Properties

Label 75.3.h.a.14.1
Level $75$
Weight $3$
Character 75.14
Analytic conductor $2.044$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(14,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 14.1
Character \(\chi\) \(=\) 75.14
Dual form 75.3.h.a.59.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.91455 + 2.11754i) q^{2} +(0.529130 - 2.95297i) q^{3} +(2.77453 - 8.53912i) q^{4} +(-2.30619 + 4.43638i) q^{5} +(4.71086 + 9.72702i) q^{6} +9.61929i q^{7} +(5.54243 + 17.0578i) q^{8} +(-8.44004 - 3.12501i) q^{9} +(-2.67273 - 17.8135i) q^{10} +(1.54093 + 2.12091i) q^{11} +(-23.7477 - 12.7114i) q^{12} +(-11.1781 + 15.3854i) q^{13} +(-20.3692 - 28.0359i) q^{14} +(11.8802 + 9.15753i) q^{15} +(-23.2191 - 16.8697i) q^{16} +(0.622226 + 1.91502i) q^{17} +(31.2162 - 8.76416i) q^{18} +(4.29962 + 13.2329i) q^{19} +(31.4842 + 32.0017i) q^{20} +(28.4055 + 5.08986i) q^{21} +(-8.98221 - 2.91850i) q^{22} +(-4.75610 + 3.45551i) q^{23} +(53.3039 - 7.34080i) q^{24} +(-14.3630 - 20.4623i) q^{25} -68.5115i q^{26} +(-13.6939 + 23.2696i) q^{27} +(82.1403 + 26.6890i) q^{28} +(23.5609 + 7.65541i) q^{29} +(-54.0169 - 1.53316i) q^{30} +(-4.27699 - 13.1632i) q^{31} +31.6527 q^{32} +(7.07832 - 3.42808i) q^{33} +(-5.86863 - 4.26381i) q^{34} +(-42.6748 - 22.1839i) q^{35} +(-50.1020 + 63.4001i) q^{36} +(34.1022 - 46.9377i) q^{37} +(-40.5526 - 29.4632i) q^{38} +(39.5178 + 41.1495i) q^{39} +(-88.4570 - 14.7503i) q^{40} +(-11.5675 + 15.9213i) q^{41} +(-93.5670 + 45.3151i) q^{42} -12.7377i q^{43} +(22.3860 - 7.27366i) q^{44} +(33.3281 - 30.2364i) q^{45} +(6.54469 - 20.1425i) q^{46} +(-4.86299 + 14.9667i) q^{47} +(-62.1015 + 59.6390i) q^{48} -43.5307 q^{49} +(85.1913 + 29.2240i) q^{50} +(5.98422 - 0.824122i) q^{51} +(100.363 + 138.138i) q^{52} +(15.7029 - 48.3285i) q^{53} +(-9.36283 - 96.8179i) q^{54} +(-12.9628 + 1.94494i) q^{55} +(-164.084 + 53.3142i) q^{56} +(41.3513 - 5.69473i) q^{57} +(-84.8800 + 27.5792i) q^{58} +(-32.8435 + 45.2053i) q^{59} +(111.159 - 76.0389i) q^{60} +(3.13551 - 2.27808i) q^{61} +(40.3392 + 29.3081i) q^{62} +(30.0604 - 81.1872i) q^{63} +(0.623150 - 0.452745i) q^{64} +(-42.4765 - 85.0720i) q^{65} +(-13.3710 + 24.9799i) q^{66} +(-60.1212 + 19.5346i) q^{67} +18.0789 q^{68} +(7.68741 + 15.8730i) q^{69} +(171.353 - 25.7098i) q^{70} +(74.3554 + 24.1595i) q^{71} +(6.52758 - 161.289i) q^{72} +(48.7077 + 67.0405i) q^{73} +209.015i q^{74} +(-68.0243 + 31.5862i) q^{75} +124.926 q^{76} +(-20.4016 + 14.8226i) q^{77} +(-202.312 - 36.2515i) q^{78} +(-32.2869 + 99.3689i) q^{79} +(128.388 - 64.1042i) q^{80} +(61.4686 + 52.7504i) q^{81} -70.8982i q^{82} +(-34.6732 - 106.713i) q^{83} +(122.275 - 228.436i) q^{84} +(-9.93071 - 1.65595i) q^{85} +(26.9727 + 37.1247i) q^{86} +(35.0730 - 65.5239i) q^{87} +(-27.6376 + 38.0399i) q^{88} +(15.7364 + 21.6593i) q^{89} +(-33.1094 + 158.699i) q^{90} +(-147.996 - 107.526i) q^{91} +(16.3111 + 50.2004i) q^{92} +(-41.1337 + 5.66476i) q^{93} +(-17.5193 - 53.9188i) q^{94} +(-68.6218 - 11.4427i) q^{95} +(16.7484 - 93.4694i) q^{96} +(-45.8531 - 14.8986i) q^{97} +(126.872 - 92.1781i) q^{98} +(-6.37765 - 22.7160i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 5 q^{3} - 38 q^{4} + 5 q^{6} - 13 q^{9} - 20 q^{10} - 45 q^{12} - 10 q^{13} - 15 q^{15} + 22 q^{16} - 36 q^{19} + 54 q^{21} - 50 q^{22} - 20 q^{24} - 100 q^{25} + 100 q^{27} + 270 q^{28} - 5 q^{30}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.91455 + 2.11754i −1.45727 + 1.05877i −0.473211 + 0.880949i \(0.656905\pi\)
−0.984063 + 0.177822i \(0.943095\pi\)
\(3\) 0.529130 2.95297i 0.176377 0.984323i
\(4\) 2.77453 8.53912i 0.693632 2.13478i
\(5\) −2.30619 + 4.43638i −0.461238 + 0.887277i
\(6\) 4.71086 + 9.72702i 0.785143 + 1.62117i
\(7\) 9.61929i 1.37418i 0.726570 + 0.687092i \(0.241113\pi\)
−0.726570 + 0.687092i \(0.758887\pi\)
\(8\) 5.54243 + 17.0578i 0.692803 + 2.13223i
\(9\) −8.44004 3.12501i −0.937782 0.347223i
\(10\) −2.67273 17.8135i −0.267273 1.78135i
\(11\) 1.54093 + 2.12091i 0.140084 + 0.192810i 0.873295 0.487192i \(-0.161979\pi\)
−0.733210 + 0.680002i \(0.761979\pi\)
\(12\) −23.7477 12.7114i −1.97897 1.05928i
\(13\) −11.1781 + 15.3854i −0.859855 + 1.18349i 0.121749 + 0.992561i \(0.461150\pi\)
−0.981604 + 0.190928i \(0.938850\pi\)
\(14\) −20.3692 28.0359i −1.45495 2.00256i
\(15\) 11.8802 + 9.15753i 0.792015 + 0.610502i
\(16\) −23.2191 16.8697i −1.45119 1.05435i
\(17\) 0.622226 + 1.91502i 0.0366015 + 0.112648i 0.967688 0.252151i \(-0.0811378\pi\)
−0.931086 + 0.364799i \(0.881138\pi\)
\(18\) 31.2162 8.76416i 1.73424 0.486898i
\(19\) 4.29962 + 13.2329i 0.226296 + 0.696466i 0.998158 + 0.0606761i \(0.0193257\pi\)
−0.771862 + 0.635790i \(0.780674\pi\)
\(20\) 31.4842 + 32.0017i 1.57421 + 1.60009i
\(21\) 28.4055 + 5.08986i 1.35264 + 0.242374i
\(22\) −8.98221 2.91850i −0.408282 0.132659i
\(23\) −4.75610 + 3.45551i −0.206787 + 0.150240i −0.686359 0.727263i \(-0.740792\pi\)
0.479572 + 0.877503i \(0.340792\pi\)
\(24\) 53.3039 7.34080i 2.22100 0.305866i
\(25\) −14.3630 20.4623i −0.574519 0.818491i
\(26\) 68.5115i 2.63506i
\(27\) −13.6939 + 23.2696i −0.507183 + 0.861839i
\(28\) 82.1403 + 26.6890i 2.93358 + 0.953179i
\(29\) 23.5609 + 7.65541i 0.812445 + 0.263980i 0.685633 0.727947i \(-0.259525\pi\)
0.126812 + 0.991927i \(0.459525\pi\)
\(30\) −54.0169 1.53316i −1.80056 0.0511054i
\(31\) −4.27699 13.1632i −0.137967 0.424620i 0.858072 0.513529i \(-0.171662\pi\)
−0.996040 + 0.0889087i \(0.971662\pi\)
\(32\) 31.6527 0.989147
\(33\) 7.07832 3.42808i 0.214495 0.103881i
\(34\) −5.86863 4.26381i −0.172607 0.125406i
\(35\) −42.6748 22.1839i −1.21928 0.633826i
\(36\) −50.1020 + 63.4001i −1.39172 + 1.76112i
\(37\) 34.1022 46.9377i 0.921682 1.26859i −0.0413355 0.999145i \(-0.513161\pi\)
0.963017 0.269441i \(-0.0868388\pi\)
\(38\) −40.5526 29.4632i −1.06717 0.775347i
\(39\) 39.5178 + 41.1495i 1.01328 + 1.05511i
\(40\) −88.4570 14.7503i −2.21142 0.368757i
\(41\) −11.5675 + 15.9213i −0.282135 + 0.388325i −0.926439 0.376444i \(-0.877147\pi\)
0.644305 + 0.764769i \(0.277147\pi\)
\(42\) −93.5670 + 45.3151i −2.22779 + 1.07893i
\(43\) 12.7377i 0.296226i −0.988970 0.148113i \(-0.952680\pi\)
0.988970 0.148113i \(-0.0473200\pi\)
\(44\) 22.3860 7.27366i 0.508773 0.165311i
\(45\) 33.3281 30.2364i 0.740624 0.671920i
\(46\) 6.54469 20.1425i 0.142276 0.437880i
\(47\) −4.86299 + 14.9667i −0.103468 + 0.318441i −0.989368 0.145435i \(-0.953542\pi\)
0.885900 + 0.463876i \(0.153542\pi\)
\(48\) −62.1015 + 59.6390i −1.29378 + 1.24248i
\(49\) −43.5307 −0.888382
\(50\) 85.1913 + 29.2240i 1.70383 + 0.584480i
\(51\) 5.98422 0.824122i 0.117338 0.0161592i
\(52\) 100.363 + 138.138i 1.93007 + 2.65651i
\(53\) 15.7029 48.3285i 0.296281 0.911859i −0.686507 0.727123i \(-0.740857\pi\)
0.982788 0.184736i \(-0.0591430\pi\)
\(54\) −9.36283 96.8179i −0.173386 1.79292i
\(55\) −12.9628 + 1.94494i −0.235688 + 0.0353625i
\(56\) −164.084 + 53.3142i −2.93008 + 0.952039i
\(57\) 41.3513 5.69473i 0.725461 0.0999075i
\(58\) −84.8800 + 27.5792i −1.46345 + 0.475503i
\(59\) −32.8435 + 45.2053i −0.556670 + 0.766191i −0.990898 0.134612i \(-0.957021\pi\)
0.434228 + 0.900803i \(0.357021\pi\)
\(60\) 111.159 76.0389i 1.85265 1.26731i
\(61\) 3.13551 2.27808i 0.0514018 0.0373456i −0.561788 0.827281i \(-0.689886\pi\)
0.613190 + 0.789936i \(0.289886\pi\)
\(62\) 40.3392 + 29.3081i 0.650632 + 0.472712i
\(63\) 30.0604 81.1872i 0.477149 1.28869i
\(64\) 0.623150 0.452745i 0.00973672 0.00707414i
\(65\) −42.4765 85.0720i −0.653485 1.30880i
\(66\) −13.3710 + 24.9799i −0.202591 + 0.378484i
\(67\) −60.1212 + 19.5346i −0.897331 + 0.291560i −0.721135 0.692795i \(-0.756379\pi\)
−0.176196 + 0.984355i \(0.556379\pi\)
\(68\) 18.0789 0.265867
\(69\) 7.68741 + 15.8730i 0.111412 + 0.230044i
\(70\) 171.353 25.7098i 2.44790 0.367283i
