\(715\) 314.267 + 552.123i 0.439535 + 0.772200i
\(716\) −73.2967 + 100.884i −0.102370 + 0.140900i
\(717\) −227.943 + 14.9378i −0.317912 + 0.0208338i
\(718\) 278.416i 0.387766i
\(719\) −803.024 + 260.918i −1.11686 + 0.362890i −0.808569 0.588401i \(-0.799758\pi\)
−0.308293 + 0.951292i \(0.599758\pi\)
\(720\) 323.346 112.268i 0.449092 0.155927i
\(721\) 23.5928 72.6112i 0.0327223 0.100709i
\(722\) 171.449 527.665i 0.237464 0.730838i
\(723\) −660.968 + 263.692i −0.914202 + 0.364719i
\(724\) −136.310 −0.188274
\(725\) 57.9495 50.9043i 0.0799303 0.0702129i
\(726\) 264.447 + 67.1640i 0.364253 + 0.0925123i
\(727\) 389.355 + 535.901i 0.535563 + 0.737140i 0.987966 0.154674i \(-0.0494328\pi\)
−0.452402 + 0.891814i \(0.649433\pi\)
\(728\) 148.270 456.328i 0.203668 0.626824i
\(729\) 708.847 + 170.225i 0.972356 + 0.233505i
\(730\) 22.1259 + 107.328i 0.0303095 + 0.147025i
\(731\) −1202.09 + 390.584i −1.64445 + 0.534314i
\(732\) 330.888 + 84.0384i 0.452032 + 0.114807i
\(733\) −84.9829 + 27.6126i −0.115938 + 0.0376707i −0.366412 0.930453i \(-0.619414\pi\)
0.250473 + 0.968124i \(0.419414\pi\)
\(734\) 250.751 345.128i 0.341622 0.470202i
\(735\) −555.405 25.2415i −0.755653 0.0343422i
\(736\) −89.3280 + 64.9006i −0.121370 + 0.0881802i
\(737\) −504.328 366.416i −0.684299 0.497172i
\(738\) −109.034 + 52.0038i −0.147743 + 0.0704659i
\(739\) −295.965 + 215.031i −0.400494 + 0.290976i −0.769742 0.638355i \(-0.779615\pi\)
0.369248 + 0.929331i \(0.379615\pi\)
\(740\) −197.262 + 435.842i −0.266571 + 0.588975i
\(741\) 108.420 90.1705i 0.146316 0.121688i
\(742\) −324.135 + 105.318i −0.436840 + 0.141938i
\(743\) −1066.14 −1.43491 −0.717454 0.696606i \(-0.754692\pi\)
−0.717454 + 0.696606i \(0.754692\pi\)
\(744\) −52.2304 797.007i −0.0702021 1.07125i
\(745\) 987.308 561.974i 1.32525 0.754327i
\(746\) 946.648 + 307.585i 1.26897 + 0.412312i
\(747\) 331.895 314.944i 0.444304 0.421611i
\(748\) 116.764 + 160.712i 0.156101 + 0.214855i
\(749\) 481.079i 0.642295i
\(750\) −27.7622 589.841i −0.0370163 0.786455i
\(751\) −312.398 −0.415976 −0.207988 0.978131i \(-0.566691\pi\)
−0.207988 + 0.978131i \(0.566691\pi\)
\(752\) −419.983 + 305.136i −0.558488 + 0.405766i
\(753\) −837.164 528.223i −1.11177 0.701491i
\(754\) −23.9864 + 73.8227i −0.0318122 + 0.0979080i
\(755\) −169.276 297.394i −0.224207 0.393900i
\(756\) 128.795 + 59.3800i 0.170364 + 0.0785450i
\(757\) 657.769i 0.868915i −0.900692 0.434458i \(-0.856940\pi\)
0.900692 0.434458i \(-0.143060\pi\)
\(758\) 12.8065 + 39.4143i 0.0168951 + 0.0519978i
\(759\) −88.8536 + 73.8972i −0.117067 + 0.0973613i
\(760\) 116.496 + 52.7262i 0.153284 + 0.0693766i
\(761\) 55.8262 + 76.8382i 0.0733590 + 0.100970i 0.844120 0.536155i \(-0.180124\pi\)
−0.770761 + 0.637125i \(0.780124\pi\)
\(762\) −491.408 + 408.691i −0.644892 + 0.536340i
\(763\) 204.952 282.093i 0.268614 0.369715i
\(764\) −1.31771 1.81367i −0.00172475 0.00237391i
