Properties

Label 75.3.h.a.14.11
Level $75$
Weight $3$
Character 75.14
Analytic conductor $2.044$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(14,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 14.11
Character \(\chi\) \(=\) 75.14
Dual form 75.3.h.a.59.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.680034 - 0.494074i) q^{2} +(-2.98817 + 0.266209i) q^{3} +(-1.01773 + 3.13225i) q^{4} +(-4.99975 - 0.0496921i) q^{5} +(-1.90053 + 1.65741i) q^{6} +9.76040i q^{7} +(1.89447 + 5.83059i) q^{8} +(8.85827 - 1.59096i) q^{9} +(-3.42456 + 2.43645i) q^{10} +(-10.1778 - 14.0086i) q^{11} +(2.20731 - 9.63062i) q^{12} +(-1.60244 + 2.20557i) q^{13} +(4.82236 + 6.63741i) q^{14} +(14.9533 - 1.18249i) q^{15} +(-6.48876 - 4.71436i) q^{16} +(6.87668 + 21.1642i) q^{17} +(5.23787 - 5.45854i) q^{18} +(1.10865 + 3.41207i) q^{19} +(5.24405 - 15.6099i) q^{20} +(-2.59831 - 29.1657i) q^{21} +(-13.8426 - 4.49772i) q^{22} +(0.909200 - 0.660572i) q^{23} +(-7.21315 - 16.9184i) q^{24} +(24.9951 + 0.496897i) q^{25} +2.29159i q^{26} +(-26.0464 + 7.11219i) q^{27} +(-30.5720 - 9.93345i) q^{28} +(25.4429 + 8.26690i) q^{29} +(9.58453 - 8.19218i) q^{30} +(6.92473 + 21.3121i) q^{31} -31.2644 q^{32} +(34.1423 + 39.1505i) q^{33} +(15.1331 + 10.9948i) q^{34} +(0.485015 - 48.7996i) q^{35} +(-4.03205 + 29.3655i) q^{36} +(14.8003 - 20.3708i) q^{37} +(2.43974 + 1.77257i) q^{38} +(4.20122 - 7.01720i) q^{39} +(-9.18216 - 29.2456i) q^{40} +(-14.2504 + 19.6141i) q^{41} +(-16.1769 - 18.5499i) q^{42} +50.8068i q^{43} +(54.2367 - 17.6226i) q^{44} +(-44.3682 + 7.51420i) q^{45} +(0.291916 - 0.898424i) q^{46} +(-10.9874 + 33.8156i) q^{47} +(20.6445 + 12.3599i) q^{48} -46.2654 q^{49} +(17.2430 - 12.0115i) q^{50} +(-26.1828 - 61.4116i) q^{51} +(-5.27755 - 7.26393i) q^{52} +(9.08989 - 27.9758i) q^{53} +(-14.1985 + 17.7054i) q^{54} +(50.1905 + 70.5452i) q^{55} +(-56.9088 + 18.4908i) q^{56} +(-4.22115 - 9.90071i) q^{57} +(21.3865 - 6.94890i) q^{58} +(-51.6779 + 71.1286i) q^{59} +(-11.5146 + 48.0410i) q^{60} +(66.4241 - 48.2599i) q^{61} +(15.2388 + 11.0716i) q^{62} +(15.5284 + 86.4602i) q^{63} +(4.69420 - 3.41054i) q^{64} +(8.12141 - 10.9477i) q^{65} +(42.5612 + 9.75491i) q^{66} +(-68.7311 + 22.3321i) q^{67} -73.2904 q^{68} +(-2.54099 + 2.21594i) q^{69} +(-23.7808 - 33.4250i) q^{70} +(-44.5178 - 14.4647i) q^{71} +(26.0579 + 48.6349i) q^{72} +(-28.7539 - 39.5764i) q^{73} -21.1653i q^{74} +(-74.8217 + 5.16911i) q^{75} -11.8158 q^{76} +(136.729 - 99.3397i) q^{77} +(-0.610043 - 6.84765i) q^{78} +(44.9043 - 138.201i) q^{79} +(32.2080 + 23.8931i) q^{80} +(75.9377 - 28.1862i) q^{81} +20.3790i q^{82} +(-0.277581 - 0.854307i) q^{83} +(93.9987 + 21.5442i) q^{84} +(-33.3300 - 106.158i) q^{85} +(25.1023 + 34.5504i) q^{86} +(-78.2284 - 17.9297i) q^{87} +(62.3967 - 85.8816i) q^{88} +(20.9981 + 28.9013i) q^{89} +(-26.4593 + 27.0311i) q^{90} +(-21.5273 - 15.6405i) q^{91} +(1.14376 + 3.52013i) q^{92} +(-26.3657 - 61.8407i) q^{93} +(9.23562 + 28.4243i) q^{94} +(-5.37342 - 17.1146i) q^{95} +(93.4232 - 8.32287i) q^{96} +(116.093 + 37.7208i) q^{97} +(-31.4621 + 22.8585i) q^{98} +(-112.445 - 107.899i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 5 q^{3} - 38 q^{4} + 5 q^{6} - 13 q^{9} - 20 q^{10} - 45 q^{12} - 10 q^{13} - 15 q^{15} + 22 q^{16} - 36 q^{19} + 54 q^{21} - 50 q^{22} - 20 q^{24} - 100 q^{25} + 100 q^{27} + 270 q^{28} - 5 q^{30}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.680034 0.494074i 0.340017 0.247037i −0.404652 0.914471i \(-0.632607\pi\)
0.744669 + 0.667434i \(0.232607\pi\)
\(3\) −2.98817 + 0.266209i −0.996055 + 0.0887365i
\(4\) −1.01773 + 3.13225i −0.254433 + 0.783063i
\(5\) −4.99975 0.0496921i −0.999951 0.00993842i
\(6\) −1.90053 + 1.65741i −0.316755 + 0.276234i
\(7\) 9.76040i 1.39434i 0.716904 + 0.697171i \(0.245558\pi\)
−0.716904 + 0.697171i \(0.754442\pi\)
\(8\) 1.89447 + 5.83059i 0.236809 + 0.728823i
\(9\) 8.85827 1.59096i 0.984252 0.176773i
\(10\) −3.42456 + 2.43645i −0.342456 + 0.243645i
\(11\) −10.1778 14.0086i −0.925258 1.27351i −0.961681 0.274172i \(-0.911596\pi\)
0.0364230 0.999336i \(-0.488404\pi\)
\(12\) 2.20731 9.63062i 0.183943 0.802551i
\(13\) −1.60244 + 2.20557i −0.123265 + 0.169659i −0.866190 0.499715i \(-0.833438\pi\)
0.742925 + 0.669375i \(0.233438\pi\)
\(14\) 4.82236 + 6.63741i 0.344454 + 0.474100i
\(15\) 14.9533 1.18249i 0.996888 0.0788329i
\(16\) −6.48876 4.71436i −0.405548 0.294648i
\(17\) 6.87668 + 21.1642i 0.404511 + 1.24496i 0.921303 + 0.388845i \(0.127126\pi\)
−0.516792 + 0.856111i \(0.672874\pi\)
\(18\) 5.23787 5.45854i 0.290993 0.303252i
\(19\) 1.10865 + 3.41207i 0.0583500 + 0.179583i 0.975983 0.217845i \(-0.0699028\pi\)
−0.917633 + 0.397428i \(0.869903\pi\)
\(20\) 5.24405 15.6099i 0.262202 0.780496i
\(21\) −2.59831 29.1657i −0.123729 1.38884i
\(22\) −13.8426 4.49772i −0.629207 0.204442i
\(23\) 0.909200 0.660572i 0.0395304 0.0287205i −0.567845 0.823136i \(-0.692223\pi\)
0.607375 + 0.794415i \(0.292223\pi\)
\(24\) −7.21315 16.9184i −0.300548 0.704934i
\(25\) 24.9951 + 0.496897i 0.999802 + 0.0198759i
\(26\) 2.29159i 0.0881381i
\(27\) −26.0464 + 7.11219i −0.964683 + 0.263414i
\(28\) −30.5720 9.93345i −1.09186 0.354766i
\(29\) 25.4429 + 8.26690i 0.877342 + 0.285066i 0.712853 0.701313i \(-0.247403\pi\)
0.164489 + 0.986379i \(0.447403\pi\)
\(30\) 9.58453 8.19218i 0.319484 0.273073i
\(31\) 6.92473 + 21.3121i 0.223378 + 0.687488i 0.998452 + 0.0556172i \(0.0177127\pi\)
−0.775074 + 0.631871i \(0.782287\pi\)
\(32\) −31.2644 −0.977012
\(33\) 34.1423 + 39.1505i 1.03461 + 1.18638i
\(34\) 15.1331 + 10.9948i 0.445091 + 0.323377i
\(35\) 0.485015 48.7996i 0.0138576 1.39427i
\(36\) −4.03205 + 29.3655i −0.112001 + 0.815708i
\(37\) 14.8003 20.3708i 0.400007 0.550562i −0.560739 0.827993i \(-0.689483\pi\)
0.960746 + 0.277430i \(0.0894828\pi\)
\(38\) 2.43974 + 1.77257i 0.0642036 + 0.0466466i
\(39\) 4.20122 7.01720i 0.107724 0.179928i
\(40\) −9.18216 29.2456i −0.229554 0.731141i
\(41\) −14.2504 + 19.6141i −0.347572 + 0.478391i −0.946634 0.322311i \(-0.895540\pi\)
0.599062 + 0.800703i \(0.295540\pi\)
\(42\) −16.1769 18.5499i −0.385165 0.441665i
\(43\) 50.8068i 1.18155i 0.806835 + 0.590777i \(0.201179\pi\)
−0.806835 + 0.590777i \(0.798821\pi\)
\(44\) 54.2367 17.6226i 1.23265 0.400513i
\(45\) −44.3682 + 7.51420i −0.985960 + 0.166982i
\(46\) 0.291916 0.898424i 0.00634599 0.0195310i
\(47\) −10.9874 + 33.8156i −0.233773 + 0.719481i 0.763508 + 0.645798i \(0.223475\pi\)
−0.997282 + 0.0736826i \(0.976525\pi\)
\(48\) 20.6445 + 12.3599i 0.430094 + 0.257498i
\(49\) −46.2654 −0.944192
\(50\) 17.2430 12.0115i 0.344860 0.240230i
\(51\) −26.1828 61.4116i −0.513388 1.20415i
\(52\) −5.27755 7.26393i −0.101491 0.139691i
\(53\) 9.08989 27.9758i 0.171507 0.527845i −0.827949 0.560803i \(-0.810493\pi\)
0.999457 + 0.0329575i \(0.0104926\pi\)
\(54\) −14.1985 + 17.7054i −0.262936 + 0.327878i
\(55\) 50.1905 + 70.5452i 0.912555 + 1.28264i
\(56\) −56.9088 + 18.4908i −1.01623 + 0.330193i
\(57\) −4.22115 9.90071i −0.0740553 0.173697i
\(58\) 21.3865 6.94890i 0.368733 0.119809i
\(59\) −51.6779 + 71.1286i −0.875897 + 1.20557i 0.101643 + 0.994821i \(0.467590\pi\)
−0.977540 + 0.210748i \(0.932410\pi\)
\(60\) −11.5146 + 48.0410i −0.191910 + 0.800684i
\(61\) 66.4241 48.2599i 1.08892 0.791146i 0.109703 0.993964i \(-0.465010\pi\)
0.979216 + 0.202818i \(0.0650101\pi\)
\(62\) 15.2388 + 11.0716i 0.245787 + 0.178575i
\(63\) 15.5284 + 86.4602i 0.246482 + 1.37238i
\(64\) 4.69420 3.41054i 0.0733469 0.0532896i
\(65\) 8.12141 10.9477i 0.124945 0.168426i
\(66\) 42.5612 + 9.75491i 0.644866 + 0.147802i
\(67\) −68.7311 + 22.3321i −1.02584 + 0.333315i −0.773143 0.634231i \(-0.781317\pi\)
−0.252694 + 0.967546i \(0.581317\pi\)
\(68\) −73.2904 −1.07780
\(69\) −2.54099 + 2.21594i −0.0368259 + 0.0321150i
\(70\) −23.7808 33.4250i −0.339725 0.477500i