\(71\) 74.3554 + 24.1595i 1.04726 + 0.340275i 0.781592 0.623789i \(-0.214408\pi\)
0.265667 + 0.964065i \(0.414408\pi\)
\(72\) 6.52758 161.289i 0.0906608 2.24013i
\(73\) 48.7077 + 67.0405i 0.667229 + 0.918362i 0.999694 0.0247534i \(-0.00788007\pi\)
−0.332464 + 0.943116i \(0.607880\pi\)
\(74\) 209.015i 2.82453i
\(75\) −68.0243 + 31.5862i −0.906991 + 0.421150i
\(76\) 124.926 1.64377
\(77\) −20.4016 + 14.8226i −0.264956 + 0.192502i
\(78\) −202.312 36.2515i −2.59375 0.464763i
\(79\) −32.2869 + 99.3689i −0.408695 + 1.25783i 0.509075 + 0.860722i \(0.329988\pi\)
−0.917770 + 0.397112i \(0.870012\pi\)
\(80\) 128.388 64.1042i 1.60485 0.801303i
\(81\) 61.4686 + 52.7504i 0.758872 + 0.651240i
\(82\) 70.8982i 0.864612i
\(83\) −34.6732 106.713i −0.417749 1.28570i −0.909769 0.415115i \(-0.863741\pi\)
0.492020 0.870584i \(-0.336259\pi\)
\(84\) 122.275 228.436i 1.45565 2.71947i
\(85\) −9.93071 1.65595i −0.116832 0.0194818i
\(86\) 26.9727 + 37.1247i 0.313636 + 0.431683i
\(87\) 35.0730 65.5239i 0.403138 0.753149i
\(88\) −27.6376 + 38.0399i −0.314063 + 0.432271i
\(89\) 15.7364 + 21.6593i 0.176813 + 0.243363i 0.888221 0.459417i \(-0.151942\pi\)
−0.711407 + 0.702780i \(0.751942\pi\)
\(90\) −33.1094 + 158.699i −0.367882 + 1.76332i
\(91\) −147.996 107.526i −1.62633 1.18160i
\(92\) 16.3111 + 50.2004i 0.177294 + 0.545656i
\(93\) −41.1337 + 5.66476i −0.442297 + 0.0609114i
\(94\) −17.5193 53.9188i −0.186375 0.573605i
\(95\) −68.6218 11.4427i −0.722334 0.120450i
\(96\) 16.7484 93.4694i 0.174462 0.973640i
\(97\) −45.8531 14.8986i −0.472712 0.153593i 0.0629661 0.998016i \(-0.479944\pi\)
−0.535678 + 0.844422i \(0.679944\pi\)
\(98\) 126.872 92.1781i 1.29462 0.940593i
\(99\) −6.37765 22.7160i −0.0644207 0.229454i
\(100\) −214.580 + 65.8742i −2.14580 + 0.658742i
\(101\) 20.4266i 0.202244i 0.994874 + 0.101122i \(0.0322432\pi\)
−0.994874 + 0.101122i \(0.967757\pi\)
\(102\) −15.6962 + 15.0738i −0.153884 + 0.147782i
\(103\) 130.063 + 42.2602i 1.26275 + 0.410293i 0.862474 0.506101i \(-0.168914\pi\)
0.400278 + 0.916394i \(0.368914\pi\)
\(104\) −324.395 105.402i −3.11918 1.01348i
\(105\) −88.0889 + 114.279i −0.838942 + 1.08837i
\(106\) 56.5709 + 174.107i 0.533688 + 1.64252i
\(107\) −130.632 −1.22086 −0.610429 0.792071i \(-0.709003\pi\)
−0.610429 + 0.792071i \(0.709003\pi\)
\(108\) 160.708 + 181.497i 1.48804 + 1.68052i
\(109\) 134.451 + 97.6842i 1.23349 + 0.896185i 0.997147 0.0754837i \(-0.0240501\pi\)
0.236346 + 0.971669i \(0.424050\pi\)
\(110\) 33.6623 33.1179i 0.306021 0.301072i
\(111\) −120.561 125.539i −1.08613 1.13098i
\(112\) 162.274 223.351i 1.44888 1.99421i
\(113\) 167.682 + 121.828i 1.48391 + 1.07812i 0.976270 + 0.216555i \(0.0694821\pi\)
0.507640 + 0.861569i \(0.330518\pi\)
\(114\) −108.461 + 104.161i −0.951416 + 0.913690i
\(115\) −4.36150 29.0689i −0.0379261 0.252773i
\(116\) 130.741 179.949i 1.12708 1.55129i
\(117\) 142.423 94.9214i 1.21729 0.811294i
\(118\) 201.300i 1.70594i
\(119\) −18.4211 + 5.98537i −0.154799 + 0.0502972i
\(120\) −90.3623 + 253.406i −0.753019 + 2.11172i
\(121\) 35.2673 108.542i 0.291465 0.897037i
\(122\) −4.31466 + 13.2792i −0.0353661 + 0.108846i
\(123\) 40.8944 + 42.5830i 0.332475 + 0.346203i
\(124\) −124.269 −1.00217
\(125\) 123.902 16.5299i 0.991218 0.132239i
\(126\) 84.3050 + 300.278i 0.669087 + 2.38316i
\(127\) 0.760056 + 1.04613i 0.00598469 + 0.00823722i 0.811999 0.583659i \(-0.198380\pi\)
−0.806014 + 0.591896i \(0.798380\pi\)
\(128\) −39.9824 + 123.053i −0.312362 + 0.961352i
\(129\) −37.6141 6.73992i −0.291582 0.0522474i
\(130\) 303.943 + 158.000i 2.33802 + 1.21539i
\(131\) 169.449 55.0573i 1.29350 0.420285i 0.420187 0.907437i \(-0.361964\pi\)
0.873317 + 0.487152i \(0.161964\pi\)
\(132\) −9.63377 69.9539i −0.0729831 0.529954i
\(133\) −127.291 + 41.3593i −0.957073 + 0.310972i
\(134\) 133.861 184.243i 0.998961 1.37495i
\(135\) −71.6522 114.416i −0.530757 0.847524i
\(136\) −29.2174 + 21.2277i −0.214834 + 0.156086i
\(137\) 8.30822 + 6.03627i 0.0606439 + 0.0440604i 0.617694 0.786418i \(-0.288067\pi\)
−0.557050 + 0.830479i \(0.688067\pi\)
\(138\) −56.0171 29.9843i −0.405921 0.217277i
\(139\) −1.72900 + 1.25619i −0.0124389 + 0.00903736i −0.593987 0.804474i \(-0.702447\pi\)
0.581548 + 0.813512i \(0.302447\pi\)
\(140\) −307.834 + 302.856i −2.19881 + 2.16326i
\(141\) 41.6231 + 22.2796i 0.295200 + 0.158011i
\(142\) −267.871 + 87.0366i −1.88642 + 0.612934i
\(143\) −49.8556 −0.348640
\(144\) 143.252 + 214.941i 0.994808 + 1.49264i
\(145\) −88.2982 + 86.8704i −0.608953 + 0.599107i
\(146\) −283.922 92.2518i −1.94467 0.631862i
\(147\) −23.0334 + 128.545i −0.156690 + 0.874454i
\(148\) −306.189 421.433i −2.06884 2.84752i
\(149\) 88.6286i 0.594823i −0.954749 0.297411i \(-0.903877\pi\)
0.954749 0.297411i \(-0.0961233\pi\)
\(150\) 131.375 236.104i 0.875833 1.57403i
\(151\) 38.2237 0.253137 0.126569 0.991958i \(-0.459604\pi\)
0.126569 + 0.991958i \(0.459604\pi\)
\(152\) −201.894 + 146.684i −1.32825 + 0.965029i
\(153\) 0.732825 18.1073i 0.00478971 0.118348i
\(154\) 28.0739 86.4025i 0.182298 0.561055i
\(155\) 68.2606 + 11.3825i 0.440391 + 0.0734355i
\(156\) 461.024 223.277i 2.95528 1.43126i
\(157\) 24.0420i 0.153134i −0.997064 0.0765670i \(-0.975604\pi\)
0.997064 0.0765670i \(-0.0243959\pi\)
\(158\) −116.316 357.984i −0.736178 2.26572i
\(159\) −134.404 71.9422i −0.845306 0.452467i
\(160\) −72.9971 + 140.423i −0.456232 + 0.877647i
\(161\) −33.2395 45.7503i −0.206457 0.284163i
\(162\) −290.854 23.5811i −1.79540 0.145563i
\(163\) −127.234 + 175.122i −0.780576 + 1.07437i 0.214642 + 0.976693i \(0.431141\pi\)
−0.995218 + 0.0976777i \(0.968859\pi\)
\(164\) 103.860 + 142.951i 0.633291 + 0.871651i
\(165\) −1.11568 + 39.3079i −0.00676168 + 0.238230i
\(166\) 327.026 + 237.598i 1.97004 + 1.43132i
\(167\) 52.1758 + 160.581i 0.312430 + 0.961561i 0.976799 + 0.214157i \(0.0687003\pi\)
−0.664369 + 0.747405i \(0.731300\pi\)
\(168\) 70.6132 + 512.746i 0.420317 + 3.05206i
\(169\) −59.5351 183.230i −0.352279 1.08420i
\(170\) 32.4501 16.2023i 0.190883 0.0953079i
\(171\) 5.06386 125.122i 0.0296132 0.731709i
\(172\) −108.769 35.3412i −0.632378 0.205472i
\(173\) 37.1446 26.9871i 0.214709 0.155995i −0.475233 0.879860i \(-0.657636\pi\)
0.689942 + 0.723865i \(0.257636\pi\)
\(174\) 36.5279 + 265.241i 0.209930 + 1.52437i
\(175\) 196.832 138.162i 1.12476 0.789496i
\(176\) 75.2405i 0.427503i
\(177\) 116.111 + 120.905i 0.655995 + 0.683081i
\(178\) −91.7289 29.8045i −0.515331 0.167441i
\(179\) −63.4653 20.6211i −0.354555 0.115202i 0.126324 0.991989i \(-0.459682\pi\)
−0.480878 + 0.876787i \(0.659682\pi\)
\(180\) −165.723 368.484i −0.920681 2.04714i
\(181\) −27.4507 84.4846i −0.151661 0.466766i 0.846146 0.532951i \(-0.178917\pi\)
−0.997807 + 0.0661856i \(0.978917\pi\)
\(182\) 659.032 3.62105
\(183\) −5.06801 10.4645i −0.0276941 0.0571829i
\(184\) −85.3039 61.9769i −0.463608 0.336831i
\(185\) 129.587 + 259.538i 0.700472 + 1.40291i
\(186\) 107.891 103.612i 0.580057 0.557056i
\(187\) −3.10276 + 4.27058i −0.0165923 + 0.0228373i
\(188\) 114.310 + 83.0513i 0.608034 + 0.441762i
\(189\) −223.837 131.726i −1.18432 0.696962i
\(190\) 224.232 111.959i 1.18017 0.589259i
\(191\) −155.312 + 213.768i −0.813151 + 1.11921i 0.177679 + 0.984089i \(0.443141\pi\)
−0.990830 + 0.135118i \(0.956859\pi\)
\(192\) −1.00721 2.07970i −0.00524591 0.0108318i
\(193\) 217.844i 1.12872i −0.825527 0.564362i \(-0.809122\pi\)
0.825527 0.564362i \(-0.190878\pi\)
\(194\) 165.189 53.6732i 0.851491 0.276666i
\(195\) −273.690 + 80.4176i −1.40354 + 0.412398i
\(196\) −120.777 + 371.714i −0.616210 + 1.89650i
\(197\) 106.780 328.635i 0.542031 1.66820i −0.185916 0.982566i \(-0.559525\pi\)
0.727947 0.685633i \(-0.240475\pi\)
\(198\) 66.6899 + 52.7018i 0.336818 + 0.266170i
\(199\) 120.507 0.605564 0.302782 0.953060i \(-0.402085\pi\)