\(765\) −707.546 214.331i −0.924896 0.280172i
\(766\) 32.9895 + 23.9683i 0.0430672 + 0.0312902i
\(767\) 531.255 + 1635.04i 0.692640 + 2.13173i
\(768\) 710.654 + 180.491i 0.925330 + 0.235014i
\(769\) −174.903 538.297i −0.227443 0.699997i −0.998034 0.0626676i \(-0.980039\pi\)
0.770592 0.637329i \(-0.219961\pi\)
\(770\) 211.850 43.6733i 0.275130 0.0567186i
\(771\) −182.386 + 289.058i −0.236558 + 0.374914i
\(772\) −204.438 66.4258i −0.264816 0.0860438i
\(773\) 1165.39 846.708i 1.50762 1.09535i 0.540406 0.841404i \(-0.318271\pi\)
0.967218 0.253949i \(-0.0817294\pi\)
\(774\) −520.274 + 958.178i −0.672188 + 1.23796i
\(775\) −746.944 168.374i −0.963799 0.217256i
\(776\) 1384.31i 1.78390i
\(777\) 605.763 241.668i 0.779618 0.311027i
\(778\) −236.219 76.7521i −0.303623 0.0986531i
\(779\) −23.8504 7.74946i −0.0306167 0.00994796i
\(780\) −200.581 304.222i −0.257156 0.390028i
\(781\) −91.4558 281.472i −0.117101 0.360400i
\(782\) −125.314 −0.160248
\(783\) −75.6499 34.8779i −0.0966155 0.0445439i
\(784\) 228.084 + 165.713i 0.290924 + 0.211369i
\(785\) −645.100 + 367.190i −0.821783 + 0.467757i
\(786\) 227.136 + 569.338i 0.288977 + 0.724348i
\(787\) 197.252 271.494i 0.250638 0.344973i −0.665097 0.746757i \(-0.731610\pi\)
0.915735 + 0.401784i \(0.131610\pi\)
\(788\) −122.789 89.2111i −0.155823 0.113212i
\(789\) 655.193 261.388i 0.830409 0.331290i
\(790\) 397.842 436.433i 0.503597 0.552447i
\(791\) 145.174 199.815i 0.183532 0.252611i
\(792\) 611.748 + 113.394i 0.772409 + 0.143174i
\(793\) 1195.79i 1.50794i
\(794\) −736.952 + 239.450i −0.928151 + 0.301575i
\(795\) −330.681 + 879.664i −0.415951 + 1.10650i
\(796\) 117.648 362.083i 0.147799 0.454878i
\(797\) −209.068 + 643.446i −0.262319 + 0.807335i 0.729980 + 0.683469i \(0.239529\pi\)
−0.992299 + 0.123866i \(0.960471\pi\)
\(798\) −17.7912 44.5952i −0.0222947 0.0558837i
\(799\) 1121.27 1.40334
\(800\) 290.960 489.973i 0.363700 0.612466i
\(801\) −591.328 + 1089.04i −0.738237 + 1.35960i
\(802\) 546.541 + 752.250i 0.681473 + 0.937967i
\(803\) −34.2046 + 105.271i −0.0425960 + 0.131097i
\(804\) 302.398 + 190.803i 0.376117 + 0.237317i
\(805\) 34.5013 76.2289i 0.0428587 0.0946943i
\(806\) 732.831 238.111i 0.909220 0.295424i
\(807\) 123.310 485.515i 0.152801 0.601630i
\(808\) −2.53853 + 0.824818i −0.00314174 + 0.00102081i
\(809\) −519.696 + 715.300i −0.642393 + 0.884178i −0.998740 0.0501756i \(-0.984022\pi\)
0.356348 + 0.934353i \(0.384022\pi\)
\(810\) −570.002 + 286.010i −0.703707 + 0.353098i
\(811\) 319.492 232.125i 0.393949 0.286220i −0.373123 0.927782i \(-0.621713\pi\)
0.767072 + 0.641561i \(0.221713\pi\)
\(812\) −13.1111 9.52580i −0.0161467 0.0117313i
\(813\) −1021.46 1228.20i −1.25641 1.51070i
\(814\) 637.519 463.184i 0.783192 0.569023i
\(815\) 770.096 + 85.7208i 0.944903 + 0.105179i
\(816\) 239.713 + 288.230i 0.293766 + 0.353223i
