Properties

Label 75.3.f.b.7.1
Level $75$
Weight $3$
Character 75.7
Analytic conductor $2.044$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,3,Mod(7,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 7.1
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 75.7
Dual form 75.3.f.b.43.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.44949 - 2.44949i) q^{2} +(-1.22474 + 1.22474i) q^{3} +8.00000i q^{4} +6.00000 q^{6} +(6.12372 + 6.12372i) q^{7} +(9.79796 - 9.79796i) q^{8} -3.00000i q^{9} +6.00000 q^{11} +(-9.79796 - 9.79796i) q^{12} +(3.67423 - 3.67423i) q^{13} -30.0000i q^{14} -16.0000 q^{16} +(17.1464 + 17.1464i) q^{17} +(-7.34847 + 7.34847i) q^{18} +23.0000i q^{19} -15.0000 q^{21} +(-14.6969 - 14.6969i) q^{22} +(-12.2474 + 12.2474i) q^{23} +24.0000i q^{24} -18.0000 q^{26} +(3.67423 + 3.67423i) q^{27} +(-48.9898 + 48.9898i) q^{28} +6.00000i q^{29} +25.0000 q^{31} +(-7.34847 + 7.34847i) q^{33} -84.0000i q^{34} +24.0000 q^{36} +(-24.4949 - 24.4949i) q^{37} +(56.3383 - 56.3383i) q^{38} +9.00000i q^{39} -60.0000 q^{41} +(36.7423 + 36.7423i) q^{42} +(60.0125 - 60.0125i) q^{43} +48.0000i q^{44} +60.0000 q^{46} +(7.34847 + 7.34847i) q^{47} +(19.5959 - 19.5959i) q^{48} +26.0000i q^{49} -42.0000 q^{51} +(29.3939 + 29.3939i) q^{52} +(-24.4949 + 24.4949i) q^{53} -18.0000i q^{54} +120.000 q^{56} +(-28.1691 - 28.1691i) q^{57} +(14.6969 - 14.6969i) q^{58} -18.0000i q^{59} -37.0000 q^{61} +(-61.2372 - 61.2372i) q^{62} +(18.3712 - 18.3712i) q^{63} +64.0000i q^{64} +36.0000 q^{66} +(-25.7196 - 25.7196i) q^{67} +(-137.171 + 137.171i) q^{68} -30.0000i q^{69} +132.000 q^{71} +(-29.3939 - 29.3939i) q^{72} +(-24.4949 + 24.4949i) q^{73} +120.000i q^{74} -184.000 q^{76} +(36.7423 + 36.7423i) q^{77} +(22.0454 - 22.0454i) q^{78} +10.0000i q^{79} -9.00000 q^{81} +(146.969 + 146.969i) q^{82} +(2.44949 - 2.44949i) q^{83} -120.000i q^{84} -294.000 q^{86} +(-7.34847 - 7.34847i) q^{87} +(58.7878 - 58.7878i) q^{88} -132.000i q^{89} +45.0000 q^{91} +(-97.9796 - 97.9796i) q^{92} +(-30.6186 + 30.6186i) q^{93} -36.0000i q^{94} +(23.2702 + 23.2702i) q^{97} +(63.6867 - 63.6867i) q^{98} -18.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 24 q^{6} + 24 q^{11} - 64 q^{16} - 60 q^{21} - 72 q^{26} + 100 q^{31} + 96 q^{36} - 240 q^{41} + 240 q^{46} - 168 q^{51} + 480 q^{56} - 148 q^{61} + 144 q^{66} + 528 q^{71} - 736 q^{76} - 36 q^{81}+ \cdots + 180 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.44949 2.44949i −1.22474 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 0.965926i \(-0.583333\pi\)