0.302782 + 0.953060i \(0.402085\pi\)
\(200\) 269.436 358.412i 1.34718 1.79206i
\(201\) 25.8730 + 187.872i 0.128721 + 0.934688i
\(202\) −43.2543 59.5344i −0.214130 0.294725i
\(203\) −73.6396 + 226.639i −0.362756 + 1.11645i
\(204\) 9.56611 53.3865i 0.0468927 0.261699i
\(205\) −43.9562 88.0355i −0.214421 0.429442i
\(206\) −468.564 + 152.246i −2.27458 + 0.739056i
\(207\) 50.9402 14.3018i 0.246088 0.0690908i
\(208\) 519.092 168.663i 2.49563 0.810880i
\(209\) −21.4403 + 29.5100i −0.102585 + 0.141196i
\(210\) 14.7479 519.604i 0.0702283 2.47431i
\(211\) 8.98786 6.53006i 0.0425965 0.0309482i −0.566283 0.824211i \(-0.691619\pi\)
0.608880 + 0.793263i \(0.291619\pi\)
\(212\) −369.115 268.178i −1.74111 1.26499i
\(213\) 110.686 206.786i 0.519653 0.970825i
\(214\) 380.733 276.618i 1.77912 1.29261i
\(215\) 56.5094 + 29.3756i 0.262835 + 0.136631i
\(216\) −472.827 104.619i −2.18902 0.484345i
\(217\) 126.621 41.1416i 0.583506 0.189593i
\(218\) −598.713 −2.74639
\(219\) 223.741 108.359i 1.02165 0.494791i
\(220\) −19.3577 + 116.087i −0.0879894 + 0.527670i
\(221\) −36.4185 11.8331i −0.164790 0.0535434i
\(222\) 617.214 + 110.596i 2.78025 + 0.498181i
\(223\) 252.876 + 348.053i 1.13397 + 1.56078i 0.780297 + 0.625409i \(0.215068\pi\)
0.353675 + 0.935368i \(0.384932\pi\)
\(224\) 304.476i 1.35927i
\(225\) 57.2794 + 217.587i 0.254575 + 0.967053i
\(226\) −746.693 −3.30395
\(227\) 99.6999 72.4362i 0.439207 0.319102i −0.346113 0.938193i \(-0.612499\pi\)
0.785320 + 0.619090i \(0.212499\pi\)
\(228\) 66.1024 368.904i 0.289923 1.61800i
\(229\) −83.9328 + 258.319i −0.366519 + 1.12803i 0.582506 + 0.812827i \(0.302072\pi\)
−0.949025 + 0.315202i \(0.897928\pi\)
\(230\) 74.2665 + 75.4871i 0.322898 + 0.328205i
\(231\) 32.9757 + 68.0884i 0.142752 + 0.294755i
\(232\) 444.328i 1.91521i
\(233\) 90.9554 + 279.932i 0.390367 + 1.20142i 0.932512 + 0.361140i \(0.117612\pi\)
−0.542145 + 0.840285i \(0.682388\pi\)
\(234\) −214.099 + 578.240i −0.914953 + 2.47111i
\(235\) −55.1832 56.0902i −0.234822 0.238682i
\(236\) 294.888 + 405.878i 1.24953 + 1.71982i
\(237\) 276.349 + 147.921i 1.16603 + 0.624141i
\(238\) 41.0148 56.4521i 0.172331 0.237194i
\(239\) 27.6341 + 38.0351i 0.115624 + 0.159143i 0.862906 0.505364i \(-0.168642\pi\)
−0.747282 + 0.664507i \(0.768642\pi\)
\(240\) −121.364 413.045i −0.505682 1.72102i
\(241\) −82.7901 60.1506i −0.343528 0.249587i 0.402621 0.915367i \(-0.368099\pi\)
−0.746149 + 0.665779i \(0.768099\pi\)
\(242\) 127.053 + 391.029i 0.525013 + 1.61582i
\(243\) 188.295 153.603i 0.774877 0.632111i
\(244\) −10.7533 33.0951i −0.0440708 0.135636i
\(245\) 100.390 193.119i 0.409755 0.788240i
\(246\) −209.360 37.5144i −0.851057 0.152497i
\(247\) −251.654 81.7673i −1.01884 0.331042i
\(248\) 200.831 145.912i 0.809803 0.588357i
\(249\) −333.467 + 45.9237i −1.33922 + 0.184432i
\(250\) −326.116 + 310.545i −1.30446 + 1.24218i
\(251\) 324.851i 1.29423i −0.762394 0.647113i \(-0.775976\pi\)
0.762394 0.647113i \(-0.224024\pi\)
\(252\) −609.864 481.945i −2.42010 1.91248i
\(253\) −14.6576 4.76255i −0.0579353 0.0188243i
\(254\) −4.43044 1.43954i −0.0174427 0.00566746i
\(255\) −10.1446 + 28.4489i −0.0397828 + 0.111564i
\(256\) −143.088 440.378i −0.558936 1.72023i
\(257\) 10.6951 0.0416150 0.0208075 0.999784i \(-0.493376\pi\)
0.0208075 + 0.999784i \(0.493376\pi\)
\(258\) 123.900 60.0057i 0.480233 0.232580i
\(259\) 451.507 + 328.039i 1.74327 + 1.26656i
\(260\) −844.292 + 126.677i −3.24728 + 0.487221i
\(261\) −174.932 138.240i −0.670237 0.529655i
\(262\) −377.281 + 519.283i −1.44000 + 1.98200i
\(263\) −220.942 160.524i −0.840083 0.610356i 0.0823105 0.996607i \(-0.473770\pi\)
−0.922394 + 0.386250i \(0.873770\pi\)
\(264\) 97.7067 + 101.741i 0.370101 + 0.385382i
\(265\) 178.190 + 181.119i 0.672415 + 0.683467i
\(266\) 283.415 390.087i 1.06547 1.46649i
\(267\) 72.2858 35.0085i 0.270733 0.131118i
\(268\) 567.581i 2.11784i
\(269\) −310.812 + 100.989i −1.15544 + 0.375424i −0.823189 0.567768i \(-0.807807\pi\)
−0.332248 + 0.943192i \(0.607807\pi\)
\(270\) 451.114 + 181.743i 1.67079 + 0.673123i
\(271\) −30.9515 + 95.2590i −0.114212 + 0.351509i −0.991782 0.127940i \(-0.959164\pi\)
0.877570 + 0.479449i \(0.159164\pi\)
\(272\) 17.8581 54.9617i 0.0656549 0.202065i
\(273\) −395.829 + 380.133i −1.44992 + 1.39243i
\(274\) −36.9968 −0.135025
\(275\) 21.2662 61.9934i 0.0773317 0.225431i
\(276\) 156.871 21.6036i 0.568372 0.0782739i
\(277\) −144.606 199.033i −0.522043 0.718530i 0.463849 0.885914i \(-0.346468\pi\)
−0.985892 + 0.167384i \(0.946468\pi\)
\(278\) 2.37921 7.32246i 0.00855832 0.0263398i
\(279\) −5.03721 + 124.464i −0.0180545 + 0.446107i
\(280\) 141.887 850.893i 0.506739 3.03890i
\(281\) −492.907 + 160.155i −1.75412 + 0.569948i −0.996564 0.0828247i \(-0.973606\pi\)
−0.757554 + 0.652772i \(0.773606\pi\)
\(282\) −168.491 + 23.2038i −0.597484 + 0.0822831i
\(283\) −342.705 + 111.352i −1.21097 + 0.393468i −0.843786 0.536680i \(-0.819678\pi\)
−0.367185 + 0.930148i \(0.619678\pi\)
\(284\) 412.603 567.899i 1.45283 1.99964i
\(285\) −70.0999 + 196.583i −0.245964 + 0.689766i
\(286\) 145.306 105.571i 0.508064 0.369130i
\(287\) −153.152 111.271i −0.533630 0.387705i
\(288\) −267.150 98.9150i −0.927605 0.343455i
\(289\) 230.526 167.487i 0.797667 0.579539i
\(290\) 73.3975 440.163i 0.253095 1.51780i
\(291\) −68.2572 + 127.519i −0.234561 + 0.438211i
\(292\) 707.608 229.916i 2.42331 0.787383i
\(293\) 257.869 0.880100 0.440050 0.897973i \(-0.354961\pi\)
0.440050 + 0.897973i \(0.354961\pi\)
\(294\) −205.067 423.424i −0.697507 1.44022i
\(295\) −124.804 249.958i −0.423066 0.847316i
\(296\) 989.664 + 321.561i 3.34346 + 1.08636i
\(297\) −70.4541 + 6.81330i −0.237219 + 0.0229404i
\(298\) 187.675 + 258.312i 0.629781 + 0.866819i
\(299\) 111.800i 0.373914i
\(300\) 80.9833 + 668.505i 0.269944 + 2.22835i
\(301\) 122.528 0.407069
\(302\) −111.405 + 80.9404i −0.368890 + 0.268015i
\(303\) 60.3192 + 10.8083i 0.199073 + 0.0356711i
\(304\) 123.401 379.788i 0.405923 1.24930i
\(305\) 2.87537 + 19.1640i 0.00942743 + 0.0628329i
\(306\) 36.2071 + 54.3263i 0.118324 + 0.177537i
\(307\) 439.331i 1.43105i 0.698589 + 0.715524i \(0.253812\pi\)
−0.698589 + 0.715524i \(0.746188\pi\)
\(308\) 69.9675 + 215.338i 0.227167 + 0.699148i
\(309\) 193.613 361.712i 0.626581 1.17059i
\(310\) −223.052 + 111.370i −0.719522 + 0.359258i
\(311\) 189.558 + 260.904i 0.609512 + 0.838921i 0.996537 0.0831483i \(-0.0264975\pi\)
−0.387026 + 0.922069i \(0.626498\pi\)
\(312\) −482.897 + 902.156i −1.54775 + 2.89153i
\(313\) 299.621 412.393i 0.957255 1.31755i 0.00902650 0.999959i \(-0.497127\pi\)
0.948228 0.317589i \(-0.102873\pi\)
\(314\) 50.9100 + 70.0716i 0.162134 + 0.223158i
\(315\) 290.853 + 320.592i 0.923342 + 1.01775i
\(316\) 758.942 + 551.404i 2.40172 + 1.74495i
\(317\) −110.243 339.293i −0.347770 1.07032i −0.960084 0.279711i \(-0.909761\pi\)
0.612315 0.790614i \(-0.290239\pi\)
\(318\) 544.067 74.9266i 1.71090 0.235618i
\(319\) 20.0693 + 61.7669i 0.0629131 + 0.193627i
\(320\) 0.571449 + 3.80865i 0.00178578 + 0.0119020i
\(321\) −69.1212 + 385.752i −0.215331 + 1.20172i
\(322\) 193.756 + 62.9553i 0.601728 + 0.195513i
\(323\) −22.6658 + 16.4677i −0.0701727 + 0.0509835i
\(324\) 620.989 378.531i 1.91663 1.16830i
\(325\) 475.371 + 7.74997i 1.46268 + 0.0238461i
\(326\) 779.825i 2.39210i
\(327\) 359.600 345.341i 1.09969 1.05609i
\(328\) −335.696 109.074i −1.02346 0.332543i
\(329\) −143.969 46.7785i −0.437597 0.142184i
\(330\) −79.9845 116.927i −0.242377 0.354325i
\(331\) −78.1687 240.579i −0.236159 0.726824i −0.996966 0.0778445i \(-0.975196\pi\)
0.760806 0.648979i \(-0.224804\pi\)
\(332\) −1007.44 −3.03445
\(333\) −434.505 + 289.586i −1.30482 + 0.869628i
\(334\) −492.105 357.536i −1.47337 1.07047i
\(335\) 51.9880 311.771i 0.155188 0.930659i
\(336\) −573.685 597.372i −1.70740 1.77789i