\(71\) −44.5178 14.4647i −0.627011 0.203728i −0.0217603 0.999763i \(-0.506927\pi\)
−0.605251 + 0.796035i \(0.706927\pi\)
\(72\) 26.0579 + 48.6349i 0.361916 + 0.675484i
\(73\) −28.7539 39.5764i −0.393889 0.542142i 0.565308 0.824880i \(-0.308757\pi\)
−0.959197 + 0.282738i \(0.908757\pi\)
\(74\) 21.1653i 0.286017i
\(75\) −74.8217 + 5.16911i −0.997622 + 0.0689215i
\(76\) −11.8158 −0.155471
\(77\) 136.729 99.3397i 1.77571 1.29013i
\(78\) −0.610043 6.84765i −0.00782106 0.0877904i
\(79\) 44.9043 138.201i 0.568409 1.74938i −0.0891914 0.996015i \(-0.528428\pi\)
0.657600 0.753367i \(-0.271572\pi\)
\(80\) 32.2080 + 23.8931i 0.402599 + 0.298664i
\(81\) 75.9377 28.1862i 0.937503 0.347978i
\(82\) 20.3790i 0.248524i
\(83\) −0.277581 0.854307i −0.00334435 0.0102929i 0.949370 0.314159i \(-0.101722\pi\)
−0.952715 + 0.303866i \(0.901722\pi\)
\(84\) 93.9987 + 21.5442i 1.11903 + 0.256479i
\(85\) −33.3300 106.158i −0.392118 1.24891i
\(86\) 25.1023 + 34.5504i 0.291887 + 0.401748i
\(87\) −78.2284 17.9297i −0.899176 0.206089i
\(88\) 62.3967 85.8816i 0.709053 0.975928i
\(89\) 20.9981 + 28.9013i 0.235933 + 0.324734i 0.910523 0.413459i \(-0.135679\pi\)
−0.674590 + 0.738193i \(0.735679\pi\)
\(90\) −26.4593 + 27.0311i −0.293993 + 0.300345i
\(91\) −21.5273 15.6405i −0.236563 0.171873i
\(92\) 1.14376 + 3.52013i 0.0124322 + 0.0382623i
\(93\) −26.3657 61.8407i −0.283502 0.664954i
\(94\) 9.23562 + 28.4243i 0.0982513 + 0.302386i
\(95\) −5.37342 17.1146i −0.0565623 0.180154i
\(96\) 93.4232 8.32287i 0.973158 0.0866966i
\(97\) 116.093 + 37.7208i 1.19683 + 0.388874i 0.838594 0.544757i \(-0.183378\pi\)
0.358237 + 0.933631i \(0.383378\pi\)
\(98\) −31.4621 + 22.8585i −0.321041 + 0.233250i
\(99\) −112.445 107.899i −1.13581 1.08989i
\(100\) −26.9946 + 77.7851i −0.269946 + 0.777851i
\(101\) 28.8103i 0.285251i 0.989777 + 0.142625i \(0.0455544\pi\)
−0.989777 + 0.142625i \(0.954446\pi\)
\(102\) −48.1471 28.8258i −0.472030 0.282606i
\(103\) −6.50394 2.11326i −0.0631451 0.0205171i 0.277274 0.960791i \(-0.410569\pi\)
−0.340419 + 0.940274i \(0.610569\pi\)
\(104\) −15.8956 5.16478i −0.152842 0.0496614i
\(105\) 11.5416 + 145.950i 0.109920 + 1.39000i
\(106\) −7.64067 23.5156i −0.0720818 0.221845i
\(107\) 117.493 1.09806 0.549031 0.835802i \(-0.314997\pi\)
0.549031 + 0.835802i \(0.314997\pi\)
\(108\) 4.23107 88.8223i 0.0391766 0.822429i
\(109\) 78.6436 + 57.1379i 0.721501 + 0.524201i 0.886863 0.462032i \(-0.152879\pi\)
−0.165362 + 0.986233i \(0.552879\pi\)
\(110\) 68.9859 + 23.1753i 0.627144 + 0.210685i
\(111\) −38.8027 + 64.8113i −0.349574 + 0.583886i
\(112\) 46.0141 63.3329i 0.410840 0.565473i
\(113\) −116.803 84.8623i −1.03365 0.750994i −0.0646176 0.997910i \(-0.520583\pi\)
−0.969037 + 0.246916i \(0.920583\pi\)
\(114\) −7.76221 4.64726i −0.0680896 0.0407654i
\(115\) −4.57860 + 3.25752i −0.0398139 + 0.0283263i
\(116\) −51.7880 + 71.2801i −0.446449 + 0.614484i
\(117\) −10.6859 + 22.0870i −0.0913324 + 0.188777i
\(118\) 73.9026i 0.626293i
\(119\) −206.572 + 67.1192i −1.73590 + 0.564027i
\(120\) 35.2233 + 84.9464i 0.293527 + 0.707887i
\(121\) −55.2612 + 170.076i −0.456704 + 1.40559i
\(122\) 21.3267 65.6368i 0.174809 0.538006i
\(123\) 37.3612 62.4036i 0.303750 0.507347i
\(124\) −73.8025 −0.595181
\(125\) −124.944 3.72642i −0.999556 0.0298113i
\(126\) 53.2775 + 51.1238i 0.422838 + 0.405744i
\(127\) 1.94702 + 2.67985i 0.0153309 + 0.0211011i 0.816614 0.577185i \(-0.195849\pi\)
−0.801283 + 0.598286i \(0.795849\pi\)
\(128\) 40.1521 123.575i 0.313688 0.965433i
\(129\) −13.5252 151.819i −0.104847 1.17689i
\(130\) 0.113874 11.4574i 0.000875953 0.0881337i
\(131\) 149.348 48.5260i 1.14006 0.370427i 0.322668 0.946512i \(-0.395420\pi\)
0.817390 + 0.576085i \(0.195420\pi\)
\(132\) −157.377 + 67.0975i −1.19225 + 0.508314i
\(133\) −33.3032 + 10.8209i −0.250400 + 0.0813599i
\(134\) −35.7058 + 49.1448i −0.266461 + 0.366753i
\(135\) 130.579 34.2649i 0.967253 0.253814i
\(136\) −110.372 + 80.1902i −0.811561 + 0.589634i
\(137\) 78.9672 + 57.3730i 0.576403 + 0.418781i 0.837425 0.546552i \(-0.184060\pi\)
−0.261023 + 0.965333i \(0.584060\pi\)
\(138\) −0.633123 + 2.76235i −0.00458785 + 0.0200170i
\(139\) −158.146 + 114.900i −1.13774 + 0.826616i −0.986803 0.161927i \(-0.948229\pi\)
−0.150937 + 0.988543i \(0.548229\pi\)
\(140\) 152.359 + 51.1840i 1.08828 + 0.365600i
\(141\) 23.8300 103.972i 0.169007 0.737387i
\(142\) −37.4202 + 12.1586i −0.263523 + 0.0856238i
\(143\) 47.2063 0.330114
\(144\) −64.9795 31.4377i −0.451247 0.218318i
\(145\) −126.797 42.5968i −0.874465 0.293771i
\(146\) −39.1073 12.7067i −0.267858 0.0870324i
\(147\) 138.249 12.3163i 0.940467 0.0837842i
\(148\) 48.7438 + 67.0901i 0.329350 + 0.453312i
\(149\) 138.880i 0.932082i 0.884763 + 0.466041i \(0.154320\pi\)
−0.884763 + 0.466041i \(0.845680\pi\)
\(150\) −48.3274 + 40.4826i −0.322182 + 0.269884i
\(151\) 62.2231 0.412073 0.206037 0.978544i \(-0.433943\pi\)
0.206037 + 0.978544i \(0.433943\pi\)
\(152\) −17.7941 + 12.9282i −0.117066 + 0.0850536i
\(153\) 94.5868 + 176.538i 0.618215 + 1.15384i
\(154\) 43.8995 135.109i 0.285062 0.877330i
\(155\) −33.5629 106.899i −0.216535 0.689674i
\(156\) 17.7039 + 20.3009i 0.113487 + 0.130134i
\(157\) 188.671i 1.20173i 0.799352 + 0.600863i \(0.205176\pi\)
−0.799352 + 0.600863i \(0.794824\pi\)
\(158\) −37.7451 116.168i −0.238893 0.735238i
\(159\) −19.7147 + 86.0161i −0.123992 + 0.540982i
\(160\) 156.314 + 1.55359i 0.976964 + 0.00970996i
\(161\) 6.44745 + 8.87415i 0.0400463 + 0.0551190i
\(162\) 37.7142 56.6864i 0.232804 0.349916i
\(163\) 16.8829 23.2373i 0.103576 0.142560i −0.754083 0.656779i \(-0.771918\pi\)
0.857659 + 0.514219i \(0.171918\pi\)
\(164\) −46.9330 64.5978i −0.286177 0.393889i
\(165\) −168.757 197.440i −1.02277 1.19660i
\(166\) −0.610855 0.443812i −0.00367985 0.00267357i
\(167\) −54.3150 167.164i −0.325240 1.00098i −0.971332 0.237726i \(-0.923598\pi\)
0.646093 0.763259i \(-0.276402\pi\)
\(168\) 165.131 70.4033i 0.982920 0.419067i
\(169\) 49.9271 + 153.660i 0.295427 + 0.909230i
\(170\) −75.1153 55.7234i −0.441855 0.327785i
\(171\) 15.2492 + 28.4612i 0.0891764 + 0.166440i
\(172\) −159.140 51.7076i −0.925231 0.300626i
\(173\) 35.5781 25.8490i 0.205654 0.149416i −0.480191 0.877164i \(-0.659433\pi\)
0.685845 + 0.727748i \(0.259433\pi\)
\(174\) −62.0566 + 26.4577i −0.356647 + 0.152056i
\(175\) −4.84991 + 243.962i −0.0277138 + 1.39407i
\(176\) 138.880i 0.789093i
\(177\) 135.487 226.301i 0.765464 1.27854i
\(178\) 28.5588 + 9.27931i 0.160443 + 0.0521310i
\(179\) 290.732 + 94.4646i 1.62420 + 0.527735i 0.972928 0.231107i \(-0.0742349\pi\)
0.651274 + 0.758843i \(0.274235\pi\)
\(180\) 21.6185 146.620i 0.120103 0.814554i
\(181\) −43.4748 133.802i −0.240192 0.739236i −0.996390 0.0848927i \(-0.972945\pi\)
0.756198 0.654343i \(-0.227055\pi\)
\(182\) −22.3668 −0.122895
\(183\) −185.639 + 161.891i −1.01442 + 0.884652i
\(184\) 5.57398 + 4.04973i 0.0302934 + 0.0220094i
\(185\) −75.0099 + 101.114i −0.405459 + 0.546560i
\(186\) −48.4835 29.0272i −0.260664 0.156060i
\(187\) 226.492 311.739i 1.21118 1.66705i
\(188\) −94.7368 68.8303i −0.503919 0.366119i
\(189\) −69.4178 254.224i −0.367290 1.34510i
\(190\) −12.1100 8.98366i −0.0637368 0.0472824i
\(191\) −1.85212 + 2.54922i −0.00969695 + 0.0133467i −0.813838 0.581092i \(-0.802626\pi\)
0.804141 + 0.594439i \(0.202626\pi\)
\(192\) −13.1191 + 11.4409i −0.0683288 + 0.0595880i
\(193\) 82.4800i 0.427357i −0.976904 0.213679i \(-0.931455\pi\)
0.976904 0.213679i \(-0.0685445\pi\)
\(194\) 97.5838 31.7069i 0.503009 0.163438i
\(195\) −21.3538 + 34.8755i −0.109506 + 0.178849i
\(196\) 47.0857 144.915i 0.240233 0.739362i
\(197\) −64.3443 + 198.031i −0.326621 + 1.00524i 0.644083 + 0.764956i \(0.277239\pi\)
−0.970704 + 0.240280i \(0.922761\pi\)
\(198\) −129.777 17.8191i −0.655438 0.0899954i
\(199\) −129.582 −0.651168 −0.325584 0.945513i \(-0.605561\pi\)
−0.325584 + 0.945513i \(0.605561\pi\)