\(817\) −215.268 + 69.9447i −0.263485 + 0.0856116i
\(818\) 1173.19 1.43422
\(819\) −90.5386 + 488.447i −0.110548 + 0.596394i
\(820\) −26.7203 + 59.0372i −0.0325857 + 0.0719966i
\(821\) −942.860 306.354i −1.14843 0.373147i −0.327878 0.944720i \(-0.606333\pi\)
−0.820551 + 0.571573i \(0.806333\pi\)
\(822\) −106.726 + 169.147i −0.129838 + 0.205775i
\(823\) −303.986 418.401i −0.369364 0.508385i 0.583364 0.812211i \(-0.301736\pi\)
−0.952728 + 0.303825i \(0.901736\pi\)
\(824\) 192.110i 0.233143i
\(825\) 270.348 531.650i 0.327695 0.644424i
\(826\) 585.342 0.708647
\(827\) −866.409 + 629.483i −1.04765 + 0.761164i −0.971765 0.235952i \(-0.924179\pi\)
−0.0758880 + 0.997116i \(0.524179\pi\)
\(828\) 48.0840 45.6281i 0.0580724 0.0551064i
\(829\) −35.7199 + 109.935i −0.0430880 + 0.132611i −0.970286 0.241960i \(-0.922210\pi\)
0.927198 + 0.374571i \(0.122210\pi\)
\(830\) −44.2801 + 397.803i −0.0533495 + 0.479280i
\(831\) 59.2426 3.88236i 0.0712908 0.00467191i
\(832\) 1059.58i 1.27353i
\(833\) −188.172 579.133i −0.225897 0.695238i
\(834\) 512.463 + 616.182i 0.614463 + 0.738827i
\(835\) 178.631 195.959i 0.213930 0.234681i
\(836\) 20.9098 + 28.7798i 0.0250117 + 0.0344256i
\(837\) 161.303 + 811.057i 0.192716 + 0.969004i
\(838\) 182.687 251.448i 0.218004 0.300057i
\(839\) 304.872 + 419.620i 0.363375 + 0.500143i 0.951085 0.308929i \(-0.0999705\pi\)
−0.587710 + 0.809072i \(0.699970\pi\)
\(840\) −434.294 + 119.607i −0.517017 + 0.142389i
\(841\) −672.682 488.732i −0.799860 0.581132i
\(842\) −75.4349 232.165i −0.0895902 0.275730i
\(843\) −19.4414 + 76.5475i −0.0230622 + 0.0908037i
\(844\) 22.2997 + 68.6316i 0.0264215 + 0.0813170i
\(845\) 290.602 318.790i 0.343907 0.377267i
\(846\) 701.618 665.783i 0.829335 0.786978i
\(847\) −189.767 61.6591i −0.224046 0.0727971i
\(848\) 385.529 280.103i 0.454633 0.330310i
\(849\) 36.0621 141.989i 0.0424760 0.167243i
\(850\) 594.011 255.783i 0.698836 0.300922i
\(851\) 304.827i 0.358199i
\(852\) 62.9026 + 157.671i 0.0738294 + 0.185060i
\(853\) −748.148 243.088i −0.877079 0.284980i −0.164335 0.986405i \(-0.552548\pi\)
−0.712744 + 0.701424i \(0.752548\pi\)
\(854\) 387.215 + 125.814i 0.453413 + 0.147323i
\(855\) −126.705 38.3819i −0.148193 0.0448911i
\(856\) −374.069 1151.27i −0.436997 1.34494i
\(857\) 977.865 1.14103 0.570517 0.821286i \(-0.306743\pi\)
0.570517 + 0.821286i \(0.306743\pi\)
\(858\) 39.2504 + 598.939i 0.0457463 + 0.698064i
\(859\) 268.364 + 194.978i 0.312414 + 0.226982i 0.732932 0.680302i \(-0.238151\pi\)
−0.420518 + 0.907284i \(0.638151\pi\)
\(860\) 118.093 + 572.845i 0.137318 + 0.666099i
\(861\) 82.0540 32.7353i 0.0953008 0.0380200i
\(862\) −212.747 + 292.822i −0.246807 + 0.339700i
\(863\) 353.404 + 256.763i 0.409507 + 0.297524i 0.773402 0.633916i \(-0.218553\pi\)
−0.363895 + 0.931440i \(0.618553\pi\)
\(864\) −611.172 72.3560i −0.707375 0.0837454i
\(865\) −144.030 65.1881i −0.166509 0.0753620i