\(337\) 125.926 173.322i 0.373667 0.514308i −0.580226 0.814455i \(-0.697036\pi\)
0.953893 + 0.300147i \(0.0970358\pi\)
\(338\) 561.515 + 407.965i 1.66129 + 1.20700i
\(339\) 448.480 430.696i 1.32295 1.27049i
\(340\) −41.6934 + 80.2051i −0.122628 + 0.235897i
\(341\) 21.3274 29.3547i 0.0625438 0.0860841i
\(342\) 250.193 + 375.398i 0.731558 + 1.09765i
\(343\) 52.6107i 0.153384i
\(344\) 217.278 70.5979i 0.631622 0.205227i
\(345\) −88.1475 2.50189i −0.255500 0.00725186i
\(346\) −51.1133 + 157.310i −0.147726 + 0.454655i
\(347\) −5.40910 + 16.6475i −0.0155882 + 0.0479755i −0.958548 0.284931i \(-0.908029\pi\)
0.942960 + 0.332906i \(0.108029\pi\)
\(348\) −462.206 481.291i −1.32818 1.38302i
\(349\) −498.785 −1.42918 −0.714591 0.699542i \(-0.753387\pi\)
−0.714591 + 0.699542i \(0.753387\pi\)
\(350\) −281.114 + 819.480i −0.803184 + 2.34137i
\(351\) −204.939 470.797i −0.583873 1.34130i
\(352\) 48.7745 + 67.1324i 0.138564 + 0.190717i
\(353\) 115.543 355.604i 0.327317 1.00738i −0.643067 0.765810i \(-0.722339\pi\)
0.970384 0.241567i \(-0.0776615\pi\)
\(354\) −594.434 106.514i −1.67919 0.300887i
\(355\) −278.659 + 274.153i −0.784954 + 0.772261i
\(356\) 228.612 74.2807i 0.642170 0.208654i
\(357\) 7.92746 + 57.5639i 0.0222058 + 0.161243i
\(358\) 228.639 74.2892i 0.638655 0.207512i
\(359\) −49.4120 + 68.0098i −0.137638 + 0.189442i −0.872272 0.489021i \(-0.837354\pi\)
0.734634 + 0.678464i \(0.237354\pi\)
\(360\) 700.486 + 400.922i 1.94579 + 1.11367i
\(361\) 135.433 98.3980i 0.375161 0.272571i
\(362\) 258.906 + 188.106i 0.715210 + 0.519630i
\(363\) −301.859 161.576i −0.831567 0.445112i
\(364\) −1328.79 + 965.425i −3.65053 + 2.65227i
\(365\) −409.746 + 61.4783i −1.12259 + 0.168434i
\(366\) 36.9299 + 19.7675i 0.100901 + 0.0540095i
\(367\) −212.024 + 68.8908i −0.577722 + 0.187713i −0.583280 0.812271i \(-0.698231\pi\)
0.00555765 + 0.999985i \(0.498231\pi\)
\(368\) 168.726 0.458494
\(369\) 147.385 98.2281i 0.399416 0.266201i
\(370\) −927.270 482.028i −2.50614 1.30278i
\(371\) 464.886 + 151.051i 1.25306 + 0.407144i
\(372\) −65.7545 + 366.962i −0.176759 + 0.986458i
\(373\) −79.9562 110.050i −0.214360 0.295041i 0.688274 0.725451i \(-0.258369\pi\)
−0.902633 + 0.430410i \(0.858369\pi\)
\(374\) 19.0170i 0.0508477i
\(375\) 16.7483 374.626i 0.0446621 0.999002i
\(376\) −282.253 −0.750673
\(377\) −381.148 + 276.920i −1.01100 + 0.734536i
\(378\) 931.320 90.0638i 2.46381 0.238264i
\(379\) 146.003 449.351i 0.385232 1.18562i −0.551079 0.834453i \(-0.685784\pi\)
0.936312 0.351170i \(-0.114216\pi\)
\(380\) −288.104 + 554.222i −0.758168 + 1.45848i
\(381\) 3.49135 1.69088i 0.00916364 0.00443801i
\(382\) 951.917i 2.49193i
\(383\) 50.3576 + 154.985i 0.131482 + 0.404660i 0.995026 0.0996130i \(-0.0317605\pi\)
−0.863544 + 0.504273i \(0.831760\pi\)
\(384\) 342.216 + 183.178i 0.891188 + 0.477026i
\(385\) −18.7089 124.693i −0.0485946 0.323878i
\(386\) 461.293 + 634.916i 1.19506 + 1.64486i
\(387\) −39.8055 + 107.507i −0.102857 + 0.277796i
\(388\) −254.441 + 350.209i −0.655777 + 0.902599i
\(389\) 35.3689 + 48.6811i 0.0909226 + 0.125144i 0.852055 0.523452i \(-0.175356\pi\)
−0.761132 + 0.648597i \(0.775356\pi\)
\(390\) 627.396 813.932i 1.60871 2.08700i
\(391\) −9.57672 6.95790i −0.0244929 0.0177951i
\(392\) −241.266 742.540i −0.615474 1.89423i
\(393\) −72.9220 529.510i −0.185552 1.34735i
\(394\) 384.683 + 1183.93i 0.976354 + 3.00491i
\(395\) −366.379 372.401i −0.927541 0.942786i
\(396\) −211.669 8.56654i −0.534518 0.0216327i
\(397\) 475.722 + 154.572i 1.19829 + 0.389349i 0.839133 0.543927i \(-0.183063\pi\)
0.359160 + 0.933276i \(0.383063\pi\)
\(398\) −351.224 + 255.179i −0.882473 + 0.641154i
\(399\) 54.7792 + 397.770i 0.137291 + 0.996917i
\(400\) −11.6960 + 717.414i −0.0292400 + 1.79354i
\(401\) 369.579i 0.921644i 0.887493 + 0.460822i \(0.152445\pi\)
−0.887493 + 0.460822i \(0.847555\pi\)
\(402\) −473.235 492.775i −1.17720 1.22581i
\(403\) 250.330 + 81.3370i 0.621165 + 0.201829i
\(404\) 174.426 + 56.6743i 0.431746 + 0.140283i
\(405\) −375.779 + 151.046i −0.927850 + 0.372953i
\(406\) −265.292 816.486i −0.653429 2.01105i
\(407\) 152.099 0.373709
\(408\) 47.2248 + 97.5102i 0.115747 + 0.238996i
\(409\) −220.737 160.375i −0.539700 0.392115i 0.284274 0.958743i \(-0.408248\pi\)
−0.823974 + 0.566628i \(0.808248\pi\)
\(410\) 314.531 + 163.505i 0.767150 + 0.398792i
\(411\) 22.2211 21.3399i 0.0540658 0.0519220i
\(412\) 721.730 993.376i 1.75177 2.41111i
\(413\) −434.842 315.931i −1.05289 0.764967i
\(414\) −118.183 + 149.551i −0.285466 + 0.361235i
\(415\) 553.383 + 92.2770i 1.33345 + 0.222354i
\(416\) −353.818 + 486.988i −0.850523 + 1.17064i
\(417\) 2.79463 + 5.77037i 0.00670175 + 0.0138378i
\(418\) 131.409i 0.314375i
\(419\) 54.2295 17.6202i 0.129426 0.0420531i −0.243588 0.969879i \(-0.578324\pi\)
0.373014 + 0.927826i \(0.378324\pi\)
\(420\) 731.440 + 1069.27i 1.74152 + 2.54589i
\(421\) 111.392 342.830i 0.264590 0.814323i −0.727198 0.686428i \(-0.759178\pi\)
0.991788 0.127896i \(-0.0408222\pi\)
\(422\) −12.3679 + 38.0643i −0.0293077 + 0.0901998i
\(423\) 87.8150 111.123i 0.207600 0.262702i
\(424\) 911.412 2.14956
\(425\) 30.2485 40.2375i 0.0711730 0.0946765i
\(426\) 115.278 + 837.069i 0.270605 + 1.96495i
\(427\) 21.9135 + 30.1614i 0.0513198 + 0.0706356i
\(428\) −362.442 + 1115.48i −0.846827 + 2.60626i
\(429\) −26.3801 + 147.222i −0.0614921 + 0.343175i
\(430\) −226.903 + 34.0445i −0.527682 + 0.0791734i
\(431\) −236.795 + 76.9394i −0.549408 + 0.178514i −0.570550 0.821263i \(-0.693270\pi\)
0.0211416 + 0.999776i \(0.493270\pi\)
\(432\) 710.512 309.288i 1.64470 0.715945i
\(433\) −350.943 + 114.028i −0.810491 + 0.263345i −0.684806 0.728726i \(-0.740113\pi\)
−0.125685 + 0.992070i \(0.540113\pi\)
\(434\) −281.923 + 388.034i −0.649593 + 0.894088i
\(435\) 209.804 + 306.708i 0.482309 + 0.705075i
\(436\) 1207.18 877.064i 2.76875 2.01161i
\(437\) −66.1757 48.0795i −0.151432 0.110022i
\(438\) −422.648 + 789.599i −0.964951 + 1.80274i
\(439\) −83.8726 + 60.9370i −0.191054 + 0.138809i −0.679200 0.733953i \(-0.737673\pi\)
0.488146 + 0.872762i \(0.337673\pi\)
\(440\) −105.022 210.338i −0.238686 0.478041i
\(441\) 367.401 + 136.034i 0.833109 + 0.308467i
\(442\) 131.201 42.6296i 0.296834 0.0964471i
\(443\) 610.142 1.37730 0.688648 0.725096i \(-0.258205\pi\)
0.688648 + 0.725096i \(0.258205\pi\)
\(444\) −1406.49 + 681.174i −3.16778 + 1.53417i
\(445\) −132.380 + 19.8623i −0.297483 + 0.0446343i
\(446\) −1474.04 478.943i −3.30501 1.07386i
\(447\) −261.717 46.8961i −0.585497 0.104913i
\(448\) 4.35509 + 5.99426i 0.00972117 + 0.0133800i
\(449\) 16.8743i 0.0375821i 0.999823 + 0.0187910i \(0.00598172\pi\)
−0.999823 + 0.0187910i \(0.994018\pi\)
\(450\) −627.693 512.876i −1.39487 1.13972i
\(451\) −51.5924 −0.114395
\(452\) 1505.54 1093.84i 3.33085 2.42000i
\(453\) 20.2253 112.873i 0.0446475 0.249169i
\(454\) −137.193 + 422.238i −0.302188 + 0.930039i
\(455\) 818.332 408.594i 1.79853 0.898008i
\(456\) 326.326 + 673.801i 0.715628 + 1.47763i
\(457\) 4.80448i 0.0105131i 0.999986 + 0.00525654i \(0.00167322\pi\)
−0.999986 + 0.00525654i \(0.998327\pi\)
\(458\) −302.374 930.613i −0.660206 2.03191i
\(459\) −53.0824 11.7451i −0.115648 0.0255885i
\(460\) −260.324 43.4093i −0.565923 0.0943680i
\(461\) −111.308 153.203i −0.241449 0.332327i 0.671044 0.741417i \(-0.265846\pi\)
−0.912494 + 0.409091i \(0.865846\pi\)
\(462\) −240.289 128.619i −0.520106 0.278397i
\(463\) −106.344 + 146.370i −0.229685 + 0.316134i −0.908268 0.418390i \(-0.862595\pi\)
0.678582 + 0.734524i \(0.262595\pi\)
\(464\) −417.919 575.217i −0.900688 1.23969i
\(465\) 69.7310 195.549i 0.149959 0.420535i
\(466\) −857.861 623.273i −1.84090 1.33750i
\(467\) 16.2208 + 49.9225i 0.0347341 + 0.106900i 0.966920 0.255078i \(-0.0821013\pi\)
−0.932186 + 0.361979i \(0.882101\pi\)