\(3\) −1.22474 + 1.22474i −0.408248 + 0.408248i
\(4\) 8.00000i 2.00000i
\(5\) 0 0
\(6\) 6.00000 1.00000
\(7\) 6.12372 + 6.12372i 0.874818 + 0.874818i 0.992993 0.118175i \(-0.0377044\pi\)
−0.118175 + 0.992993i \(0.537704\pi\)
\(8\) 9.79796 9.79796i 1.22474 1.22474i
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 6.00000 0.545455 0.272727 0.962091i \(-0.412074\pi\)
0.272727 + 0.962091i \(0.412074\pi\)
\(12\) −9.79796 9.79796i −0.816497 0.816497i
\(13\) 3.67423 3.67423i 0.282633 0.282633i −0.551525 0.834158i \(-0.685954\pi\)
0.834158 + 0.551525i \(0.185954\pi\)
\(14\) 30.0000i 2.14286i
\(15\) 0 0
\(16\) −16.0000 −1.00000
\(17\) 17.1464 + 17.1464i 1.00861 + 1.00861i 0.999963 + 0.00865084i \(0.00275368\pi\)
0.00865084 + 0.999963i \(0.497246\pi\)
\(18\) −7.34847 + 7.34847i −0.408248 + 0.408248i
\(19\) 23.0000i 1.21053i 0.796025 + 0.605263i \(0.206932\pi\)
−0.796025 + 0.605263i \(0.793068\pi\)
\(20\) 0 0
\(21\) −15.0000 −0.714286
\(22\) −14.6969 14.6969i −0.668043 0.668043i
\(23\) −12.2474 + 12.2474i −0.532498 + 0.532498i −0.921315 0.388817i \(-0.872884\pi\)
0.388817 + 0.921315i \(0.372884\pi\)
\(24\) 24.0000i 1.00000i
\(25\) 0 0
\(26\) −18.0000 −0.692308
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −48.9898 + 48.9898i −1.74964 + 1.74964i
\(29\) 6.00000i 0.206897i 0.994635 + 0.103448i \(0.0329876\pi\)
−0.994635 + 0.103448i \(0.967012\pi\)
\(30\) 0 0
\(31\) 25.0000 0.806452 0.403226 0.915101i \(-0.367889\pi\)
0.403226 + 0.915101i \(0.367889\pi\)
\(32\) 0 0
\(33\) −7.34847 + 7.34847i −0.222681 + 0.222681i
\(34\) 84.0000i 2.47059i
\(35\) 0 0
\(36\) 24.0000 0.666667
\(37\) −24.4949 24.4949i −0.662024 0.662024i 0.293833 0.955857i \(-0.405069\pi\)
−0.955857 + 0.293833i \(0.905069\pi\)
\(38\) 56.3383 56.3383i 1.48259 1.48259i
\(39\) 9.00000i 0.230769i
\(40\) 0 0
\(41\) −60.0000 −1.46341 −0.731707 0.681619i \(-0.761276\pi\)
−0.731707 + 0.681619i \(0.761276\pi\)
\(42\) 36.7423 + 36.7423i 0.874818 + 0.874818i
\(43\) 60.0125 60.0125i 1.39564 1.39564i 0.583594 0.812046i \(-0.301646\pi\)
0.812046 0.583594i \(-0.198354\pi\)
\(44\) 48.0000i 1.09091i
\(45\) 0 0
\(46\) 60.0000 1.30435
\(47\) 7.34847 + 7.34847i 0.156350 + 0.156350i 0.780947 0.624597i \(-0.214737\pi\)
−0.624597 + 0.780947i \(0.714737\pi\)
\(48\) 19.5959 19.5959i 0.408248 0.408248i
\(49\) 26.0000i 0.530612i
\(50\) 0 0
\(51\) −42.0000 −0.823529
\(52\) 29.3939 + 29.3939i 0.565267 + 0.565267i