\(200\) 44.4552 + 146.677i 0.222276 + 0.733386i
\(201\) 199.435 85.0289i 0.992214 0.423029i
\(202\) 14.2344 + 19.5920i 0.0704675 + 0.0969901i
\(203\) −80.6883 + 248.333i −0.397479 + 1.22332i
\(204\) 219.004 19.5106i 1.07355 0.0956401i
\(205\) 72.2234 97.3573i 0.352309 0.474914i
\(206\) −5.46701 + 1.77634i −0.0265389 + 0.00862301i
\(207\) 7.00299 7.29802i 0.0338309 0.0352561i
\(208\) 20.7957 6.75694i 0.0999795 0.0324853i
\(209\) 36.5147 50.2581i 0.174711 0.240470i
\(210\) 79.9589 + 93.5488i 0.380757 + 0.445471i
\(211\) 119.794 87.0352i 0.567743 0.412489i −0.266542 0.963823i \(-0.585881\pi\)
0.834285 + 0.551334i \(0.185881\pi\)
\(212\) 78.3762 + 56.9436i 0.369699 + 0.268602i
\(213\) 136.877 + 31.3719i 0.642616 + 0.147286i
\(214\) 79.8990 58.0500i 0.373360 0.271262i
\(215\) 2.52470 254.021i 0.0117428 1.18150i
\(216\) −90.8125 138.392i −0.420428 0.640704i
\(217\) −208.015 + 67.5881i −0.958594 + 0.311466i
\(218\) 81.7107 0.374820
\(219\) 96.4571 + 110.606i 0.440443 + 0.505051i
\(220\) −272.046 + 85.4134i −1.23657 + 0.388243i
\(221\) −57.6988 18.7475i −0.261080 0.0848302i
\(222\) 5.63439 + 63.2453i 0.0253801 + 0.284889i
\(223\) 33.7784 + 46.4920i 0.151473 + 0.208484i 0.878009 0.478643i \(-0.158871\pi\)
−0.726537 + 0.687128i \(0.758871\pi\)
\(224\) 305.153i 1.36229i
\(225\) 222.203 35.3644i 0.987571 0.157175i
\(226\) −121.358 −0.536983
\(227\) −244.647 + 177.746i −1.07774 + 0.783023i −0.977287 0.211919i \(-0.932029\pi\)
−0.100451 + 0.994942i \(0.532029\pi\)
\(228\) 35.3075 3.14547i 0.154857 0.0137959i
\(229\) 80.8867 248.944i 0.353217 1.08709i −0.603819 0.797122i \(-0.706355\pi\)
0.957036 0.289969i \(-0.0936451\pi\)
\(230\) −1.50415 + 4.47739i −0.00653978 + 0.0194669i
\(231\) −382.125 + 333.242i −1.65422 + 1.44261i
\(232\) 164.008i 0.706933i
\(233\) −26.3563 81.1163i −0.113117 0.348139i 0.878433 0.477866i \(-0.158590\pi\)
−0.991550 + 0.129728i \(0.958590\pi\)
\(234\) 3.64582 + 20.2995i 0.0155804 + 0.0867500i
\(235\) 56.6144 168.524i 0.240912 0.717122i
\(236\) −170.198 234.258i −0.721180 0.992619i
\(237\) −97.3910 + 424.922i −0.410932 + 1.79292i
\(238\) −107.314 + 147.705i −0.450899 + 0.620609i
\(239\) 34.7626 + 47.8466i 0.145450 + 0.200195i 0.875526 0.483171i \(-0.160515\pi\)
−0.730076 + 0.683366i \(0.760515\pi\)
\(240\) −102.603 62.8225i −0.427514 0.261760i
\(241\) 202.139 + 146.863i 0.838752 + 0.609389i 0.922022 0.387138i \(-0.126536\pi\)
−0.0832701 + 0.996527i \(0.526536\pi\)
\(242\) 46.4508 + 142.961i 0.191945 + 0.590747i
\(243\) −219.411 + 104.440i −0.902926 + 0.429796i
\(244\) 83.5604 + 257.172i 0.342461 + 1.05399i
\(245\) 231.316 + 2.29903i 0.944145 + 0.00938378i
\(246\) −5.42508 60.8958i −0.0220532 0.247544i
\(247\) −9.30212 3.02244i −0.0376604 0.0122366i
\(248\) −111.143 + 80.7505i −0.448159 + 0.325607i
\(249\) 1.05688 + 2.47892i 0.00424451 + 0.00995548i
\(250\) −86.8076 + 59.1977i −0.347231 + 0.236791i
\(251\) 174.558i 0.695449i −0.937597 0.347725i \(-0.886954\pi\)
0.937597 0.347725i \(-0.113046\pi\)
\(252\) −286.619 39.3544i −1.13738 0.156168i
\(253\) −18.5074 6.01341i −0.0731517 0.0237684i
\(254\) 2.64808 + 0.860414i 0.0104255 + 0.00338746i
\(255\) 127.856 + 308.344i 0.501395 + 1.20919i
\(256\) −26.5785 81.8001i −0.103822 0.319532i
\(257\) −189.705 −0.738151 −0.369076 0.929399i \(-0.620326\pi\)
−0.369076 + 0.929399i \(0.620326\pi\)
\(258\) −84.2075 96.5597i −0.326386 0.374263i
\(259\) 198.827 + 144.456i 0.767673 + 0.557747i
\(260\) 26.0255 + 36.5801i 0.100098 + 0.140693i
\(261\) 238.532 + 32.7519i 0.913917 + 0.125486i
\(262\) 77.5861 106.788i 0.296130 0.407588i
\(263\) 371.284 + 269.754i 1.41173 + 1.02568i 0.993069 + 0.117537i \(0.0374998\pi\)
0.418659 + 0.908143i \(0.362500\pi\)
\(264\) −163.589 + 273.239i −0.619655 + 1.03500i
\(265\) −46.8374 + 139.420i −0.176745 + 0.526115i
\(266\) −17.3010 + 23.8128i −0.0650414 + 0.0895218i
\(267\) −70.4395 80.7721i −0.263818 0.302517i
\(268\) 238.011i 0.888102i
\(269\) 53.7617 17.4682i 0.199858 0.0649377i −0.207378 0.978261i \(-0.566493\pi\)
0.407235 + 0.913323i \(0.366493\pi\)
\(270\) 71.8689 87.8170i 0.266181 0.325248i
\(271\) 16.0818 49.4946i 0.0593423 0.182637i −0.916991 0.398908i \(-0.869389\pi\)
0.976333 + 0.216271i \(0.0693894\pi\)
\(272\) 55.1548 169.749i 0.202775 0.624077i
\(273\) 68.4907 + 41.0056i 0.250882 + 0.150204i
\(274\) 82.0469 0.299441
\(275\) −247.435 355.203i −0.899763 1.29165i
\(276\) −4.35483 10.2142i −0.0157784 0.0370081i
\(277\) −163.205 224.632i −0.589186 0.810945i 0.405478 0.914105i \(-0.367105\pi\)
−0.994665 + 0.103159i \(0.967105\pi\)
\(278\) −50.7757 + 156.271i −0.182646 + 0.562127i
\(279\) 95.2477 + 177.772i 0.341390 + 0.637174i
\(280\) 285.449 89.6215i 1.01946 0.320077i
\(281\) 11.6791 3.79478i 0.0415627 0.0135046i −0.288162 0.957582i \(-0.593044\pi\)
0.329725 + 0.944077i \(0.393044\pi\)
\(282\) −35.1644 82.4780i −0.124696 0.292475i
\(283\) −48.6286 + 15.8004i −0.171833 + 0.0558318i −0.393670 0.919252i \(-0.628795\pi\)
0.221837 + 0.975084i \(0.428795\pi\)
\(284\) 90.6142 124.720i 0.319064 0.439154i
\(285\) 20.6127 + 49.7108i 0.0723254 + 0.174424i
\(286\) 32.1019 23.3234i 0.112245 0.0815504i
\(287\) −191.441 139.090i −0.667042 0.484634i
\(288\) −276.948 + 49.7402i −0.961626 + 0.172709i
\(289\) −166.831 + 121.210i −0.577269 + 0.419411i
\(290\) −107.273 + 33.6800i −0.369905 + 0.116138i
\(291\) −356.946 81.8110i −1.22662 0.281137i
\(292\) 153.227 49.7864i 0.524750 0.170502i
\(293\) 360.580 1.23065 0.615324 0.788274i \(-0.289025\pi\)
0.615324 + 0.788274i \(0.289025\pi\)
\(294\) 87.9287 76.6805i 0.299077 0.260818i
\(295\) 261.912 353.057i 0.887836 1.19680i
\(296\) 146.812 + 47.7022i 0.495988 + 0.161156i
\(297\) 364.728 + 292.487i 1.22804 + 0.984805i
\(298\) 68.6171 + 94.4433i 0.230259 + 0.316924i
\(299\) 3.06384i 0.0102469i
\(300\) 59.9573 239.621i 0.199858 0.798737i
\(301\) −495.895 −1.64749
\(302\) 42.3138 30.7428i 0.140112 0.101797i
\(303\) −7.66958 86.0900i −0.0253121 0.284125i
\(304\) 8.89198 27.3667i 0.0292499 0.0900221i
\(305\) −334.502 + 237.987i −1.09673 + 0.780285i
\(306\) 151.545 + 73.3190i 0.495246 + 0.239605i
\(307\) 142.048i 0.462696i −0.972871 0.231348i \(-0.925686\pi\)
0.972871 0.231348i \(-0.0743137\pi\)
\(308\) 172.003 + 529.372i 0.558453 + 1.71874i
\(309\) 19.9974 + 4.58336i 0.0647166 + 0.0148329i
\(310\) −75.6402 56.1128i −0.244001 0.181009i
\(311\) −38.9964 53.6740i −0.125390 0.172585i 0.741706 0.670725i \(-0.234017\pi\)
−0.867097 + 0.498139i \(0.834017\pi\)
\(312\) 48.8735 + 11.2017i 0.156646 + 0.0359028i
\(313\) −23.9683 + 32.9895i −0.0765759 + 0.105398i −0.845587 0.533838i \(-0.820749\pi\)
0.769011 + 0.639236i \(0.220749\pi\)
\(314\) 93.2174 + 128.303i 0.296871 + 0.408608i
\(315\) −73.3416 433.051i −0.232830 1.37477i
\(316\) 387.180 + 281.303i 1.22525 + 0.890199i
\(317\) −13.0912 40.2905i −0.0412971 0.127099i 0.928282 0.371876i \(-0.121285\pi\)
−0.969579 + 0.244777i \(0.921285\pi\)
\(318\) 29.0917 + 68.2344i 0.0914832 + 0.214574i
\(319\) −143.146 440.558i −0.448734 1.38106i
\(320\) −23.6393 + 16.8186i −0.0738729 + 0.0525581i
\(321\) −351.087 + 31.2776i −1.09373 + 0.0974381i
\(322\) 8.76898 + 2.84921i 0.0272328 + 0.00884849i
\(323\) −64.5901 + 46.9275i −0.199969 + 0.145286i
\(324\) 11.0022 + 266.542i 0.0339573 + 0.822661i
\(325\) −41.1491 + 54.3322i −0.126613 + 0.167176i
\(326\) 24.1435i 0.0740599i
\(327\) −250.211 149.802i −0.765171 0.458110i
\(328\) −141.358 45.9302i −0.430971 0.140031i
\(329\) −330.054 107.241i −1.00320 0.325960i
\(330\) −212.311 50.8871i −0.643366 0.154203i
\(331\) −64.7347 199.233i −0.195573 0.601912i −0.999969 0.00781898i \(-0.997511\pi\)
0.804396 0.594093i \(-0.202489\pi\)
\(332\) 2.95841 0.00891086
\(333\) 98.6955 203.997i 0.296383 0.612602i
\(334\) −119.528 86.8419i −0.357867 0.260006i
\(335\) 344.748 108.240i 1.02910 0.323103i