\(468\) −415.388 1479.53i −0.887581 3.16139i
\(469\) −187.908 578.323i −0.400658 1.23310i
\(470\) 279.607 + 46.6247i 0.594909 + 0.0992015i
\(471\) −70.9954 12.7214i −0.150733 0.0270093i
\(472\) −953.137 309.693i −2.01936 0.656129i
\(473\) 27.0155 19.6279i 0.0571153 0.0414967i
\(474\) −1118.66 + 154.058i −2.36005 + 0.325016i
\(475\) 209.019 278.043i 0.440040 0.585354i
\(476\) 173.907i 0.365350i
\(477\) −283.560 + 358.823i −0.594466 + 0.752250i
\(478\) −161.082 52.3386i −0.336991 0.109495i
\(479\) 817.603 + 265.655i 1.70690 + 0.554604i 0.989812 0.142382i \(-0.0454761\pi\)
0.717085 + 0.696986i \(0.245476\pi\)
\(480\) 376.041 + 289.860i 0.783419 + 0.603876i
\(481\) 340.954 + 1049.35i 0.708845 + 2.18160i
\(482\) 368.667 0.764869
\(483\) −152.687 + 73.9474i −0.316123 + 0.153100i
\(484\) −828.999 602.303i −1.71281 1.24443i
\(485\) 171.842 169.063i 0.354313 0.348583i
\(486\) −223.534 + 846.406i −0.459947 + 1.74158i
\(487\) −470.715 + 647.883i −0.966560 + 1.33036i −0.0227947 + 0.999740i \(0.507256\pi\)
−0.943765 + 0.330616i \(0.892744\pi\)
\(488\) 56.2375 + 40.8590i 0.115241 + 0.0837274i
\(489\) 449.808 + 468.380i 0.919852 + 0.957832i
\(490\) 116.346 + 775.434i 0.237441 + 1.58252i
\(491\) −29.2083 + 40.2018i −0.0594874 + 0.0818773i −0.837724 0.546094i \(-0.816114\pi\)
0.778237 + 0.627971i \(0.216114\pi\)
\(492\) 477.084 231.055i 0.969683 0.469624i
\(493\) 49.8829i 0.101182i
\(494\) 906.603 294.573i 1.83523 0.596302i
\(495\) 115.485 + 24.0936i 0.233302 + 0.0486739i
\(496\) −122.751 + 377.790i −0.247482 + 0.761673i
\(497\) −232.398 + 715.246i −0.467601 + 1.43913i
\(498\) 874.660 839.977i 1.75634 1.68670i
\(499\) 197.958 0.396709 0.198354 0.980130i \(-0.436440\pi\)
0.198354 + 0.980130i \(0.436440\pi\)
\(500\) 202.620 1103.88i 0.405240 2.20776i
\(501\) 501.798 69.1055i 1.00159 0.137935i
\(502\) 687.885 + 946.792i 1.37029 + 1.88604i
\(503\) 108.467 333.826i 0.215640 0.663671i −0.783468 0.621432i \(-0.786551\pi\)
0.999108 0.0422385i \(-0.0134489\pi\)
\(504\) 1551.49 + 62.7907i 3.07834 + 0.124585i
\(505\) −90.6204 47.1077i −0.179446 0.0932825i
\(506\) 52.8052 17.1575i 0.104358 0.0339080i
\(507\) −572.575 + 78.8526i −1.12934 + 0.155528i
\(508\) 11.0418 3.58770i 0.0217358 0.00706240i
\(509\) −314.518 + 432.897i −0.617913 + 0.850485i −0.997199 0.0747949i \(-0.976170\pi\)
0.379286 + 0.925280i \(0.376170\pi\)
\(510\) −30.6747 104.397i −0.0601465 0.204700i
\(511\) −644.881 + 468.534i −1.26200 + 0.916896i
\(512\) 930.854 + 676.305i 1.81807 + 1.32091i
\(513\) −366.803 81.1594i −0.715015 0.158205i
\(514\) −31.1712 + 22.6472i −0.0606444 + 0.0440608i
\(515\) −487.433 + 479.551i −0.946472 + 0.931168i
\(516\) −161.914 + 302.491i −0.313788 + 0.586224i
\(517\) −39.2366 + 12.7487i −0.0758927 + 0.0246590i
\(518\) −2010.57 −3.88142
\(519\) −60.0378 123.967i −0.115680 0.238856i
\(520\) 1215.72 1196.06i 2.33792 2.30012i
\(521\) 585.168 + 190.133i 1.12316 + 0.364938i 0.810974 0.585082i \(-0.198938\pi\)
0.312189 + 0.950020i \(0.398938\pi\)
\(522\) 802.576 + 32.4813i 1.53750 + 0.0622248i
\(523\) −1.70712 2.34966i −0.00326410 0.00449265i 0.807382 0.590029i \(-0.200884\pi\)
−0.810646 + 0.585537i \(0.800884\pi\)
\(524\) 1599.70i 3.05287i
\(525\) −303.837 654.346i −0.578737 1.24637i
\(526\) 983.861 1.87046
\(527\) 22.5465 16.3810i 0.0427828 0.0310835i
\(528\) −222.183 39.8120i −0.420801 0.0754015i
\(529\) −152.790 + 470.239i −0.288828 + 0.888921i
\(530\) −902.870 150.554i −1.70353 0.284064i
\(531\) 418.468 278.898i 0.788075 0.525231i
\(532\) 1201.70i 2.25884i
\(533\) −115.652 355.941i −0.216984 0.667807i
\(534\) −136.548 + 255.102i −0.255708 + 0.477719i
\(535\) 301.262 579.533i 0.563106 1.08324i
\(536\) −666.434 917.268i −1.24335 1.71132i
\(537\) −94.4749 + 176.500i −0.175931 + 0.328677i
\(538\) 692.029 952.496i 1.28630 1.77044i
\(539\) −67.0777 92.3245i −0.124448 0.171289i
\(540\) −1175.81 + 294.398i −2.17743 + 0.545181i
\(541\) 684.816 + 497.548i 1.26583 + 0.919682i 0.999029 0.0440682i \(-0.0140319\pi\)
0.266805 + 0.963750i \(0.414032\pi\)
\(542\) −111.505 343.178i −0.205729 0.633170i
\(543\) −264.005 + 36.3577i −0.486197 + 0.0669571i
\(544\) 19.6951 + 60.6154i 0.0362043 + 0.111425i
\(545\) −743.433 + 371.197i −1.36410 + 0.681095i
\(546\) 348.714 1946.10i 0.638670 3.56429i
\(547\) −265.366 86.2225i −0.485129 0.157628i 0.0562327 0.998418i \(-0.482091\pi\)
−0.541362 + 0.840790i \(0.682091\pi\)
\(548\) 74.5959 54.1971i 0.136124 0.0988998i
\(549\) −33.5829 + 9.42861i −0.0611710 + 0.0171742i
\(550\) 69.2923 + 225.715i 0.125986 + 0.410391i
\(551\) 344.694i 0.625578i
\(552\) −228.153 + 219.106i −0.413320 + 0.396931i
\(553\) −955.858 310.577i −1.72850 0.561622i
\(554\) 842.921 + 273.882i 1.52152 + 0.494371i
\(555\) 834.975 245.338i 1.50446 0.442051i
\(556\) 5.92962 + 18.2495i 0.0106648 + 0.0328228i
\(557\) 415.319 0.745635 0.372818 0.927905i \(-0.378392\pi\)
0.372818 + 0.927905i \(0.378392\pi\)
\(558\) −248.876 373.422i −0.446015 0.669215i
\(559\) 195.975 + 142.384i 0.350581 + 0.254712i
\(560\) 616.637 + 1235.00i 1.10114 + 2.20536i
\(561\) 10.9691 + 11.4220i 0.0195528 + 0.0203602i
\(562\) 1097.47 1510.53i 1.95279 2.68778i
\(563\) 758.639 + 551.183i 1.34749 + 0.979011i 0.999132 + 0.0416505i \(0.0132616\pi\)
0.348361 + 0.937361i \(0.386738\pi\)
\(564\) 305.733 293.610i 0.542080 0.520585i
\(565\) −927.182 + 462.943i −1.64103 + 0.819368i
\(566\) 763.037 1050.23i 1.34812 1.85553i
\(567\) −507.422 + 591.285i −0.894923 + 1.04283i
\(568\) 1402.25i 2.46874i
\(569\) −517.157 + 168.035i −0.908888 + 0.295316i −0.725901 0.687800i \(-0.758577\pi\)
−0.182988 + 0.983115i \(0.558577\pi\)
\(570\) −211.964 721.390i −0.371867 1.26560i
\(571\) −96.1700 + 295.981i −0.168424 + 0.518355i −0.999272 0.0381437i \(-0.987856\pi\)
0.830849 + 0.556499i \(0.187856\pi\)
\(572\) −138.326 + 425.723i −0.241828 + 0.744271i
\(573\) 549.071 + 571.742i 0.958239 + 0.997805i
\(574\) 681.990 1.18814
\(575\) 139.019 + 47.6892i 0.241773 + 0.0829377i
\(576\) −6.67425 + 1.87384i −0.0115872 + 0.00325319i
\(577\) −222.653 306.455i −0.385880 0.531118i 0.571250 0.820776i \(-0.306459\pi\)
−0.957130 + 0.289658i \(0.906459\pi\)
\(578\) −317.218 + 976.296i −0.548820 + 1.68909i
\(579\) −643.286 115.268i −1.11103 0.199081i
\(580\) 496.811 + 995.014i 0.856571 + 1.71554i
\(581\) 1026.50 333.531i 1.76679 0.574064i
\(582\) −71.0888 516.199i −0.122146 0.886939i
\(583\) 126.697 41.1664i 0.217319 0.0706114i
\(584\) −873.606 + 1202.42i −1.49590 + 2.05893i
\(585\) 92.6528 + 850.750i 0.158381 + 1.45427i
\(586\) −751.572 + 546.049i −1.28255 + 0.931824i
\(587\) −747.086 542.790i −1.27272 0.924684i −0.273411 0.961897i \(-0.588152\pi\)
−0.999307 + 0.0372128i \(0.988152\pi\)
\(588\) 1033.75 + 553.337i 1.75808 + 0.941048i
\(589\) 155.798 113.194i 0.264512 0.192179i
\(590\) 893.046 + 464.237i 1.51364 + 0.786842i
\(591\) −913.949 489.209i −1.54644 0.827765i
\(592\) −1583.65 + 514.558i −2.67508 + 0.869185i
\(593\) 758.601 1.27926 0.639630 0.768683i \(-0.279088\pi\)
0.639630 + 0.768683i \(0.279088\pi\)
\(594\) 190.914 169.047i 0.321405 0.284591i
\(595\) 15.9291 95.5264i 0.0267716 0.160549i
\(596\) −756.810 245.903i −1.26982 0.412588i
\(597\) 63.7641 355.854i 0.106807 0.596071i
\(598\) 236.742 + 325.848i 0.395890 + 0.544896i
\(599\) 8.98283i 0.0149964i 0.999972 + 0.00749819i \(0.00238677\pi\)
−0.999972 + 0.00749819i \(0.997613\pi\)
\(600\) −915.813 985.284i −1.52635 1.64214i
\(601\) −112.394 −0.187012 −0.0935062 0.995619i \(-0.529807\pi\)
−0.0935062 + 0.995619i \(0.529807\pi\)
\(602\) −357.113 + 259.458i −0.593211 + 0.430993i
\(603\) 568.471 + 23.0068i 0.942738 + 0.0381538i
\(604\) 106.053 326.397i 0.175584 0.540393i
\(605\) 400.199 + 406.776i 0.661485 + 0.672358i
\(606\) −198.690 + 96.2270i −0.327872 + 0.158790i
\(607\) 465.006i 0.766073i −0.923733 0.383037i \(-0.874878\pi\)