\(866\) −512.104 + 704.851i −0.591344 + 0.813916i
\(867\) 3.74592 + 57.1607i 0.00432055 + 0.0659292i
\(868\) 160.878i 0.185344i
\(869\) 567.303 184.328i 0.652823 0.212115i
\(870\) 70.2581 19.3495i 0.0807565 0.0222408i
\(871\) −387.022 + 1191.13i −0.444342 + 1.36754i
\(872\) −271.125 + 834.438i −0.310923 + 0.956924i
\(873\) 187.044 + 1420.97i 0.214254 + 1.62768i
\(874\) −22.4408 −0.0256760
\(875\) −7.94833 + 431.761i −0.00908381 + 0.493442i
\(876\) 15.6286 61.5352i 0.0178409 0.0702457i
\(877\) −909.561 1251.90i −1.03713 1.42748i −0.899459 0.437005i \(-0.856039\pi\)
−0.137668 0.990478i \(-0.543961\pi\)
\(878\) 25.7692 79.3094i 0.0293499 0.0903297i
\(879\) 465.571 737.868i 0.529659 0.839440i
\(880\) −262.848 + 149.612i −0.298691 + 0.170014i
\(881\) −265.263 + 86.1891i −0.301093 + 0.0978310i −0.455667 0.890150i \(-0.650599\pi\)
0.154574 + 0.987981i \(0.450599\pi\)
\(882\) −461.622 250.653i −0.523381 0.284187i
\(883\) 866.868 281.662i 0.981730 0.318983i 0.226188 0.974084i \(-0.427374\pi\)
0.755542 + 0.655100i \(0.227374\pi\)
\(884\) 234.588 322.883i 0.265371 0.365252i
\(885\) 1007.00 1261.35i 1.13786 1.42526i
\(886\) −331.841 + 241.096i −0.374538 + 0.272118i
\(887\) 725.289 + 526.953i 0.817687 + 0.594085i 0.916049 0.401066i \(-0.131360\pi\)
−0.0983617 + 0.995151i \(0.531360\pi\)
\(888\) −1261.74 + 1049.35i −1.42087 + 1.18170i
\(889\) 378.147 274.740i 0.425363 0.309044i
\(890\) −218.882 1061.75i −0.245935 1.19298i
\(891\) −643.270 33.7389i −0.721964 0.0378663i
\(892\) 266.097 86.4601i 0.298315 0.0969283i
\(893\) 200.794 0.224853
\(894\) 1071.02 70.1876i 1.19801 0.0785096i
\(895\) 82.7954 + 401.623i 0.0925089 + 0.448741i
\(896\) 43.5375 + 14.1462i 0.0485909 + 0.0157882i
\(897\) 196.363 + 123.899i 0.218911 + 0.138126i
\(898\) 701.016 + 964.865i 0.780641 + 1.07446i
\(899\) 94.4947i 0.105111i
\(900\) −134.794 + 314.432i −0.149771 + 0.349369i
\(901\) −1029.28 −1.14238
\(902\) 86.3554 62.7409i 0.0957377 0.0695575i
\(903\) 425.490 674.345i 0.471196 0.746783i
\(904\) −192.046 + 591.058i −0.212441 + 0.653825i
\(905\) −301.976 + 331.268i −0.333675 + 0.366042i
\(906\) −21.1417 322.611i −0.0233353 0.356083i
\(907\) 324.877i 0.358189i −0.983832 0.179094i \(-0.942683\pi\)
0.983832 0.179094i \(-0.0573168\pi\)
\(908\) 101.553 + 312.548i 0.111842 + 0.344215i
\(909\) 2.49431 1.18966i 0.00274401 0.00130876i
\(910\) −214.974 377.679i −0.236235 0.415032i
\(911\) −140.444 193.304i −0.154164 0.212189i 0.724948 0.688804i \(-0.241864\pi\)
−0.879112 + 0.476615i \(0.841864\pi\)
\(912\) 42.9272 + 51.6155i 0.0470693 + 0.0565959i
\(913\) −237.635 + 327.077i −0.260280 + 0.358244i
\(914\) −26.6664 36.7031i −0.0291755 0.0401566i
\(915\) 937.267 617.964i 1.02434 0.675370i
\(916\) −129.333 93.9661i −0.141193 0.102583i
\(917\) −138.524 426.334i −0.151062 0.464922i
\(918\) −512.895 474.145i −0.558709 0.516497i