\(336\) −120.638 + 201.499i −0.359041 + 0.599698i
\(337\) −43.6519 + 60.0817i −0.129531 + 0.178284i −0.868856 0.495064i \(-0.835145\pi\)
0.739325 + 0.673348i \(0.235145\pi\)
\(338\) 109.872 + 79.8263i 0.325064 + 0.236173i
\(339\) 371.618 + 222.489i 1.09622 + 0.656309i
\(340\) 366.434 + 3.64195i 1.07775 + 0.0107116i
\(341\) 228.074 313.917i 0.668839 0.920578i
\(342\) 24.4319 + 11.8204i 0.0714383 + 0.0345626i
\(343\) 26.6908i 0.0778156i
\(344\) −296.233 + 96.2521i −0.861144 + 0.279803i
\(345\) 12.8144 10.9529i 0.0371433 0.0317475i
\(346\) 11.4230 35.1564i 0.0330145 0.101608i
\(347\) −45.9693 + 141.479i −0.132476 + 0.407721i −0.995189 0.0979741i \(-0.968764\pi\)
0.862713 + 0.505695i \(0.168764\pi\)
\(348\) 135.776 226.783i 0.390160 0.651676i
\(349\) −328.417 −0.941023 −0.470511 0.882394i \(-0.655931\pi\)
−0.470511 + 0.882394i \(0.655931\pi\)
\(350\) 117.237 + 168.299i 0.334963 + 0.480853i
\(351\) 26.0515 68.8442i 0.0742207 0.196137i
\(352\) 318.204 + 437.970i 0.903988 + 1.24423i
\(353\) 213.661 657.582i 0.605273 1.86284i 0.110372 0.993890i \(-0.464796\pi\)
0.494901 0.868949i \(-0.335204\pi\)
\(354\) −19.6736 220.833i −0.0555750 0.623823i
\(355\) 221.859 + 74.5321i 0.624955 + 0.209950i
\(356\) −111.897 + 36.3574i −0.314316 + 0.102128i
\(357\) 599.402 255.554i 1.67900 0.715839i
\(358\) 244.380 79.4040i 0.682627 0.221799i
\(359\) 56.7241 78.0740i 0.158006 0.217476i −0.722673 0.691190i \(-0.757087\pi\)
0.880679 + 0.473714i \(0.157087\pi\)
\(360\) −127.866 244.457i −0.355185 0.679048i
\(361\) 281.642 204.625i 0.780172 0.566828i
\(362\) −95.6723 69.5100i −0.264288 0.192016i
\(363\) 119.854 522.927i 0.330175 1.44057i
\(364\) 70.8989 51.5110i 0.194777 0.141514i
\(365\) 141.796 + 199.301i 0.388482 + 0.546030i
\(366\) −46.2545 + 201.811i −0.126379 + 0.551396i
\(367\) −203.965 + 66.2723i −0.555764 + 0.180579i −0.573414 0.819266i \(-0.694381\pi\)
0.0176504 + 0.999844i \(0.494381\pi\)
\(368\) −9.01376 −0.0244939
\(369\) −95.0291 + 196.418i −0.257531 + 0.532299i
\(370\) −1.05175 + 105.821i −0.00284256 + 0.286003i
\(371\) 273.055 + 88.7209i 0.735997 + 0.239140i
\(372\) 220.534 19.6469i 0.592833 0.0528143i
\(373\) −113.583 156.333i −0.304511 0.419123i 0.629149 0.777285i \(-0.283404\pi\)
−0.933660 + 0.358162i \(0.883404\pi\)
\(374\) 323.897i 0.866034i
\(375\) 374.347 22.1262i 0.998258 0.0590033i
\(376\) −217.980 −0.579734
\(377\) −59.0040 + 42.8689i −0.156509 + 0.113711i
\(378\) −172.812 138.583i −0.457174 0.366622i
\(379\) −147.272 + 453.255i −0.388579 + 1.19592i 0.545271 + 0.838260i \(0.316427\pi\)
−0.933850 + 0.357664i \(0.883573\pi\)
\(380\) 59.0760 + 0.587151i 0.155463 + 0.00154513i
\(381\) −6.53142 7.48951i −0.0171428 0.0196575i
\(382\) 2.64864i 0.00693362i
\(383\) 74.5277 + 229.373i 0.194589 + 0.598884i 0.999981 + 0.00614145i \(0.00195490\pi\)
−0.805392 + 0.592743i \(0.798045\pi\)
\(384\) −87.0841 + 379.952i −0.226782 + 0.989460i
\(385\) −688.550 + 489.880i −1.78844 + 1.27242i
\(386\) −40.7512 56.0892i −0.105573 0.145309i
\(387\) 80.8314 + 450.060i 0.208867 + 1.16295i
\(388\) −236.302 + 325.242i −0.609026 + 0.838252i
\(389\) −366.878 504.964i −0.943130 1.29811i −0.954512 0.298172i \(-0.903623\pi\)
0.0113819 0.999935i \(-0.496377\pi\)
\(390\) 2.70979 + 34.2669i 0.00694818 + 0.0878638i
\(391\) 20.2328 + 14.7000i 0.0517463 + 0.0375959i
\(392\) −87.6485 269.754i −0.223593 0.688149i
\(393\) −433.357 + 184.761i −1.10269 + 0.470131i
\(394\) 54.0858 + 166.459i 0.137274 + 0.422485i
\(395\) −231.378 + 688.740i −0.585767 + 1.74365i
\(396\) 452.407 242.394i 1.14244 0.612105i
\(397\) −436.912 141.961i −1.10053 0.357585i −0.298226 0.954495i \(-0.596395\pi\)
−0.802308 + 0.596910i \(0.796395\pi\)
\(398\) −88.1205 + 64.0233i −0.221408 + 0.160863i
\(399\) 96.6348 41.2002i 0.242193 0.103259i
\(400\) −159.845 121.060i −0.399611 0.302650i
\(401\) 671.456i 1.67445i 0.546855 + 0.837227i \(0.315825\pi\)
−0.546855 + 0.837227i \(0.684175\pi\)
\(402\) 93.6121 156.358i 0.232866 0.388951i
\(403\) −58.1019 18.8785i −0.144173 0.0468448i
\(404\) −90.2412 29.3211i −0.223369 0.0725771i
\(405\) −381.070 + 137.151i −0.940915 + 0.338643i
\(406\) 67.8240 + 208.741i 0.167054 + 0.514140i
\(407\) −436.001 −1.07126
\(408\) 308.463 269.004i 0.756037 0.659323i
\(409\) 181.136 + 131.603i 0.442875 + 0.321767i 0.786776 0.617238i \(-0.211749\pi\)
−0.343901 + 0.939006i \(0.611749\pi\)
\(410\) 1.01268 101.890i 0.00246994 0.248512i
\(411\) −251.240 150.418i −0.611290 0.365981i
\(412\) 13.2385 18.2213i 0.0321323 0.0442264i
\(413\) −694.244 504.397i −1.68098 1.22130i
\(414\) 1.15651 8.42290i 0.00279351 0.0203452i
\(415\) 1.34538 + 4.28512i 0.00324189 + 0.0103256i
\(416\) 50.0994 68.9559i 0.120431 0.165759i
\(417\) 441.978 385.439i 1.05990 0.924314i
\(418\) 52.2182i 0.124924i
\(419\) 523.183 169.993i 1.24865 0.405710i 0.391211 0.920301i \(-0.372056\pi\)
0.857436 + 0.514591i \(0.172056\pi\)
\(420\) −468.900 112.387i −1.11643 0.267588i
\(421\) −245.390 + 755.232i −0.582874 + 1.79390i 0.0247725 + 0.999693i \(0.492114\pi\)
−0.607646 + 0.794208i \(0.707886\pi\)
\(422\) 38.4620 118.374i 0.0911422 0.280507i
\(423\) −43.5298 + 317.028i −0.102907 + 0.749475i
\(424\) 180.336 0.425320
\(425\) 161.367 + 532.419i 0.379686 + 1.25275i
\(426\) 108.581 46.2935i 0.254885 0.108670i
\(427\) 471.036 + 648.325i 1.10313 + 1.51833i
\(428\) −119.576 + 368.016i −0.279383 + 0.859851i
\(429\) −141.060 + 12.5668i −0.328812 + 0.0292932i
\(430\) −123.788 173.991i −0.287880 0.404630i
\(431\) 559.361 181.747i 1.29782 0.421687i 0.422998 0.906131i \(-0.360978\pi\)
0.874823 + 0.484443i \(0.160978\pi\)
\(432\) 202.539 + 76.6430i 0.468839 + 0.177414i
\(433\) −74.5711 + 24.2296i −0.172220 + 0.0559576i −0.393858 0.919171i \(-0.628860\pi\)
0.221638 + 0.975129i \(0.428860\pi\)
\(434\) −108.064 + 148.737i −0.248995 + 0.342712i
\(435\) 390.231 + 93.5316i 0.897084 + 0.215015i
\(436\) −259.008 + 188.181i −0.594056 + 0.431607i
\(437\) 3.26191 + 2.36991i 0.00746431 + 0.00542314i
\(438\) 120.242 + 27.5591i 0.274525 + 0.0629203i
\(439\) 651.540 473.372i 1.48415 1.07830i 0.507955 0.861384i \(-0.330402\pi\)
0.976191 0.216912i \(-0.0695984\pi\)
\(440\) −316.235 + 426.286i −0.718717 + 0.968832i
\(441\) −409.831 + 73.6062i −0.929322 + 0.166907i
\(442\) −48.4998 + 15.7585i −0.109728 + 0.0356528i
\(443\) −600.844 −1.35631 −0.678153 0.734921i \(-0.737219\pi\)
−0.678153 + 0.734921i \(0.737219\pi\)
\(444\) −163.515 187.500i −0.368276 0.422298i
\(445\) −103.549 145.543i −0.232694 0.327063i
\(446\) 45.9410 + 14.9271i 0.103007 + 0.0334689i
\(447\) −36.9712 414.997i −0.0827096 0.928405i
\(448\) 33.2882 + 45.8173i 0.0743040 + 0.102271i
\(449\) 160.308i 0.357034i 0.983937 + 0.178517i \(0.0571300\pi\)
−0.983937 + 0.178517i \(0.942870\pi\)
\(450\) 133.633 133.834i 0.296963 0.297409i
\(451\) 419.804 0.930829
\(452\) 384.684 279.489i 0.851071 0.618339i
\(453\) −185.933 + 16.5644i −0.410448 + 0.0365659i
\(454\) −78.5484 + 241.747i −0.173014 + 0.532482i
\(455\) 106.854 + 79.2683i 0.234844 + 0.174216i
\(456\) 49.7301 43.3684i 0.109057 0.0951062i
\(457\) 525.631i 1.15018i 0.818091 + 0.575089i \(0.195032\pi\)
−0.818091 + 0.575089i \(0.804968\pi\)
\(458\) −67.9909 209.254i −0.148452 0.456887i
\(459\) −329.637 502.345i −0.718164 1.09443i
\(460\) −5.54359 17.6566i −0.0120513 0.0383839i
\(461\) 421.360 + 579.953i 0.914014 + 1.25803i 0.965777 + 0.259373i \(0.0835158\pi\)
−0.0517635 + 0.998659i \(0.516484\pi\)
\(462\) −95.2118 + 415.414i −0.206086 + 0.899165i
\(463\) 348.693 479.934i 0.753116 1.03658i −0.244640 0.969614i \(-0.578670\pi\)
0.997756 0.0669612i \(-0.0213304\pi\)
\(464\) −126.120 173.589i −0.271810 0.374114i
\(465\) 128.749 + 310.499i 0.276880 + 0.667739i
\(466\) −58.0006 42.1399i −0.124465 0.0904290i
\(467\) 59.3052 + 182.523i 0.126992 + 0.390841i 0.994259 0.107003i \(-0.0341254\pi\)
−0.867267 + 0.497844i \(0.834125\pi\)