0.923733 0.383037i \(-0.125122\pi\)
\(608\) 136.094 + 418.856i 0.223840 + 0.688908i
\(609\) 630.294 + 337.377i 1.03496 + 0.553985i
\(610\) −48.9610 49.7657i −0.0802640 0.0815832i
\(611\) −175.910 242.119i −0.287904 0.396266i
\(612\) −152.587 56.4968i −0.249325 0.0923151i
\(613\) 642.929 884.916i 1.04882 1.44358i 0.158999 0.987279i \(-0.449173\pi\)
0.889825 0.456303i \(-0.150827\pi\)
\(614\) −930.303 1280.45i −1.51515 2.08543i
\(615\) −283.225 + 83.2191i −0.460528 + 0.135316i
\(616\) −365.917 265.854i −0.594020 0.431581i
\(617\) 184.628 + 568.228i 0.299236 + 0.920953i 0.981766 + 0.190095i \(0.0608797\pi\)
−0.682530 + 0.730858i \(0.739120\pi\)
\(618\) 201.645 + 1464.21i 0.326287 + 2.36927i
\(619\) −130.565 401.836i −0.210928 0.649170i −0.999418 0.0341221i \(-0.989136\pi\)
0.788489 0.615048i \(-0.210864\pi\)
\(620\) 286.588 551.305i 0.462238 0.889202i
\(621\) −15.2787 157.992i −0.0246034 0.254416i
\(622\) −1104.95 359.021i −1.77645 0.577204i
\(623\) −208.347 + 151.373i −0.334425 + 0.242974i
\(624\) −223.390 1622.11i −0.357996 2.59953i
\(625\) −212.409 + 587.799i −0.339855 + 0.940478i
\(626\) 1836.40i 2.93354i
\(627\) 75.7973 + 78.9270i 0.120889 + 0.125880i
\(628\) −205.298 66.7054i −0.326908 0.106219i
\(629\) 111.106 + 36.1004i 0.176639 + 0.0573933i
\(630\) −1526.57 318.489i −2.42313 0.505537i
\(631\) −83.0085 255.474i −0.131551 0.404871i 0.863487 0.504371i \(-0.168276\pi\)
−0.995038 + 0.0994999i \(0.968276\pi\)
\(632\) −1873.97 −2.96514
\(633\) −14.5273 29.9961i −0.0229499 0.0473872i
\(634\) 1039.78 + 755.441i 1.64002 + 1.19155i
\(635\) −6.39385 + 0.959332i −0.0100691 + 0.00151076i
\(636\) −987.231 + 948.084i −1.55225 + 1.49070i
\(637\) 486.591 669.736i 0.763880 1.05139i
\(638\) −189.287 137.525i −0.296688 0.215556i
\(639\) −552.064 436.269i −0.863950 0.682737i
\(640\) −453.704 461.161i −0.708912 0.720564i
\(641\) −82.4863 + 113.533i −0.128684 + 0.177118i −0.868497 0.495694i \(-0.834914\pi\)
0.739813 + 0.672812i \(0.234914\pi\)
\(642\) −615.388 1270.66i −0.958549 1.97922i
\(643\) 541.595i 0.842293i −0.906993 0.421147i \(-0.861628\pi\)
0.906993 0.421147i \(-0.138372\pi\)
\(644\) −482.892 + 156.901i −0.749832 + 0.243635i
\(645\) 116.646 151.327i 0.180847 0.234616i
\(646\) 31.1895 95.9915i 0.0482810 0.148594i
\(647\) 219.433 675.344i 0.339154 1.04381i −0.625485 0.780236i \(-0.715099\pi\)
0.964639 0.263573i \(-0.0849010\pi\)
\(648\) −559.123 + 1340.89i −0.862844 + 2.06927i
\(649\) −146.486 −0.225710
\(650\) −1401.90 + 984.030i −2.15677 + 1.51389i
\(651\) −54.4909 395.677i −0.0837034 0.607798i
\(652\) 1142.38 + 1572.35i 1.75211 + 2.41158i
\(653\) 206.777 636.394i 0.316657 0.974570i −0.658410 0.752660i \(-0.728771\pi\)
0.975067 0.221911i \(-0.0712294\pi\)
\(654\) −316.797 + 1767.98i −0.484400 + 2.70334i
\(655\) −146.526 + 878.714i −0.223704 + 1.34155i
\(656\) 537.175 174.539i 0.818864 0.266065i
\(657\) −201.593 718.036i −0.306839 1.09290i
\(658\) 518.661 168.523i 0.788238 0.256114i
\(659\) −149.113 + 205.236i −0.226271 + 0.311436i −0.907025 0.421076i \(-0.861652\pi\)
0.680754 + 0.732512i \(0.261652\pi\)
\(660\) 332.560 + 118.588i 0.503878 + 0.179679i
\(661\) 378.243 274.810i 0.572228 0.415748i −0.263686 0.964609i \(-0.584938\pi\)
0.835914 + 0.548860i \(0.184938\pi\)
\(662\) 737.262 + 535.652i 1.11369 + 0.809142i
\(663\) −54.2129 + 101.281i −0.0817691 + 0.152762i
\(664\) 1628.12 1182.90i 2.45199 1.78147i
\(665\) 110.071 660.093i 0.165520 0.992620i
\(666\) 653.174 1764.09i 0.980741 2.64879i
\(667\) −138.511 + 45.0051i −0.207663 + 0.0674739i
\(668\) 1515.98 2.26943
\(669\) 1161.59 562.568i 1.73632 0.840909i
\(670\) 508.667 + 1018.76i 0.759204 + 1.52053i
\(671\) 9.66320 + 3.13976i 0.0144012 + 0.00467923i
\(672\) 899.109 + 161.108i 1.33796 + 0.239744i
\(673\) −467.186 643.026i −0.694184 0.955462i −0.999994 0.00336953i \(-0.998927\pi\)
0.305811 0.952092i \(-0.401073\pi\)
\(674\) 771.808i 1.14512i
\(675\) 672.836 54.0125i 0.996793 0.0800186i
\(676\) −1729.81 −2.55889
\(677\) −1011.31 + 734.760i −1.49381 + 1.08532i −0.521045 + 0.853529i \(0.674458\pi\)
−0.972766 + 0.231789i \(0.925542\pi\)
\(678\) −395.098 + 2204.96i −0.582740 + 3.25215i
\(679\) 143.314 441.074i 0.211066 0.649593i
\(680\) −26.7933 178.574i −0.0394019 0.262610i
\(681\) −161.148 332.739i −0.236634 0.488603i
\(682\) 130.717i 0.191668i
\(683\) 129.140 + 397.451i 0.189077 + 0.581920i 0.999995 0.00324052i \(-0.00103149\pi\)
−0.810917 + 0.585161i \(0.801031\pi\)
\(684\) −1054.38 390.396i −1.54150 0.570755i
\(685\) −45.9395 + 22.9377i −0.0670650 + 0.0334856i
\(686\) −111.405 153.336i −0.162399 0.223522i
\(687\) 718.395 + 384.535i 1.04570 + 0.559731i
\(688\) −214.881 + 295.759i −0.312327 + 0.429882i
\(689\) 568.023 + 781.816i 0.824416 + 1.13471i
\(690\) 262.208 179.364i 0.380011 0.259948i
\(691\) −223.108 162.097i −0.322877 0.234584i 0.414525 0.910038i \(-0.363948\pi\)
−0.737402 + 0.675454i \(0.763948\pi\)
\(692\) −127.388 392.059i −0.184086 0.566559i
\(693\) 218.511 61.3485i 0.315312 0.0885259i
\(694\) −19.4867 59.9739i −0.0280788 0.0864177i
\(695\) −1.58555 10.5675i −0.00228137 0.0152051i
\(696\) 1312.09 + 235.107i 1.88518 + 0.337798i
\(697\) −37.6872 12.2453i −0.0540706 0.0175686i
\(698\) 1453.73 1056.20i 2.08271 1.51318i
\(699\) 874.757 120.468i 1.25144 0.172343i
\(700\) −633.662 2064.11i −0.905232 2.94873i
\(701\) 817.743i 1.16654i −0.812279 0.583269i \(-0.801773\pi\)
0.812279 0.583269i \(-0.198227\pi\)
\(702\) 1594.24 + 938.192i 2.27099 + 1.33646i
\(703\) 767.746 + 249.456i 1.09210 + 0.354845i
\(704\) 1.92046 + 0.623995i 0.00272793 + 0.000886357i
\(705\) −194.832 + 133.275i −0.276357 + 0.189043i
\(706\) 416.252 + 1281.09i 0.589592 + 1.81458i
\(707\) −196.490 −0.277920
\(708\) 1354.58 656.032i 1.91325 0.926599i
\(709\) −530.616 385.515i −0.748401 0.543745i 0.146930 0.989147i \(-0.453061\pi\)
−0.895331 + 0.445402i \(0.853061\pi\)
\(710\) 231.634 1389.10i 0.326245 1.95648i
\(711\) 583.032 737.781i 0.820017 1.03767i
\(712\) −282.243 + 388.474i −0.396408 + 0.545609i
\(713\) 65.8274 + 47.8264i 0.0923246 + 0.0670777i
\(714\) −144.999 150.986i −0.203080 0.211465i
\(715\) 114.976 221.178i 0.160806 0.309340i
\(716\) −352.173 + 484.724i −0.491861 + 0.676989i
\(717\) 126.938 61.4771i 0.177041 0.0857421i
\(718\) 302.850i 0.421796i
\(719\) −810.675 + 263.404i −1.12750 + 0.366348i −0.812627 0.582785i \(-0.801963\pi\)
−0.314877 + 0.949133i \(0.601963\pi\)
\(720\) −1283.93 + 139.829i −1.78323 + 0.194207i
\(721\) −406.513 + 1251.12i −0.563818 + 1.73525i
\(722\) −186.365 + 573.571i −0.258123 + 0.794420i
\(723\) −221.429 + 212.649i −0.306265 + 0.294121i
\(724\) −797.587 −1.10164
\(725\) −181.758 592.064i −0.250701 0.816641i
\(726\) 1221.92 168.278i 1.68309 0.231788i
\(727\) 791.959 + 1090.04i 1.08935 + 1.49937i 0.848789 + 0.528732i \(0.177332\pi\)
0.240564 + 0.970633i \(0.422668\pi\)
\(728\) 1013.90 3120.45i 1.39271 4.28633i
\(729\) −353.952 637.306i −0.485531 0.874219i
\(730\) 1064.04 1046.84i 1.45759 1.43402i
\(731\) 24.3929 7.92575i 0.0333693 0.0108423i
\(732\) −103.419 + 14.2424i −0.141282 + 0.0194568i
\(733\) 62.6609 20.3598i 0.0854855 0.0277759i −0.265962 0.963984i \(-0.585690\pi\)
0.351448 + 0.936208i \(0.385690\pi\)
\(734\) 472.075 649.755i 0.643154 0.885225i
\(735\) −517.155 398.634i −0.703612 0.542359i
\(736\) −150.543 + 109.376i −0.204543 + 0.148609i
\(737\) −134.073 97.4100i −0.181918 0.132171i
\(738\) −221.557 + 598.384i −0.300213 + 0.810818i
\(739\) −107.932 + 78.4173i −0.146052 + 0.106113i −0.658412 0.752658i \(-0.728771\pi\)
0.512360 + 0.858771i \(0.328771\pi\)
\(740\) 2575.77 386.468i 3.48077 0.522254i
\(741\) −374.614 + 699.861i −0.505552 + 0.944481i
\(742\) −1674.79 + 544.172i −2.25713 + 0.733385i
\(743\) −1069.77 −1.43980 −0.719899 0.694079i \(-0.755812\pi\)