\(919\) 414.828 + 1276.71i 0.451391 + 1.38924i 0.875320 + 0.483544i \(0.160651\pi\)
−0.423929 + 0.905695i \(0.639349\pi\)
\(920\) −23.2920 + 209.250i −0.0253173 + 0.227445i
\(921\) −694.717 438.344i −0.754307 0.475943i
\(922\) 19.0311 + 6.18359i 0.0206411 + 0.00670671i
\(923\) −481.044 + 349.499i −0.521174 + 0.378655i
\(924\) −121.462 30.8486i −0.131452 0.0333860i
\(925\) 622.197 + 1444.94i 0.672645 + 1.56210i
\(926\) 737.130i 0.796037i
\(927\) −25.9575 197.198i −0.0280016 0.212727i
\(928\) 66.8844 + 21.7321i 0.0720737 + 0.0234182i
\(929\) −498.160 161.862i −0.536232 0.174232i 0.0283670 0.999598i \(-0.490969\pi\)
−0.564599 + 0.825365i \(0.690969\pi\)
\(930\) −565.345 451.344i −0.607898 0.485316i
\(931\) −33.6973 103.710i −0.0361948 0.111396i
\(932\) −307.286 −0.329706
\(933\) −93.7219 + 6.14189i −0.100452 + 0.00658295i
\(934\) −451.361 327.933i −0.483256 0.351106i
\(935\) 649.242 + 72.2683i 0.694377 + 0.0772923i
\(936\) −163.131 1239.30i −0.174285 1.32404i
\(937\) −845.258 + 1163.40i −0.902089 + 1.24162i 0.0677073 + 0.997705i \(0.478432\pi\)
−0.969797 + 0.243914i \(0.921568\pi\)
\(938\) 344.985 + 250.646i 0.367788 + 0.267213i
\(939\) 21.2336 + 53.2240i 0.0226130 + 0.0566815i
\(940\) 57.4010 515.678i 0.0610649 0.548593i
\(941\) 660.110 908.564i 0.701498 0.965530i −0.298440 0.954428i \(-0.596466\pi\)
0.999938 0.0111014i \(-0.00353375\pi\)
\(942\) −699.800 + 45.8601i −0.742887 + 0.0486837i
\(943\) 41.2906i 0.0437864i
\(944\) −778.387 + 252.913i −0.824563 + 0.267917i
\(945\) 429.634 181.455i 0.454639 0.192016i
\(946\) 297.713 916.265i 0.314707 0.968568i
\(947\) 134.922 415.247i 0.142473 0.438487i −0.854204 0.519938i \(-0.825955\pi\)
0.996677 + 0.0814503i \(0.0259552\pi\)
\(948\) −317.784 + 126.779i −0.335216 + 0.133733i
\(949\) 222.382 0.234333
\(950\) 106.374 45.8050i 0.111972 0.0482158i
\(951\) 970.318 + 246.440i 1.02031 + 0.259138i
\(952\) −289.997 399.146i −0.304618 0.419271i
\(953\) 48.3303 148.745i 0.0507138 0.156081i −0.922492 0.386015i \(-0.873851\pi\)
0.973206 + 0.229934i \(0.0738511\pi\)
\(954\) −644.059 + 611.164i −0.675114 + 0.640633i
\(955\) −7.32686 0.815565i −0.00767210 0.000853995i
\(956\) −110.108 + 35.7764i −0.115176 + 0.0374230i
\(957\) 71.3426 + 18.1195i 0.0745481 + 0.0189336i
\(958\) −1332.13 + 432.836i −1.39053 + 0.451812i
\(959\) 85.9722 118.331i 0.0896477 0.123390i
\(960\) 830.499 547.569i 0.865103 0.570384i
\(961\) 18.5744 13.4951i 0.0193282 0.0140427i
\(962\) −1280.83 930.575i −1.33142 0.967334i
\(963\) 539.532 + 1131.21i 0.560261 + 1.17467i
\(964\) −291.788 + 211.996i −0.302685 + 0.219913i
\(965\) −614.333 + 349.677i −0.636614 + 0.362360i
\(966\) 60.7802 50.5493i 0.0629194 0.0523284i
\(967\) −405.235 + 131.669i −0.419064 + 0.136162i −0.510956 0.859607i \(-0.670709\pi\)
0.0918918 + 0.995769i \(0.470709\pi\)
\(968\) 502.075 0.518672
\(969\) −9.48210 144.692i −0.00978544 0.149321i
\(970\) −926.585 844.653i −0.955242 0.870776i