\(468\) −58.3066 55.9495i −0.124587 0.119550i
\(469\) −217.970 670.843i −0.464755 1.43037i
\(470\) −44.7634 142.574i −0.0952412 0.303348i
\(471\) −50.2260 563.780i −0.106637 1.19699i
\(472\) −512.624 166.562i −1.08607 0.352885i
\(473\) 711.732 517.103i 1.50472 1.09324i
\(474\) 143.714 + 337.080i 0.303193 + 0.711139i
\(475\) 26.0153 + 85.8359i 0.0547691 + 0.180707i
\(476\) 715.343i 1.50282i
\(477\) 36.0124 262.279i 0.0754977 0.549850i
\(478\) 47.2795 + 15.3620i 0.0989111 + 0.0321382i
\(479\) −275.957 89.6639i −0.576111 0.187190i 0.00644656 0.999979i \(-0.497948\pi\)
−0.582558 + 0.812789i \(0.697948\pi\)
\(480\) −467.506 + 36.9699i −0.973971 + 0.0770207i
\(481\) 21.2127 + 65.2861i 0.0441013 + 0.135730i
\(482\) 210.023 0.435731
\(483\) −21.6284 24.8011i −0.0447794 0.0513480i
\(484\) −476.481 346.184i −0.984465 0.715256i
\(485\) −578.560 194.363i −1.19291 0.400749i
\(486\) −97.6058 + 179.428i −0.200835 + 0.369194i
\(487\) 446.402 614.420i 0.916637 1.26164i −0.0482116 0.998837i \(-0.515352\pi\)
0.964849 0.262806i \(-0.0846478\pi\)
\(488\) 407.222 + 295.864i 0.834472 + 0.606279i
\(489\) −44.2629 + 73.9312i −0.0905171 + 0.151189i
\(490\) 158.438 112.724i 0.323344 0.230048i
\(491\) 105.426 145.107i 0.214717 0.295533i −0.688049 0.725664i \(-0.741533\pi\)
0.902766 + 0.430131i \(0.141533\pi\)
\(492\) 157.440 + 180.535i 0.320000 + 0.366941i
\(493\) 595.329i 1.20756i
\(494\) −7.81907 + 2.54057i −0.0158281 + 0.00514285i
\(495\) 556.836 + 545.058i 1.12492 + 1.10113i
\(496\) 55.5402 170.935i 0.111976 0.344627i
\(497\) 141.181 434.511i 0.284067 0.874268i
\(498\) 1.94348 + 1.16357i 0.00390258 + 0.00233648i
\(499\) 379.268 0.760057 0.380028 0.924975i \(-0.375914\pi\)
0.380028 + 0.924975i \(0.375914\pi\)
\(500\) 138.832 387.565i 0.277664 0.775130i
\(501\) 206.803 + 485.056i 0.412781 + 0.968176i
\(502\) −86.2444 118.705i −0.171802 0.236465i
\(503\) 119.455 367.645i 0.237485 0.730905i −0.759297 0.650745i \(-0.774457\pi\)
0.996782 0.0801602i \(-0.0255432\pi\)
\(504\) −474.696 + 254.336i −0.941856 + 0.504635i
\(505\) 1.43165 144.044i 0.00283494 0.285237i
\(506\) −15.5567 + 5.05468i −0.0307445 + 0.00998949i
\(507\) −190.096 445.870i −0.374943 0.879429i
\(508\) −10.3755 + 3.37120i −0.0204242 + 0.00663622i
\(509\) −205.311 + 282.586i −0.403361 + 0.555179i −0.961584 0.274512i \(-0.911484\pi\)
0.558223 + 0.829691i \(0.311484\pi\)
\(510\) 239.291 + 146.514i 0.469198 + 0.287283i
\(511\) 386.281 280.650i 0.755932 0.549217i
\(512\) 361.988 + 263.000i 0.707009 + 0.513672i
\(513\) −53.1437 80.9874i −0.103594 0.157870i
\(514\) −129.006 + 93.7282i −0.250984 + 0.182351i
\(515\) 32.4131 + 10.8890i 0.0629380 + 0.0211436i
\(516\) 489.301 + 112.146i 0.948257 + 0.217338i
\(517\) 585.536 190.252i 1.13257 0.367993i
\(518\) 206.581 0.398806
\(519\) −99.4319 + 86.7123i −0.191584 + 0.167076i
\(520\) 79.2172 + 26.6125i 0.152341 + 0.0511779i
\(521\) 255.878 + 83.1397i 0.491128 + 0.159577i 0.544103 0.839019i \(-0.316870\pi\)
−0.0529744 + 0.998596i \(0.516870\pi\)
\(522\) 178.392 95.5802i 0.341747 0.183104i
\(523\) −333.705 459.305i −0.638059 0.878213i 0.360451 0.932778i \(-0.382623\pi\)
−0.998510 + 0.0545650i \(0.982623\pi\)
\(524\) 517.180i 0.986986i
\(525\) −50.4526 730.289i −0.0961002 1.39103i
\(526\) 385.764 0.733392
\(527\) −403.436 + 293.113i −0.765533 + 0.556192i
\(528\) −36.9713 414.998i −0.0700214 0.785981i
\(529\) −163.080 + 501.908i −0.308279 + 0.948786i
\(530\) 37.0329 + 117.952i 0.0698735 + 0.222550i
\(531\) −344.615 + 712.293i −0.648992 + 1.34142i
\(532\) 115.327i 0.216780i
\(533\) −20.4247 62.8608i −0.0383203 0.117938i
\(534\) −87.8086 20.1255i −0.164436 0.0376882i
\(535\) −587.434 5.83846i −1.09801 0.0109130i
\(536\) −260.418 358.435i −0.485855 0.668722i
\(537\) −893.903 204.880i −1.66462 0.381527i
\(538\) 27.9292 38.4413i 0.0519130 0.0714522i
\(539\) 470.882 + 648.113i 0.873621 + 1.20244i
\(540\) −25.5681 + 443.879i −0.0473483 + 0.821999i
\(541\) −833.972 605.916i −1.54154 1.11999i −0.949362 0.314186i \(-0.898269\pi\)
−0.592177 0.805808i \(-0.701731\pi\)
\(542\) −13.5178 41.6036i −0.0249406 0.0767594i
\(543\) 165.529 + 388.248i 0.304842 + 0.715006i
\(544\) −214.995 661.687i −0.395212 1.21634i
\(545\) −390.359 289.584i −0.716256 0.531346i
\(546\) 66.8358 5.95426i 0.122410 0.0109052i
\(547\) −625.979 203.393i −1.14439 0.371833i −0.325360 0.945590i \(-0.605485\pi\)
−0.819026 + 0.573757i \(0.805485\pi\)
\(548\) −260.074 + 188.955i −0.474587 + 0.344808i
\(549\) 511.623 533.177i 0.931917 0.971178i
\(550\) −343.761 119.299i −0.625019 0.216907i
\(551\) 95.9782i 0.174189i
\(552\) −17.7340 10.6174i −0.0321269 0.0192345i
\(553\) 1348.90 + 438.284i 2.43924 + 0.792556i
\(554\) −221.969 72.1223i −0.400667 0.130185i
\(555\) 197.225 322.112i 0.355360 0.580383i
\(556\) −198.945 612.289i −0.357815 1.10124i
\(557\) 202.807 0.364106 0.182053 0.983289i \(-0.441726\pi\)
0.182053 + 0.983289i \(0.441726\pi\)
\(558\) 152.604 + 73.8313i 0.273484 + 0.132314i
\(559\) −112.058 81.4150i −0.200462 0.145644i
\(560\) −233.206 + 314.362i −0.416440 + 0.561362i
\(561\) −593.806 + 991.821i −1.05848 + 1.76795i
\(562\) 6.06731 8.35093i 0.0107959 0.0148593i
\(563\) 517.129 + 375.717i 0.918525 + 0.667347i 0.943156 0.332349i \(-0.107841\pi\)
−0.0246316 + 0.999697i \(0.507841\pi\)
\(564\) 301.412 + 180.456i 0.534419 + 0.319958i
\(565\) 579.769 + 430.095i 1.02614 + 0.761230i
\(566\) −25.2626 + 34.7710i −0.0446335 + 0.0614328i
\(567\) 275.109 + 741.183i 0.485200 + 1.30720i
\(568\) 286.968i 0.505225i
\(569\) −122.002 + 39.6408i −0.214415 + 0.0696676i −0.414255 0.910161i \(-0.635958\pi\)
0.199840 + 0.979829i \(0.435958\pi\)
\(570\) 38.5782 + 23.6209i 0.0676810 + 0.0414401i
\(571\) −247.161 + 760.684i −0.432857 + 1.33220i 0.462410 + 0.886666i \(0.346985\pi\)
−0.895267 + 0.445530i \(0.853015\pi\)
\(572\) −48.0433 + 147.862i −0.0839918 + 0.258500i
\(573\) 4.85581 8.11055i 0.00847436 0.0141545i
\(574\) −198.907 −0.346528
\(575\) 23.0537 16.0593i 0.0400935 0.0279292i
\(576\) 36.1565 37.6797i 0.0627717 0.0654162i
\(577\) 397.177 + 546.667i 0.688348 + 0.947430i 0.999996 0.00276735i \(-0.000880876\pi\)
−0.311648 + 0.950198i \(0.600881\pi\)
\(578\) −53.5641 + 164.853i −0.0926715 + 0.285214i
\(579\) 21.9569 + 246.464i 0.0379222 + 0.425671i
\(580\) 262.469 353.810i 0.452534 0.610016i
\(581\) 8.33838 2.70930i 0.0143518 0.00466317i
\(582\) −283.156 + 120.723i −0.486522 + 0.207428i
\(583\) −484.417 + 157.397i −0.830904 + 0.269977i
\(584\) 176.280 242.629i 0.301849 0.415460i
\(585\) 54.5244 109.898i 0.0932040 0.187860i
\(586\) 245.207 178.153i 0.418442 0.304016i
\(587\) −760.672 552.661i −1.29586 0.941501i −0.295958 0.955201i \(-0.595639\pi\)
−0.999906 + 0.0137003i \(0.995639\pi\)
\(588\) −102.122 + 445.564i −0.173677 + 0.757762i
\(589\) −65.0414 + 47.2554i −0.110427 + 0.0802298i
\(590\) 3.67238 369.495i 0.00622437 0.626262i
\(591\) 139.554 608.880i 0.236131 1.03025i
\(592\) −192.071 + 62.4076i −0.324444 + 0.105418i
\(593\) −413.092 −0.696615 −0.348307 0.937380i \(-0.613243\pi\)
−0.348307 + 0.937380i \(0.613243\pi\)
\(594\) 392.538 + 18.6986i 0.660838 + 0.0314792i
\(595\) 1036.14 325.314i 1.74142 0.546747i
\(596\) −435.008 141.343i −0.729879 0.237152i
\(597\) 387.214 34.4961i 0.648600 0.0577824i
\(598\) 1.51376 + 2.08351i 0.00253137 + 0.00348414i
\(599\) 97.8025i 0.163276i −0.996662 0.0816381i \(-0.973985\pi\)
0.996662 0.0816381i \(-0.0260152\pi\)
\(600\) −171.886 426.461i −0.286477 0.710769i
\(601\) −477.154 −0.793933 −0.396967 0.917833i \(-0.629937\pi\)
−0.396967 + 0.917833i \(0.629937\pi\)
\(602\) −337.225 + 245.009i −0.560175 + 0.406991i
\(603\) −573.309 + 307.172i −0.950761 + 0.509406i
\(604\) −63.3263 + 194.898i −0.104845 + 0.322679i
\(605\) 284.744 847.594i 0.470651 1.40098i
\(606\) −47.7504 54.7548i −0.0787960 0.0903545i
\(607\) 726.229i 1.19642i −0.801338 0.598211i \(-0.795878\pi\)