−0.719899 + 0.694079i \(0.755812\pi\)
\(744\) −324.609 670.255i −0.436302 0.900880i
\(745\) 393.190 + 204.394i 0.527772 + 0.274355i
\(746\) 466.072 + 151.436i 0.624762 + 0.202997i
\(747\) −40.8362 + 1009.02i −0.0546670 + 1.35076i
\(748\) 27.8583 + 38.3437i 0.0372438 + 0.0512617i
\(749\) 1256.59i 1.67768i
\(750\) 744.472 + 1127.33i 0.992630 + 1.50311i
\(751\) 6.50034 0.00865559 0.00432779 0.999991i \(-0.498622\pi\)
0.00432779 + 0.999991i \(0.498622\pi\)
\(752\) 365.398 265.477i 0.485902 0.353028i
\(753\) −959.274 171.888i −1.27394 0.228271i
\(754\) 524.483 1614.19i 0.695601 2.14084i
\(755\) −88.1512 + 169.575i −0.116757 + 0.224603i
\(756\) −1745.87 + 1545.90i −2.30935 + 2.04484i
\(757\) 156.229i 0.206380i −0.994662 0.103190i \(-0.967095\pi\)
0.994662 0.103190i \(-0.0329049\pi\)
\(758\) 525.987 + 1618.82i 0.693915 + 2.13565i
\(759\) −21.8194 + 40.7635i −0.0287476 + 0.0537068i
\(760\) −185.143 1233.96i −0.243609 1.62363i
\(761\) −609.523 838.937i −0.800950 1.10241i −0.992657 0.120961i \(-0.961402\pi\)
0.191707 0.981452i \(-0.438598\pi\)
\(762\) −6.59518 + 12.3212i −0.00865509 + 0.0161696i
\(763\) −939.652 + 1293.32i −1.23152 + 1.69505i
\(764\) 1394.48 + 1919.33i 1.82523 + 2.51222i
\(765\) 78.6408 + 45.0099i 0.102798 + 0.0588364i
\(766\) −474.957 345.076i −0.620048 0.450491i
\(767\) −328.370 1010.62i −0.428123 1.31763i
\(768\) −1376.13 + 189.516i −1.79184 + 0.246765i
\(769\) −98.3002 302.537i −0.127829 0.393416i 0.866577 0.499043i \(-0.166315\pi\)
−0.994406 + 0.105627i \(0.966315\pi\)
\(770\) 318.571 + 323.807i 0.413729 + 0.420529i
\(771\) 5.65908 31.5822i 0.00733992 0.0409626i
\(772\) −1860.19 604.414i −2.40958 0.782920i
\(773\) −511.311 + 371.489i −0.661464 + 0.480581i −0.867157 0.498035i \(-0.834055\pi\)
0.205693 + 0.978617i \(0.434055\pi\)
\(774\) −111.635 397.624i −0.144232 0.513726i
\(775\) −207.919 + 276.580i −0.268283 + 0.356878i
\(776\) 864.729i 1.11434i
\(777\) 1207.59 1159.71i 1.55418 1.49255i
\(778\) −206.169 66.9882i −0.264998 0.0861031i
\(779\) −260.421 84.6158i −0.334301 0.108621i
\(780\) −72.6661 + 2560.20i −0.0931617 + 3.28230i
\(781\) 63.3363 + 194.929i 0.0810964 + 0.249589i
\(782\) 42.6454 0.0545338
\(783\) −500.780 + 443.421i −0.639566 + 0.566311i
\(784\) 1010.74 + 734.349i 1.28921 + 0.936669i
\(785\) 106.660 + 55.4455i 0.135872 + 0.0706312i
\(786\) 1333.79 + 1388.87i 1.69694 + 1.76701i
\(787\) −289.858 + 398.956i −0.368308 + 0.506933i −0.952440 0.304726i \(-0.901435\pi\)
0.584132 + 0.811659i \(0.301435\pi\)
\(788\) −2509.99 1823.62i −3.18527 2.31423i
\(789\) −590.928 + 567.497i −0.748959 + 0.719261i
\(790\) 1856.40 + 309.556i 2.34988 + 0.391843i
\(791\) −1171.90 + 1612.98i −1.48154 + 2.03917i
\(792\) 352.137 234.690i 0.444618 0.296326i
\(793\) 73.7057i 0.0929454i
\(794\) −1713.83 + 556.856i −2.15847 + 0.701330i
\(795\) 629.124 430.354i 0.791350 0.541326i
\(796\) 334.351 1029.03i 0.420039 1.29275i
\(797\) 358.323 1102.81i 0.449590 1.38370i −0.427781 0.903883i \(-0.640704\pi\)
0.877371 0.479813i \(-0.159296\pi\)
\(798\) −1001.95 1043.32i −1.25558 1.30742i
\(799\) −31.6874 −0.0396588
\(800\) −454.627 647.686i −0.568284 0.809608i
\(801\) −65.1303 231.982i −0.0813113 0.289615i
\(802\) −782.599 1077.16i −0.975810 1.34309i
\(803\) −67.1314 + 206.609i −0.0836007 + 0.257296i
\(804\) 1676.05 + 300.324i 2.08464 + 0.373538i
\(805\) 279.623 41.9545i 0.347357 0.0521174i
\(806\) −901.832 + 293.023i −1.11890 + 0.363552i
\(807\) 133.757 + 971.256i 0.165746 + 1.20354i
\(808\) −348.434 + 113.213i −0.431231 + 0.140115i
\(809\) 563.323 775.348i 0.696320 0.958402i −0.303664 0.952779i \(-0.598210\pi\)
0.999984 0.00562325i \(-0.00178995\pi\)
\(810\) 775.380 1235.96i 0.957260 1.52588i
\(811\) 189.458 137.649i 0.233610 0.169727i −0.464822 0.885404i \(-0.653882\pi\)
0.698432 + 0.715677i \(0.253882\pi\)
\(812\) 1730.99 + 1257.63i 2.13176 + 1.54881i
\(813\) 264.919 + 141.803i 0.325854 + 0.174420i
\(814\) −443.301 + 322.077i −0.544596 + 0.395672i
\(815\) −483.485 968.323i −0.593233 1.18813i
\(816\) −152.851 81.8164i −0.187317 0.100265i
\(817\) 168.557 54.7674i 0.206312 0.0670347i
\(818\) 982.950 1.20165
\(819\) 913.076 + 1370.01i 1.11487 + 1.67278i
\(820\) −873.704 + 131.090i −1.06549 + 0.159866i
\(821\) 532.681 + 173.079i 0.648820 + 0.210814i 0.614894 0.788610i \(-0.289199\pi\)
0.0339260 + 0.999424i \(0.489199\pi\)
\(822\) −19.5761 + 109.250i −0.0238152 + 0.132908i
\(823\) −534.506 735.685i −0.649461 0.893906i 0.349615 0.936894i \(-0.386312\pi\)
−0.999076 + 0.0429873i \(0.986312\pi\)
\(824\) 2452.83i 2.97673i
\(825\) −171.812 95.6011i −0.208257 0.115880i
\(826\) 1936.37 2.34427
\(827\) 687.080 499.193i 0.830810 0.603619i −0.0889782 0.996034i \(-0.528360\pi\)
0.919788 + 0.392415i \(0.128360\pi\)
\(828\) 19.2103 474.665i 0.0232009 0.573267i
\(829\) −270.730 + 833.223i −0.326575 + 1.00509i 0.644150 + 0.764899i \(0.277211\pi\)
−0.970725 + 0.240194i \(0.922789\pi\)
\(830\) −1808.26 + 902.866i −2.17863 + 1.08779i
\(831\) −664.253 + 321.702i −0.799342 + 0.387126i
\(832\) 14.6482i 0.0176060i
\(833\) −27.0859 83.3620i −0.0325161 0.100074i
\(834\) −20.3641 10.9003i −0.0244174 0.0130699i
\(835\) −832.725 138.857i −0.997275 0.166296i
\(836\) 192.503 + 264.957i 0.230266 + 0.316935i
\(837\) 364.872 + 80.7323i 0.435929 + 0.0964543i
\(838\) −120.743 + 166.188i −0.144084 + 0.198315i
\(839\) −130.501 179.620i −0.155544 0.214088i 0.724132 0.689661i \(-0.242241\pi\)
−0.879676 + 0.475573i \(0.842241\pi\)
\(840\) −2437.58 869.221i −2.90189 1.03479i
\(841\) −183.872 133.591i −0.218635 0.158847i
\(842\) 401.299 + 1235.07i 0.476603 + 1.46683i
\(843\) 212.121 + 1540.28i 0.251627 + 1.82714i
\(844\) −30.8239 94.8663i −0.0365212 0.112401i
\(845\) 950.178 + 158.443i 1.12447 + 0.187506i
\(846\) −20.6333 + 509.825i −0.0243892 + 0.602630i
\(847\) 1044.09 + 339.246i 1.23269 + 0.400527i
\(848\) −1179.89 + 857.242i −1.39138 + 1.01090i
\(849\) 147.482 + 1070.92i 0.173713 + 1.26138i
\(850\) −2.95617 + 181.327i −0.00347785 + 0.213325i
\(851\) 341.081i 0.400800i
\(852\) −1458.67 1518.90i −1.71205 1.78274i
\(853\) 922.928 + 299.877i 1.08198 + 0.351556i 0.795142 0.606423i \(-0.207396\pi\)
0.286837 + 0.957980i \(0.407396\pi\)
\(854\) −127.736 41.5040i −0.149574 0.0485995i
\(855\) 543.412 + 311.021i 0.635570 + 0.363767i
\(856\) −724.017 2228.30i −0.845815 2.60315i
\(857\) 856.183 0.999046 0.499523 0.866300i \(-0.333509\pi\)
0.499523 + 0.866300i \(0.333509\pi\)
\(858\) −234.863 484.946i −0.273733 0.565205i
\(859\) −688.166 499.982i −0.801125 0.582051i 0.110119 0.993918i \(-0.464877\pi\)
−0.911244 + 0.411867i \(0.864877\pi\)
\(860\) 407.629 401.038i 0.473987 0.466323i
\(861\) −409.618 + 393.376i −0.475747 + 0.456882i
\(862\) 527.228 725.667i 0.611633 0.841841i
\(863\) −1204.33 874.998i −1.39552 1.01390i −0.995234 0.0975119i \(-0.968912\pi\)
−0.400284 0.916391i \(-0.631088\pi\)
\(864\) −433.450 + 736.547i −0.501678 + 0.852485i
\(865\) 34.0628 + 227.025i 0.0393789 + 0.262457i
\(866\) 781.379 1075.48i 0.902286 1.24189i
\(867\) −372.605 769.358i −0.429764 0.887379i
\(868\) 1195.38i 1.37717i
\(869\) −260.504 + 84.6429i −0.299774 + 0.0974026i
\(870\) −1260.95 449.644i −1.44937 0.516832i
\(871\) 371.495 1143.35i 0.426516 1.31268i
\(872\) −921.098 + 2834.85i −1.05630 + 3.25097i
\(873\) 340.444 + 269.036i 0.389970 + 0.308174i
\(874\) 294.682 0.337165
\(875\) 159.005 + 1191.85i 0.181720 + 1.36212i
\(876\) −304.517 2211.20i −0.347622 2.52420i
\(877\) 269.400 + 370.798i 0.307184 + 0.422802i 0.934500 0.355962i \(-0.115847\pi\)
−0.627317 + 0.778764i \(0.715847\pi\)
\(878\) 115.414 355.208i 0.131451 0.404565i
\(879\) 136.446 761.480i 0.155229 0.866302i
\(880\) 333.796 + 173.519i 0.379313 + 0.197180i
\(881\) −107.500 + 34.9287i −0.122020 + 0.0396467i −0.369390 0.929274i \(-0.620433\pi\)