\(971\) 871.013 + 283.009i 0.897026 + 0.291462i 0.721009 0.692926i \(-0.243679\pi\)
0.176017 + 0.984387i \(0.443679\pi\)
\(972\) 369.444 4.81732i 0.380086 0.00495609i
\(973\) −344.500 474.163i −0.354059 0.487321i
\(974\) 985.504i 1.01181i
\(975\) −1183.69 186.498i −1.21404 0.191280i
\(976\) −569.279 −0.583278
\(977\) 565.618 410.945i 0.578933 0.420620i −0.259406 0.965768i \(-0.583527\pi\)
0.838339 + 0.545149i \(0.183527\pi\)
\(978\) 619.131 + 390.651i 0.633058 + 0.399439i
\(979\) 338.372 1041.40i 0.345630 1.06374i
\(980\) −275.980 + 56.8938i −0.281612 + 0.0580549i
\(981\) 165.558 893.169i 0.168765 0.910468i
\(982\) 233.667i 0.237950i
\(983\) −106.423 327.536i −0.108263 0.333201i 0.882219 0.470839i \(-0.156049\pi\)
−0.990483 + 0.137639i \(0.956049\pi\)
\(984\) −170.909 + 142.141i −0.173688 + 0.144452i
\(985\) −488.825 + 100.772i −0.496269 + 0.102307i
\(986\) 46.9143 + 64.5720i 0.0475804 + 0.0654889i
\(987\) −543.842 + 452.299i −0.551005 + 0.458256i
\(988\) 42.0095 57.8211i 0.0425197 0.0585233i
\(989\) −219.055 301.503i −0.221491 0.304856i
\(990\) 449.166 340.285i 0.453703 0.343722i
\(991\) 187.691 + 136.365i 0.189395 + 0.137604i 0.678442 0.734654i \(-0.262655\pi\)
−0.489047 + 0.872257i \(0.662655\pi\)
\(992\) −215.732 663.956i −0.217472 0.669310i
\(993\) 282.088 + 71.6443i 0.284076 + 0.0721493i
\(994\) 62.5602 + 192.541i 0.0629378 + 0.193703i
\(995\) −619.318 1088.05i −0.622431 1.09352i
\(996\) 123.744 196.117i 0.124240 0.196905i
\(997\) −903.277 293.493i −0.905995 0.294376i −0.181286 0.983430i \(-0.558026\pi\)
−0.724709 + 0.689055i \(0.758026\pi\)
\(998\) −206.876 + 150.304i −0.207290 + 0.150605i
\(999\) 1153.36 1247.63i 1.15452 1.24887i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.h.a.14.13 yes 72
3.2 odd 2 inner 75.3.h.a.14.6 72
5.2 odd 4 375.3.j.b.176.25 144
5.3 odd 4 375.3.j.b.176.12 144
5.4 even 2 375.3.h.a.74.6 72
15.2 even 4 375.3.j.b.176.11 144
15.8 even 4 375.3.j.b.176.26 144
15.14 odd 2 375.3.h.a.74.13 72
25.9 even 10 inner 75.3.h.a.59.6 yes 72
25.12 odd 20 375.3.j.b.326.11 144
25.13 odd 20 375.3.j.b.326.26 144
25.16 even 5 375.3.h.a.299.13 72
75.38 even 20 375.3.j.b.326.12 144
75.41 odd 10 375.3.h.a.299.6 72
75.59 odd 10 inner 75.3.h.a.59.13 yes 72
75.62 even 20 375.3.j.b.326.25 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.h.a.14.6 72 3.2 odd 2 inner
75.3.h.a.14.13 yes 72 1.1 even 1 trivial
75.3.h.a.59.6 yes 72 25.9 even 10 inner
75.3.h.a.59.13 yes 72 75.59 odd 10 inner
375.3.h.a.74.6 72 5.4 even 2
375.3.h.a.74.13 72 15.14 odd 2
375.3.h.a.299.6 72 75.41 odd 10
375.3.h.a.299.13 72 25.16 even 5
375.3.j.b.176.11 144 15.2 even 4
375.3.j.b.176.12 144 5.3 odd 4
375.3.j.b.176.25 144 5.2 odd 4
375.3.j.b.176.26 144 15.8 even 4
375.3.j.b.326.11 144 25.12 odd 20
375.3.j.b.326.12 144 75.38 even 20
375.3.j.b.326.25 144 75.62 even 20
375.3.j.b.326.26 144 25.13 odd 20