0.801338 0.598211i \(-0.204122\pi\)
\(608\) −34.6613 106.676i −0.0570086 0.175455i
\(609\) 175.001 763.540i 0.287359 1.25376i
\(610\) −109.890 + 327.108i −0.180147 + 0.536243i
\(611\) −56.9761 78.4209i −0.0932506 0.128348i
\(612\) −649.225 + 116.602i −1.06083 + 0.190526i
\(613\) −135.315 + 186.245i −0.220742 + 0.303825i −0.904997 0.425417i \(-0.860127\pi\)
0.684255 + 0.729243i \(0.260127\pi\)
\(614\) −70.1821 96.5974i −0.114303 0.157325i
\(615\) −189.898 + 310.146i −0.308777 + 0.504303i
\(616\) 838.239 + 609.016i 1.36078 + 0.988663i
\(617\) 119.648 + 368.239i 0.193919 + 0.596821i 0.999988 + 0.00499907i \(0.00159126\pi\)
−0.806069 + 0.591822i \(0.798409\pi\)
\(618\) 15.8635 6.76336i 0.0256690 0.0109440i
\(619\) 350.417 + 1078.47i 0.566102 + 1.74228i 0.664655 + 0.747151i \(0.268579\pi\)
−0.0985527 + 0.995132i \(0.531421\pi\)
\(620\) 368.994 + 3.66740i 0.595152 + 0.00591516i
\(621\) −18.9833 + 23.6720i −0.0305689 + 0.0381191i
\(622\) −53.0378 17.2330i −0.0852698 0.0277058i
\(623\) −282.089 + 204.949i −0.452791 + 0.328972i
\(624\) −60.3423 + 25.7269i −0.0967025 + 0.0412290i
\(625\) 624.506 + 24.8399i 0.999210 + 0.0397439i
\(626\) 34.2761i 0.0547541i
\(627\) −95.7327 + 159.900i −0.152684 + 0.255024i
\(628\) −590.965 192.016i −0.941027 0.305758i
\(629\) 532.909 + 173.153i 0.847233 + 0.275283i
\(630\) −263.834 258.254i −0.418784 0.409926i
\(631\) −121.844 374.998i −0.193097 0.594292i −0.999994 0.00359908i \(-0.998854\pi\)
0.806896 0.590693i \(-0.201146\pi\)
\(632\) 890.864 1.40959
\(633\) −334.794 + 291.966i −0.528900 + 0.461242i
\(634\) −28.8089 20.9309i −0.0454400 0.0330141i
\(635\) −9.60146 13.4953i −0.0151204 0.0212525i
\(636\) −249.360 149.293i −0.392075 0.234737i
\(637\) 74.1376 102.042i 0.116386 0.160191i
\(638\) −315.013 228.870i −0.493750 0.358731i
\(639\) −417.363 57.3064i −0.653150 0.0896813i
\(640\) −206.891 + 615.851i −0.323267 + 0.962267i
\(641\) −688.318 + 947.388i −1.07382 + 1.47798i −0.207669 + 0.978199i \(0.566588\pi\)
−0.866150 + 0.499785i \(0.833412\pi\)
\(642\) −223.298 + 194.733i −0.347816 + 0.303322i
\(643\) 239.132i 0.371901i −0.982559 0.185950i \(-0.940464\pi\)
0.982559 0.185950i \(-0.0595363\pi\)
\(644\) −34.3579 + 11.1635i −0.0533507 + 0.0173347i
\(645\) 60.0787 + 759.730i 0.0931452 + 1.17788i
\(646\) −20.7379 + 63.8246i −0.0321020 + 0.0987997i
\(647\) −312.069 + 960.450i −0.482332 + 1.48447i 0.353475 + 0.935444i \(0.385000\pi\)
−0.835808 + 0.549022i \(0.815000\pi\)
\(648\) 308.204 + 389.363i 0.475623 + 0.600869i
\(649\) 1522.38 2.34573
\(650\) −1.13868 + 57.2784i −0.00175182 + 0.0881206i
\(651\) 603.590 257.340i 0.927174 0.395300i
\(652\) 55.6028 + 76.5307i 0.0852804 + 0.117378i
\(653\) −188.871 + 581.286i −0.289236 + 0.890177i 0.695861 + 0.718177i \(0.255023\pi\)
−0.985097 + 0.172000i \(0.944977\pi\)
\(654\) −244.165 + 21.7522i −0.373341 + 0.0332602i
\(655\) −749.112 + 235.196i −1.14368 + 0.359079i
\(656\) 184.936 60.0892i 0.281914 0.0915994i
\(657\) −317.674 304.832i −0.483522 0.463975i
\(658\) −277.433 + 90.1434i −0.421630 + 0.136996i
\(659\) 560.784 771.852i 0.850962 1.17125i −0.132689 0.991158i \(-0.542361\pi\)
0.983650 0.180090i \(-0.0576390\pi\)
\(660\) 790.180 327.651i 1.19724 0.496440i
\(661\) 530.695 385.572i 0.802866 0.583317i −0.108887 0.994054i \(-0.534729\pi\)
0.911754 + 0.410738i \(0.134729\pi\)
\(662\) −142.458 103.501i −0.215193 0.156347i
\(663\) 177.404 + 40.6606i 0.267578 + 0.0613282i
\(664\) 4.45524 3.23692i 0.00670970 0.00487488i
\(665\) 167.045 52.4467i 0.251196 0.0788673i
\(666\) −33.6730 187.488i −0.0505600 0.281513i
\(667\) 28.5936 9.29062i 0.0428689 0.0139290i
\(668\) 578.879 0.866586
\(669\) −113.312 129.934i −0.169375 0.194221i
\(670\) 180.962 243.938i 0.270093 0.364086i
\(671\) −1352.11 439.326i −2.01506 0.654733i
\(672\) 81.2346 + 911.847i 0.120885 + 1.35692i
\(673\) −318.684 438.631i −0.473527 0.651754i 0.503718 0.863868i \(-0.331965\pi\)
−0.977245 + 0.212114i \(0.931965\pi\)
\(674\) 62.4249i 0.0926185i
\(675\) −654.566 + 164.827i −0.969728 + 0.244189i
\(676\) −532.114 −0.787151
\(677\) 120.168 87.3073i 0.177501 0.128962i −0.495487 0.868615i \(-0.665010\pi\)
0.672988 + 0.739653i \(0.265010\pi\)
\(678\) 362.639 32.3067i 0.534865 0.0476500i
\(679\) −368.170 + 1133.11i −0.542224 + 1.66879i
\(680\) 555.819 395.446i 0.817381 0.581539i
\(681\) 683.727 596.262i 1.00400 0.875569i
\(682\) 326.160i 0.478240i
\(683\) −157.437 484.540i −0.230508 0.709430i −0.997686 0.0679954i \(-0.978340\pi\)
0.767178 0.641434i \(-0.221660\pi\)
\(684\) −104.667 + 18.7984i −0.153022 + 0.0274830i
\(685\) −391.965 290.775i −0.572212 0.424489i
\(686\) 13.1872 + 18.1506i 0.0192233 + 0.0264586i
\(687\) −175.432 + 765.418i −0.255359 + 1.11415i
\(688\) 239.522 329.673i 0.348142 0.479176i
\(689\) 47.1366 + 64.8780i 0.0684131 + 0.0941626i
\(690\) 3.30273 13.7796i 0.00478656 0.0199704i
\(691\) −46.9769 34.1307i −0.0679840 0.0493933i 0.553274 0.832999i \(-0.313378\pi\)
−0.621258 + 0.783606i \(0.713378\pi\)
\(692\) 44.7566 + 137.747i 0.0646772 + 0.199056i
\(693\) 1053.14 1097.51i 1.51968 1.58371i
\(694\) 38.6404 + 118.923i 0.0556778 + 0.171359i
\(695\) 796.400 566.611i 1.14590 0.815268i
\(696\) −43.6606 490.084i −0.0627307 0.704144i
\(697\) −513.112 166.720i −0.736173 0.239197i
\(698\) −223.335 + 162.262i −0.319964 + 0.232467i
\(699\) 100.351 + 235.373i 0.143563 + 0.336728i
\(700\) −759.214 263.478i −1.08459 0.376398i
\(701\) 753.805i 1.07533i −0.843159 0.537664i \(-0.819307\pi\)
0.843159 0.537664i \(-0.180693\pi\)
\(702\) −16.2982 59.6877i −0.0232168 0.0850253i
\(703\) 85.9150 + 27.9155i 0.122212 + 0.0397091i
\(704\) −95.5536 31.0473i −0.135730 0.0441012i
\(705\) −124.311 + 518.648i −0.176327 + 0.735670i
\(706\) −179.597 552.743i −0.254387 0.782922i
\(707\) −281.200 −0.397737
\(708\) 570.943 + 654.693i 0.806416 + 0.924708i
\(709\) −875.929 636.400i −1.23544 0.897602i −0.238157 0.971227i \(-0.576543\pi\)
−0.997286 + 0.0736243i \(0.976543\pi\)
\(710\) 187.696 58.9304i 0.264361 0.0830005i
\(711\) 177.902 1295.66i 0.250214 1.82231i
\(712\) −128.732 + 177.184i −0.180803 + 0.248854i
\(713\) 20.3742 + 14.8027i 0.0285753 + 0.0207611i
\(714\) 281.351 469.935i 0.394049 0.658172i
\(715\) −236.020 2.34578i −0.330098 0.00328082i
\(716\) −591.774 + 814.507i −0.826500 + 1.13758i
\(717\) −116.614 133.719i −0.162641 0.186498i
\(718\) 81.1189i 0.112979i
\(719\) 1047.73 340.428i 1.45721 0.473475i 0.529991 0.848003i \(-0.322195\pi\)
0.927215 + 0.374529i \(0.122195\pi\)
\(720\) 323.319 + 160.410i 0.449055 + 0.222792i
\(721\) 20.6263 63.4811i 0.0286078 0.0880459i
\(722\) 90.4264 278.304i 0.125244 0.385462i
\(723\) −643.121 385.039i −0.889518 0.532557i
\(724\) 463.346 0.639981
\(725\) 631.839 + 219.274i 0.871502 + 0.302447i
\(726\) −176.860 414.825i −0.243609 0.571384i
\(727\) 323.312 + 445.001i 0.444721 + 0.612106i 0.971253 0.238049i \(-0.0765079\pi\)
−0.526532 + 0.850155i \(0.676508\pi\)
\(728\) 50.4103 155.147i 0.0692449 0.213114i
\(729\) 627.833 370.494i 0.861226 0.508223i
\(730\) 194.895 + 65.4739i 0.266980 + 0.0896902i
\(731\) −1075.29 + 349.382i −1.47098 + 0.477951i
\(732\) −318.154 746.229i −0.434637 1.01944i
\(733\) 78.9194 25.6425i 0.107666 0.0349829i −0.254688 0.967023i \(-0.581973\pi\)
0.362355 + 0.932040i \(0.381973\pi\)
\(734\) −105.960 + 145.841i −0.144360 + 0.198694i
\(735\) −691.821 + 54.7085i −0.941253 + 0.0744333i
\(736\) −28.4256 + 20.6524i −0.0386217 + 0.0280603i
\(737\) 1012.38 + 735.534i 1.37364 + 0.998010i
\(738\) 32.4221 + 180.523i 0.0439324 + 0.244611i
\(739\) 8.53578 6.20160i 0.0115504 0.00839189i −0.581995 0.813192i \(-0.697728\pi\)
0.593545 + 0.804800i \(0.297728\pi\)
\(740\) −240.373 337.856i −0.324829 0.456562i
\(741\) 28.6009 + 6.55525i 0.0385977 + 0.00884649i
\(742\) 229.521 74.5760i 0.309328 0.100507i
\(743\) 168.513 0.226801 0.113401 0.993549i \(-0.463826\pi\)