0.247371 + 0.968921i \(0.420433\pi\)
\(882\) −1358.86 + 381.510i −1.54066 + 0.432551i
\(883\) 1390.39 451.764i 1.57462 0.511624i 0.613953 0.789342i \(-0.289578\pi\)
0.960663 + 0.277718i \(0.0895782\pi\)
\(884\) −202.088 + 278.151i −0.228607 + 0.314650i
\(885\) −804.157 + 236.283i −0.908652 + 0.266986i
\(886\) −1778.29 + 1292.00i −2.00710 + 1.45824i
\(887\) −3.82980 2.78251i −0.00431770 0.00313699i 0.585624 0.810583i \(-0.300849\pi\)
−0.589942 + 0.807446i \(0.700849\pi\)
\(888\) 1473.22 2752.30i 1.65903 3.09944i
\(889\) −10.0630 + 7.31120i −0.0113195 + 0.00822407i
\(890\) 343.768 338.210i 0.386257 0.380011i
\(891\) −17.1599 + 211.654i −0.0192592 + 0.237546i
\(892\) 3673.68 1193.65i 4.11848 1.33817i
\(893\) −218.962 −0.245198
\(894\) 862.092 417.517i 0.964308 0.467021i
\(895\) 237.846 234.000i 0.265750 0.261453i
\(896\) −1183.68 384.602i −1.32108 0.429243i
\(897\) −330.143 59.1570i −0.368052 0.0659498i
\(898\) −35.7321 49.1811i −0.0397908 0.0547673i
\(899\) 342.880i 0.381401i
\(900\) 2016.93 + 114.585i 2.24103 + 0.127317i
\(901\) 102.321 0.113563
\(902\) 150.368 109.249i 0.166705 0.121119i
\(903\) 64.8332 361.821i 0.0717976 0.400688i
\(904\) −1148.76 + 3535.51i −1.27075 + 3.91097i
\(905\) 438.112 + 73.0555i 0.484102 + 0.0807243i
\(906\) 180.067 + 371.803i 0.198749 + 0.410379i
\(907\) 1145.45i 1.26290i −0.775416 0.631451i \(-0.782460\pi\)
0.775416 0.631451i \(-0.217540\pi\)
\(908\) −341.922 1052.33i −0.376566 1.15895i
\(909\) 63.8334 172.402i 0.0702238 0.189661i
\(910\) −1519.85 + 2923.72i −1.67017 + 3.21288i
\(911\) −534.006 734.996i −0.586176 0.806802i 0.408180 0.912902i \(-0.366164\pi\)
−0.994355 + 0.106100i \(0.966164\pi\)
\(912\) −1056.21 565.356i −1.15812 0.619908i
\(913\) 172.899 237.976i 0.189375 0.260652i
\(914\) −10.1737 14.0029i −0.0111309 0.0153204i
\(915\) 58.1122 + 1.64940i 0.0635106 + 0.00180262i
\(916\) 1972.94 + 1433.43i 2.15387 + 1.56487i
\(917\) 529.612 + 1629.98i 0.577549 + 1.77751i
\(918\) 179.582 78.1726i 0.195623 0.0851554i
\(919\) 342.604 + 1054.43i 0.372801 + 1.14736i 0.944950 + 0.327215i \(0.106110\pi\)
−0.572149 + 0.820150i \(0.693890\pi\)
\(920\) 471.680 235.510i 0.512696 0.255989i
\(921\) 1297.33 + 232.464i 1.40861 + 0.252403i
\(922\) 648.826 + 210.816i 0.703716 + 0.228651i
\(923\) −1202.86 + 873.927i −1.30320 + 0.946833i
\(924\) 672.907 92.6700i 0.728255 0.100292i
\(925\) −1450.26 23.6436i −1.56785 0.0255607i
\(926\) 651.791i 0.703878i
\(927\) −965.678 763.127i −1.04172 0.823223i
\(928\) 745.767 + 242.314i 0.803628 + 0.261115i
\(929\) −342.348 111.235i −0.368512 0.119737i 0.118906 0.992905i \(-0.462061\pi\)
−0.487418 + 0.873169i \(0.662061\pi\)
\(930\) 210.848 + 717.594i 0.226719 + 0.771606i
\(931\) −187.165 576.036i −0.201037 0.618728i
\(932\) 2642.73 2.83555
\(933\) 870.743 421.707i 0.933272 0.451990i
\(934\) −152.989 111.153i −0.163800 0.119008i
\(935\) −11.7904 23.6138i −0.0126100 0.0252554i
\(936\) 2408.52 + 1903.34i 2.57321 + 2.03348i
\(937\) −326.208 + 448.987i −0.348141 + 0.479175i −0.946797 0.321831i \(-0.895702\pi\)
0.598656 + 0.801006i \(0.295702\pi\)
\(938\) 1772.29 + 1287.64i 1.88944 + 1.37276i
\(939\) −1059.24 1102.98i −1.12806 1.17463i
\(940\) −632.069 + 315.592i −0.672413 + 0.335737i
\(941\) −701.066 + 964.935i −0.745023 + 1.02544i 0.253291 + 0.967390i \(0.418487\pi\)
−0.998314 + 0.0580458i \(0.981513\pi\)
\(942\) 233.857 113.259i 0.248256 0.120232i
\(943\) 115.695i 0.122688i
\(944\) 1525.20 495.566i 1.61567 0.524964i
\(945\) 1100.60 689.244i 1.16465 0.729358i
\(946\) −37.1750 + 114.413i −0.0392971 + 0.120944i
\(947\) 98.6599 303.644i 0.104181 0.320638i −0.885356 0.464914i \(-0.846085\pi\)
0.989537 + 0.144276i \(0.0460853\pi\)
\(948\) 2029.86 1949.37i 2.14120 2.05630i
\(949\) −1575.90 −1.66059
\(950\) −20.4273 + 1252.98i −0.0215024 + 1.31892i
\(951\) −1060.25 + 146.014i −1.11488 + 0.153537i
\(952\) −204.195 281.050i −0.214491 0.295221i
\(953\) −257.735 + 793.227i −0.270446 + 0.832347i 0.719943 + 0.694034i \(0.244168\pi\)
−0.990389 + 0.138313i \(0.955832\pi\)
\(954\) 66.6262 1646.26i 0.0698388 1.72564i
\(955\) −590.180 1182.01i −0.617990 1.23771i
\(956\) 401.458 130.442i 0.419935 0.136445i
\(957\) 193.015 26.5812i 0.201688 0.0277756i
\(958\) −2945.48 + 957.044i −3.07461 + 0.999002i
\(959\) −58.0647 + 79.9192i −0.0605471 + 0.0833359i
\(960\) 11.5492 + 0.327801i 0.0120304 + 0.000341459i
\(961\) 622.488 452.264i 0.647750 0.470618i
\(962\) −3215.77 2336.39i −3.34280 2.42868i
\(963\) 1102.54 + 408.226i 1.14490 + 0.423910i
\(964\) −743.337 + 540.066i −0.771096 + 0.560234i
\(965\) 966.438 + 502.389i 1.00149 + 0.520610i
\(966\) 288.427 538.845i 0.298579 0.557810i
\(967\) 314.182 102.084i 0.324904 0.105568i −0.142024 0.989863i \(-0.545361\pi\)
0.466927 + 0.884296i \(0.345361\pi\)
\(968\) 2046.95 2.11462
\(969\) 36.6353 + 75.6449i 0.0378074 + 0.0780649i
\(970\) −142.843 + 856.623i −0.147260 + 0.883117i
\(971\) −189.425 61.5480i −0.195083 0.0633862i 0.209846 0.977734i \(-0.432704\pi\)
−0.404929 + 0.914348i \(0.632704\pi\)
\(972\) −789.205 2034.05i −0.811939 2.09265i
\(973\) −12.0837 16.6318i −0.0124190 0.0170933i
\(974\) 2885.04i 2.96206i
\(975\) 274.418 1399.65i 0.281455 1.43554i
\(976\) −111.234 −0.113970
\(977\) 224.931 163.422i 0.230226 0.167269i −0.466691 0.884420i \(-0.654554\pi\)
0.696918 + 0.717151i \(0.254554\pi\)
\(978\) −2302.80 412.629i −2.35460 0.421911i
\(979\) −21.6887 + 66.7508i −0.0221539 + 0.0681826i
\(980\) −1370.53 1393.06i −1.39850 1.42149i
\(981\) −829.506 1244.62i −0.845572 1.26872i
\(982\) 179.020i 0.182301i
\(983\) 505.381 + 1555.40i 0.514121 + 1.58230i 0.784875 + 0.619654i \(0.212727\pi\)
−0.270754 + 0.962648i \(0.587273\pi\)
\(984\) −499.719 + 933.584i −0.507845 + 0.948764i
\(985\) 1211.70 + 1231.61i 1.23015 + 1.25037i
\(986\) −105.629 145.386i −0.107129 0.147450i
\(987\) −214.314 + 400.385i −0.217137 + 0.405659i
\(988\) −1396.44 + 1922.04i −1.41340 + 1.94538i
\(989\) 44.0153 + 60.5819i 0.0445049 + 0.0612557i
\(990\) −387.605 + 174.322i −0.391520 + 0.176083i
\(991\) 714.008 + 518.757i 0.720492 + 0.523468i 0.886541 0.462649i \(-0.153101\pi\)
−0.166049 + 0.986117i \(0.553101\pi\)
\(992\) −135.378 416.652i −0.136470 0.420012i
\(993\) −751.782 + 103.532i −0.757082 + 0.104262i
\(994\) −837.231 2576.73i −0.842284 2.59228i
\(995\) −277.913 + 534.617i −0.279309 + 0.537303i
\(996\) −533.066 + 2974.93i −0.535207 + 2.98688i
\(997\) 1601.51 + 520.361i 1.60632 + 0.521927i 0.968661 0.248388i \(-0.0799007\pi\)
0.637664 + 0.770314i \(0.279901\pi\)
\(998\) −576.957 + 419.184i −0.578113 + 0.420024i
\(999\) 625.229 + 1436.31i 0.625855 + 1.43775i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.h.a.14.1 72
3.2 odd 2 inner 75.3.h.a.14.18 yes 72
5.2 odd 4 375.3.j.b.176.1 144
5.3 odd 4 375.3.j.b.176.36 144
5.4 even 2 375.3.h.a.74.18 72
15.2 even 4 375.3.j.b.176.35 144
15.8 even 4 375.3.j.b.176.2 144
15.14 odd 2 375.3.h.a.74.1 72
25.9 even 10 inner 75.3.h.a.59.18 yes 72
25.12 odd 20 375.3.j.b.326.35 144
25.13 odd 20 375.3.j.b.326.2 144
25.16 even 5 375.3.h.a.299.1 72
75.38 even 20 375.3.j.b.326.36 144
75.41 odd 10 375.3.h.a.299.18 72
75.59 odd 10 inner 75.3.h.a.59.1 yes 72
75.62 even 20 375.3.j.b.326.1 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.h.a.14.1 72 1.1 even 1 trivial
75.3.h.a.14.18 yes 72 3.2 odd 2 inner
75.3.h.a.59.1 yes 72 75.59 odd 10 inner
75.3.h.a.59.18 yes 72 25.9 even 10 inner
375.3.h.a.74.1 72 15.14 odd 2
375.3.h.a.74.18 72 5.4 even 2
375.3.h.a.299.1 72 25.16 even 5
375.3.h.a.299.18 72 75.41 odd 10
375.3.j.b.176.1 144 5.2 odd 4
375.3.j.b.176.2 144 15.8 even 4
375.3.j.b.176.35 144 15.2 even 4
375.3.j.b.176.36 144 5.3 odd 4
375.3.j.b.326.1 144 75.62 even 20
375.3.j.b.326.2 144 25.13 odd 20
375.3.j.b.326.35 144 25.12 odd 20
375.3.j.b.326.36 144 75.38 even 20