0.113401 + 0.993549i \(0.463826\pi\)
\(744\) 310.619 270.883i 0.417498 0.364090i
\(745\) 6.90125 694.367i 0.00926342 0.932036i
\(746\) −154.480 50.1936i −0.207078 0.0672836i
\(747\) −3.81805 7.12606i −0.00511118 0.00953957i
\(748\) 745.937 + 1026.69i 0.997242 + 1.37259i
\(749\) 1146.77i 1.53107i
\(750\) 243.637 200.001i 0.324849 0.266669i
\(751\) 83.0662 0.110607 0.0553037 0.998470i \(-0.482387\pi\)
0.0553037 + 0.998470i \(0.482387\pi\)
\(752\) 230.713 167.623i 0.306800 0.222903i
\(753\) 46.4689 + 521.607i 0.0617117 + 0.692706i
\(754\) −18.9443 + 58.3047i −0.0251251 + 0.0773272i
\(755\) −311.100 3.09200i −0.412053 0.00409536i
\(756\) 866.941 + 41.2970i 1.14675 + 0.0546256i
\(757\) 124.740i 0.164782i −0.996600 0.0823909i \(-0.973744\pi\)
0.996600 0.0823909i \(-0.0262556\pi\)
\(758\) 123.792 + 380.992i 0.163314 + 0.502628i
\(759\) 56.9039 + 13.0422i 0.0749722 + 0.0171834i
\(760\) 89.6084 63.7534i 0.117906 0.0838860i
\(761\) 166.917 + 229.742i 0.219340 + 0.301895i 0.904480 0.426516i \(-0.140259\pi\)
−0.685140 + 0.728411i \(0.740259\pi\)
\(762\) −8.14196 1.86612i −0.0106850 0.00244897i
\(763\) −557.689 + 767.593i −0.730916 + 1.00602i
\(764\) −6.09985 8.39572i −0.00798409 0.0109892i
\(765\) −464.138 887.347i −0.606717 1.15993i
\(766\) 164.008 + 119.159i 0.214110 + 0.155560i
\(767\) −74.0683 227.959i −0.0965689 0.297208i
\(768\) 101.197 + 237.357i 0.131767 + 0.309058i
\(769\) −168.931 519.916i −0.219676 0.676093i −0.998788 0.0492091i \(-0.984330\pi\)
0.779112 0.626884i \(-0.215670\pi\)
\(770\) −226.201 + 673.330i −0.293767 + 0.874454i
\(771\) 566.870 50.5012i 0.735239 0.0655009i
\(772\) 258.348 + 83.9423i 0.334648 + 0.108734i
\(773\) 195.091 141.742i 0.252382 0.183366i −0.454400 0.890798i \(-0.650146\pi\)
0.706782 + 0.707432i \(0.250146\pi\)
\(774\) 277.331 + 266.120i 0.358309 + 0.343824i
\(775\) 162.494 + 536.139i 0.209670 + 0.691792i
\(776\) 748.349i 0.964367i
\(777\) −632.584 378.730i −0.814137 0.487426i
\(778\) −498.979 162.128i −0.641361 0.208391i
\(779\) −82.7233 26.8784i −0.106192 0.0345038i
\(780\) −87.5065 102.379i −0.112188 0.131255i
\(781\) 250.465 + 770.851i 0.320697 + 0.987005i
\(782\) 21.0219 0.0268822
\(783\) −721.493 34.3685i −0.921447 0.0438934i
\(784\) 300.205 + 218.112i 0.382915 + 0.278204i
\(785\) 9.37546 943.309i 0.0119433 1.20167i
\(786\) −203.412 + 339.754i −0.258794 + 0.432258i
\(787\) −250.918 + 345.360i −0.318829 + 0.438830i −0.938109 0.346340i \(-0.887424\pi\)
0.619280 + 0.785170i \(0.287424\pi\)
\(788\) −554.799 403.085i −0.704060 0.511529i
\(789\) −1181.27 707.230i −1.49717 0.896362i
\(790\) 182.944 + 582.685i 0.231574 + 0.737576i
\(791\) 828.290 1140.04i 1.04714 1.44127i
\(792\) 416.092 860.032i 0.525369 1.08590i
\(793\) 223.837i 0.282266i
\(794\) −367.255 + 119.328i −0.462537 + 0.150288i
\(795\) 102.843 429.080i 0.129362 0.539723i
\(796\) 131.880 405.885i 0.165678 0.509906i
\(797\) 347.475 1069.42i 0.435978 1.34180i −0.456103 0.889927i \(-0.650755\pi\)
0.892081 0.451876i \(-0.149245\pi\)
\(798\) 45.3591 75.7623i 0.0568410 0.0949402i
\(799\) −791.238 −0.990285
\(800\) −781.455 15.5352i −0.976819 0.0194190i
\(801\) 231.987 + 222.609i 0.289622 + 0.277914i
\(802\) 331.749 + 456.613i 0.413652 + 0.569343i
\(803\) −261.757 + 805.604i −0.325973 + 1.00324i
\(804\) 63.3608 + 711.217i 0.0788070 + 0.884598i
\(805\) −31.7947 44.6890i −0.0394965 0.0555142i
\(806\) −48.8386 + 15.8686i −0.0605939 + 0.0196881i
\(807\) −155.999 + 66.5099i −0.193307 + 0.0824162i
\(808\) −167.981 + 54.5803i −0.207897 + 0.0675499i
\(809\) −84.6156 + 116.463i −0.104593 + 0.143960i −0.858105 0.513474i \(-0.828358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(810\) −191.378 + 281.544i −0.236270 + 0.347585i
\(811\) −488.523 + 354.933i −0.602371 + 0.437648i −0.846720 0.532039i \(-0.821426\pi\)
0.244349 + 0.969687i \(0.421426\pi\)
\(812\) −695.722 505.472i −0.856801 0.622502i
\(813\) −34.8791 + 152.179i −0.0429017 + 0.187182i
\(814\) −296.495 + 215.417i −0.364245 + 0.264640i
\(815\) −85.5649 + 115.342i −0.104988 + 0.141524i
\(816\) −119.623 + 521.921i −0.146597 + 0.639609i
\(817\) −173.357 + 56.3269i −0.212187 + 0.0689436i
\(818\) 188.200 0.230073
\(819\) −215.578 104.299i −0.263220 0.127349i
\(820\) 231.444 + 325.305i 0.282248 + 0.396714i
\(821\) 663.159 + 215.474i 0.807746 + 0.262453i 0.683643 0.729817i \(-0.260395\pi\)
0.124103 + 0.992269i \(0.460395\pi\)
\(822\) −245.170 + 21.8416i −0.298260 + 0.0265713i
\(823\) 568.322 + 782.228i 0.690549 + 0.950459i 1.00000 0.000456023i \(-0.000145157\pi\)
−0.309451 + 0.950915i \(0.600145\pi\)
\(824\) 41.9253i 0.0508802i
\(825\) 833.934 + 995.535i 1.01083 + 1.20671i
\(826\) −721.319 −0.873268
\(827\) 527.867 383.518i 0.638291 0.463746i −0.220971 0.975280i \(-0.570923\pi\)
0.859263 + 0.511535i \(0.170923\pi\)
\(828\) 15.7321 + 29.3626i 0.0190001 + 0.0354620i
\(829\) 288.910 889.173i 0.348504 1.07258i −0.611177 0.791494i \(-0.709304\pi\)
0.959681 0.281091i \(-0.0906962\pi\)
\(830\) 3.03207 + 2.24931i 0.00365310 + 0.00271001i
\(831\) 547.482 + 627.791i 0.658823 + 0.755464i
\(832\) 15.8186i 0.0190127i
\(833\) −318.152 979.173i −0.381936 1.17548i
\(834\) 110.125 480.482i 0.132045 0.576117i
\(835\) 263.255 + 838.480i 0.315275 + 1.00417i
\(836\) 120.259 + 165.522i 0.143851 + 0.197993i
\(837\) −331.940 505.855i −0.396584 0.604367i
\(838\) 271.794 374.092i 0.324336 0.446410i
\(839\) 420.161 + 578.302i 0.500788 + 0.689275i 0.982332 0.187147i \(-0.0599240\pi\)
−0.481544 + 0.876422i \(0.659924\pi\)
\(840\) −829.111 + 343.793i −0.987037 + 0.409278i
\(841\) −101.383 73.6593i −0.120551 0.0875854i
\(842\) 206.267 + 634.825i 0.244973 + 0.753948i
\(843\) −33.8890 + 14.4485i −0.0402004 + 0.0171394i
\(844\) 150.699 + 463.802i 0.178553 + 0.549529i
\(845\) −241.988 770.743i −0.286376 0.912122i
\(846\) 127.033 + 237.097i 0.150158 + 0.280256i
\(847\) −1660.01 539.371i −1.95987 0.636802i
\(848\) −190.870 + 138.675i −0.225083 + 0.163532i
\(849\) 141.104 60.1596i 0.166200 0.0708594i
\(850\) 372.789 + 282.336i 0.438575 + 0.332160i
\(851\) 28.2978i 0.0332524i
\(852\) −237.569 + 396.805i −0.278836 + 0.465734i
\(853\) 401.645 + 130.502i 0.470862 + 0.152992i 0.534830 0.844960i \(-0.320376\pi\)
−0.0639683 + 0.997952i \(0.520376\pi\)
\(854\) 640.641 + 208.157i 0.750165 + 0.243744i
\(855\) −74.8278 143.057i −0.0875179 0.167318i
\(856\) 222.586 + 685.051i 0.260031 + 0.800293i
\(857\) 255.925 0.298629 0.149314 0.988790i \(-0.452293\pi\)
0.149314 + 0.988790i \(0.452293\pi\)
\(858\) −89.7170 + 78.2401i −0.104565 + 0.0911889i
\(859\) −311.375 226.227i −0.362486 0.263361i 0.391603 0.920134i \(-0.371921\pi\)
−0.754088 + 0.656773i \(0.771921\pi\)
\(860\) 793.090 + 266.433i 0.922197 + 0.309806i
\(861\) 609.084 + 364.661i 0.707415 + 0.423531i
\(862\) 290.588 399.960i 0.337109 0.463990i
\(863\) −351.174 255.143i −0.406923 0.295647i 0.365432 0.930838i \(-0.380921\pi\)
−0.772355 + 0.635191i \(0.780921\pi\)
\(864\) 814.326 222.358i 0.942507 0.257359i
\(865\) −179.166 + 127.471i −0.207128 + 0.147365i
\(866\) −38.7397 + 53.3206i −0.0447341 + 0.0615711i
\(867\) 466.251 406.606i 0.537775 0.468981i
\(868\) 720.342i 0.829887i
\(869\) −2393.03 + 777.543i −2.75378 + 0.894756i
\(870\) 311.582 129.198i 0.358141 0.148504i
\(871\) 60.8826 187.377i 0.0698996 0.215129i
\(872\) −184.159 + 566.785i −0.211192 + 0.649982i
\(873\) 1088.39 + 149.442i 1.24673 + 0.171183i
\(874\) 3.38912 0.00387771
\(875\) 36.3713 1219.51i 0.0415672 1.39372i
\(876\) −444.614 + 189.561i −0.507550 + 0.216393i
\(877\) 167.096 + 229.987i 0.190531 + 0.262243i 0.893586 0.448892i \(-0.148181\pi\)
−0.703055 + 0.711135i \(0.748181\pi\)
\(878\) 209.189 643.818i 0.238256 0.733278i
\(879\) −1077.47 + 95.9898i −1.22579 + 0.109203i
\(880\) 6.90126 694.368i 0.00784234 0.789054i
\(881\) −1603.94 + 521.152i −1.82059 + 0.591547i −0.820800 + 0.571216i \(0.806472\pi\)
−0.999793 + 0.0203304i \(0.993528\pi\)
\(882\) −242.332 + 252.542i −0.274753 + 0.286328i
\(883\) 1296.69 421.319i 1.46850 0.477145i 0.537846 0.843043i \(-0.319238\pi\)
0.930655 + 0.365898i \(0.119238\pi\)
\(884\) 117.444 161.647i 0.132855 0.182859i
\(885\) −688.648 + 1124.72i −0.778133 + 1.27087i
\(886\) −408.594 + 296.861i −0.461167 + 0.335058i
\(887\) −9.80606 7.12452i −0.0110553 0.00803215i 0.582244 0.813014i \(-0.302175\pi\)
−0.593299 + 0.804982i \(0.702175\pi\)
\(888\) −451.398 103.459i −0.508332 0.116508i
\(889\) −26.1564 + 19.0037i −0.0294222 + 0.0213765i
\(890\) −142.326 47.8134i −0.159917 0.0537230i
\(891\) −1167.73 776.906i −1.31058 0.871948i
\(892\) −180.002 + 58.4862i −0.201796 + 0.0655675i
\(893\) −127.562 −0.142847
\(894\) −230.181 263.946i −0.257473 0.295241i
\(895\) −1448.89 486.747i −1.61888 0.543851i
\(896\) 1206.14 + 391.900i 1.34614 + 0.437389i
\(897\) −0.815622 9.15525i −0.000909277 0.0102065i
\(898\) 79.2042 + 109.015i 0.0882007 + 0.121398i
\(899\) 599.489i 0.666839i
\(900\) −115.373 + 731.988i −0.128192 + 0.813321i
\(901\) 654.595 0.726521
\(902\) 285.481 207.414i 0.316498 0.229949i
\(903\) 1481.82 132.012i 1.64099 0.146192i
\(904\) 273.517 841.799i 0.302563 0.931193i
\(905\) 210.714 + 671.136i 0.232834 + 0.741586i
\(906\) −118.257 + 103.129i −0.130526 + 0.113829i
\(907\) 1370.88i 1.51144i 0.654895 + 0.755720i \(0.272713\pi\)
−0.654895 + 0.755720i \(0.727287\pi\)
\(908\) −307.761 947.192i −0.338944 1.04316i
\(909\) 45.8359 + 255.209i 0.0504246 + 0.280758i
\(910\) 111.829 + 1.11146i 0.122889 + 0.00122138i
\(911\) 435.625 + 599.587i 0.478184 + 0.658164i 0.978155 0.207879i \(-0.0666559\pi\)
−0.499971 + 0.866042i \(0.666656\pi\)
\(912\) −19.2854 + 84.1434i −0.0211463 + 0.0922625i
\(913\) −9.14246 + 12.5835i −0.0100136 + 0.0137826i
\(914\) 259.700 + 357.447i 0.284136 + 0.391080i
\(915\) 936.193 800.192i 1.02316 0.874527i
\(916\) 697.434 + 506.715i 0.761391 + 0.553183i
\(917\) 473.633 + 1457.69i 0.516503 + 1.58963i
\(918\) −472.360 178.747i −0.514553 0.194713i
\(919\) −41.9839 129.213i −0.0456843 0.140602i 0.925613 0.378473i \(-0.123551\pi\)
−0.971297 + 0.237871i \(0.923551\pi\)
\(920\) −27.6673 20.5246i −0.0300731 0.0223094i
\(921\) 37.8145 + 424.462i 0.0410580 + 0.460871i
\(922\) 573.079 + 186.205i 0.621561 + 0.201957i
\(923\) 103.240 75.0083i 0.111853 0.0812658i
\(924\) −654.898 1536.06i −0.708765 1.66241i
\(925\) 380.055 501.815i 0.410871 0.542503i
\(926\) 498.652i 0.538501i
\(927\) −60.9757 8.37233i −0.0657775 0.00903164i
\(928\) −795.457 258.460i −0.857173 0.278513i
\(929\) −1427.52 463.830i −1.53662 0.499279i −0.586181 0.810180i \(-0.699369\pi\)
−0.950442 + 0.310901i \(0.899369\pi\)
\(930\) 240.963 + 147.538i 0.259100 + 0.158643i
\(931\) −51.2921 157.861i −0.0550936 0.169561i
\(932\) 280.900 0.301395
\(933\) 130.816 + 150.005i 0.140210 + 0.160778i
\(934\) 130.509 + 94.8205i 0.139732 + 0.101521i
\(935\) −1147.89 + 1547.36i −1.22769 + 1.65493i
\(936\) −149.024 20.4619i −0.159214 0.0218610i
\(937\) 828.513 1140.35i 0.884219 1.21702i −0.0910157 0.995849i \(-0.529011\pi\)
0.975235 0.221173i \(-0.0709886\pi\)
\(938\) −479.673 348.503i −0.511379 0.371538i
\(939\) 62.8390 104.959i 0.0669212 0.111777i
\(940\) 470.240 + 348.842i 0.500255 + 0.371109i
\(941\) 746.258 1027.14i 0.793048 1.09154i −0.200674 0.979658i \(-0.564313\pi\)
0.993722 0.111879i \(-0.0356868\pi\)
\(942\) −312.704 358.575i −0.331958 0.380652i
\(943\) 27.2465i 0.0288935i
\(944\) 670.652 217.908i 0.710436 0.230835i
\(945\) 334.439 + 1274.50i 0.353904 + 1.34868i
\(946\) 228.515 703.296i 0.241559 0.743442i
\(947\) 422.962 1301.74i 0.446633 1.37460i −0.434050 0.900889i \(-0.642916\pi\)
0.880683 0.473706i \(-0.157084\pi\)
\(948\) −1231.84 737.509i −1.29941 0.777963i
\(949\) 133.365 0.140532
\(950\) 60.1006 + 45.5178i 0.0632637 + 0.0479135i
\(951\) 49.8443 + 116.910i 0.0524126 + 0.122933i
\(952\) −782.688 1077.28i −0.822151 1.13159i
\(953\) 224.887 692.131i 0.235978 0.726265i −0.761012 0.648737i \(-0.775297\pi\)
0.996990 0.0775277i \(-0.0247026\pi\)
\(954\) −105.095 196.151i −0.110163 0.205609i
\(955\) 9.38681 12.6534i 0.00982912 0.0132497i
\(956\) −185.247 + 60.1902i −0.193772 + 0.0629605i
\(957\) 545.025 + 1278.35i 0.569514 + 1.33579i
\(958\) −231.961 + 75.3687i −0.242130 + 0.0786730i
\(959\) −559.983 + 770.751i −0.583924 + 0.803703i
\(960\) 66.1610 56.5497i 0.0689177 0.0589059i
\(961\) 371.210 269.700i 0.386275 0.280645i
\(962\) 46.6815 + 33.9161i 0.0485255 + 0.0352558i
\(963\) 1040.78 186.925i 1.08077 0.194107i
\(964\) −665.734 + 483.684i −0.690595 + 0.501747i
\(965\) −4.09860 + 412.379i −0.00424726 + 0.427336i
\(966\) −26.9616 6.17954i −0.0279106 0.00639703i
\(967\) 404.806 131.529i 0.418620 0.136018i −0.0921302 0.995747i \(-0.529368\pi\)
0.510750 + 0.859729i \(0.329368\pi\)
\(968\) −1096.34 −1.13258
\(969\) 180.513 157.422i 0.186288 0.162458i
\(970\) −489.471 + 153.678i −0.504609 + 0.158430i
\(971\) 671.700 + 218.249i 0.691762 + 0.224767i 0.633737 0.773548i \(-0.281520\pi\)
0.0580241 + 0.998315i \(0.481520\pi\)
\(972\) −103.832 793.543i −0.106823 0.816402i
\(973\) −1121.47 1543.57i −1.15259 1.58640i
\(974\) 638.382i 0.655423i
\(975\) 108.497 173.308i 0.111278 0.177752i
\(976\) −658.525 −0.674718
\(977\) 518.731 376.880i 0.530942 0.385752i −0.289768 0.957097i \(-0.593578\pi\)
0.820710 + 0.571345i \(0.193578\pi\)
\(978\) 6.42724 + 72.1449i 0.00657182 + 0.0737678i
\(979\) 191.152 588.306i 0.195253 0.600926i
\(980\) −242.618 + 722.199i −0.247569 + 0.736938i
\(981\) 787.550 + 381.024i 0.802803 + 0.388404i
\(982\) 150.766i 0.153529i
\(983\) 245.476 + 755.499i 0.249722 + 0.768564i 0.994824 + 0.101614i \(0.0324007\pi\)
−0.745102 + 0.666950i \(0.767599\pi\)
\(984\) 434.630 + 99.6159i 0.441697 + 0.101236i
\(985\) 331.546 986.911i 0.336595 1.00194i
\(986\) 294.136 + 404.844i 0.298313 + 0.410592i
\(987\) 1014.80 + 232.590i 1.02817 + 0.235654i
\(988\) 18.9341 26.0606i 0.0191641 0.0263771i
\(989\) 33.5616 + 46.1935i 0.0339349 + 0.0467073i
\(990\) 647.966 + 95.5400i 0.654511 + 0.0965050i
\(991\) 369.744 + 268.634i 0.373101 + 0.271074i 0.758496 0.651678i \(-0.225935\pi\)
−0.385394 + 0.922752i \(0.625935\pi\)
\(992\) −216.497 666.311i −0.218243 0.671684i
\(993\) 246.476 + 578.108i 0.248213 + 0.582183i
\(994\) −118.673 365.237i −0.119389 0.367441i
\(995\) 647.880 + 6.43923i 0.651136 + 0.00647159i
\(996\) −8.84021 + 0.787556i −0.00887571 + 0.000790718i
\(997\) 1399.79 + 454.820i 1.40400 + 0.456188i 0.910483 0.413546i \(-0.135710\pi\)
0.493520 + 0.869735i \(0.335710\pi\)
\(998\) 257.916 187.387i 0.258432 0.187762i
\(999\) −240.613 + 635.849i −0.240854 + 0.636486i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.h.a.14.11 yes 72
3.2 odd 2 inner 75.3.h.a.14.8 72
5.2 odd 4 375.3.j.b.176.21 144
5.3 odd 4 375.3.j.b.176.16 144
5.4 even 2 375.3.h.a.74.8 72
15.2 even 4 375.3.j.b.176.15 144
15.8 even 4 375.3.j.b.176.22 144
15.14 odd 2 375.3.h.a.74.11 72
25.9 even 10 inner 75.3.h.a.59.8 yes 72
25.12 odd 20 375.3.j.b.326.15 144
25.13 odd 20 375.3.j.b.326.22 144
25.16 even 5 375.3.h.a.299.11 72
75.38 even 20 375.3.j.b.326.16 144
75.41 odd 10 375.3.h.a.299.8 72
75.59 odd 10 inner 75.3.h.a.59.11 yes 72
75.62 even 20 375.3.j.b.326.21 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.h.a.14.8 72 3.2 odd 2 inner
75.3.h.a.14.11 yes 72 1.1 even 1 trivial
75.3.h.a.59.8 yes 72 25.9 even 10 inner
75.3.h.a.59.11 yes 72 75.59 odd 10 inner
375.3.h.a.74.8 72 5.4 even 2
375.3.h.a.74.11 72 15.14 odd 2
375.3.h.a.299.8 72 75.41 odd 10
375.3.h.a.299.11 72 25.16 even 5
375.3.j.b.176.15 144 15.2 even 4
375.3.j.b.176.16 144 5.3 odd 4
375.3.j.b.176.21 144 5.2 odd 4
375.3.j.b.176.22 144 15.8 even 4
375.3.j.b.326.15 144 25.12 odd 20
375.3.j.b.326.16 144 75.38 even 20
375.3.j.b.326.21 144 75.62 even 20
375.3.j.b.326.22 144 25.13 odd 20