\(53\) −24.4949 + 24.4949i −0.462168 + 0.462168i −0.899365 0.437198i \(-0.855971\pi\)
0.437198 + 0.899365i \(0.355971\pi\)
\(54\) 18.0000i 0.333333i
\(55\) 0 0
\(56\) 120.000 2.14286
\(57\) −28.1691 28.1691i −0.494195 0.494195i
\(58\) 14.6969 14.6969i 0.253395 0.253395i
\(59\) 18.0000i 0.305085i −0.988297 0.152542i \(-0.951254\pi\)
0.988297 0.152542i \(-0.0487461\pi\)
\(60\) 0 0
\(61\) −37.0000 −0.606557 −0.303279 0.952902i \(-0.598081\pi\)
−0.303279 + 0.952902i \(0.598081\pi\)
\(62\) −61.2372 61.2372i −0.987697 0.987697i
\(63\) 18.3712 18.3712i 0.291606 0.291606i
\(64\) 64.0000i 1.00000i
\(65\) 0 0
\(66\) 36.0000 0.545455
\(67\) −25.7196 25.7196i −0.383875 0.383875i 0.488621 0.872496i \(-0.337500\pi\)
−0.872496 + 0.488621i \(0.837500\pi\)
\(68\) −137.171 + 137.171i −2.01723 + 2.01723i
\(69\) 30.0000i 0.434783i
\(70\) 0 0
\(71\) 132.000 1.85915 0.929577 0.368627i \(-0.120172\pi\)
0.929577 + 0.368627i \(0.120172\pi\)
\(72\) −29.3939 29.3939i −0.408248 0.408248i
\(73\) −24.4949 + 24.4949i −0.335547 + 0.335547i −0.854688 0.519142i \(-0.826252\pi\)
0.519142 + 0.854688i \(0.326252\pi\)
\(74\) 120.000i 1.62162i
\(75\) 0 0
\(76\) −184.000 −2.42105
\(77\) 36.7423 + 36.7423i 0.477173 + 0.477173i
\(78\) 22.0454 22.0454i 0.282633 0.282633i
\(79\) 10.0000i 0.126582i 0.997995 + 0.0632911i \(0.0201597\pi\)
−0.997995 + 0.0632911i \(0.979840\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 146.969 + 146.969i 1.79231 + 1.79231i
\(83\) 2.44949 2.44949i 0.0295119 0.0295119i −0.692197 0.721709i \(-0.743357\pi\)
0.721709 + 0.692197i \(0.243357\pi\)
\(84\) 120.000i 1.42857i
\(85\) 0 0
\(86\) −294.000 −3.41860
\(87\) −7.34847 7.34847i −0.0844652 0.0844652i
\(88\) 58.7878 58.7878i 0.668043 0.668043i
\(89\) 132.000i 1.48315i −0.670872 0.741573i \(-0.734080\pi\)
0.670872 0.741573i \(-0.265920\pi\)
\(90\) 0 0
\(91\) 45.0000 0.494505
\(92\) −97.9796 97.9796i −1.06500 1.06500i
\(93\) −30.6186 + 30.6186i −0.329232 + 0.329232i
\(94\) 36.0000i 0.382979i
\(95\) 0 0
\(96\) 0 0
\(97\) 23.2702 + 23.2702i 0.239898 + 0.239898i 0.816808 0.576910i \(-0.195741\pi\)
−0.576910 + 0.816808i \(0.695741\pi\)
\(98\) 63.6867 63.6867i 0.649865 0.649865i
\(99\) 18.0000i 0.181818i
\(100\) 0 0
\(101\) 96.0000 0.950495 0.475248 0.879852i \(-0.342359\pi\)
0.475248 + 0.879852i \(0.342359\pi\)
\(102\) 102.879 + 102.879i 1.00861 + 1.00861i
\(103\) −19.5959 + 19.5959i −0.190252 + 0.190252i −0.795805 0.605553i \(-0.792952\pi\)
0.605553 + 0.795805i \(0.292952\pi\)
\(104\) 72.0000i 0.692308i
\(105\) 0 0
\(106\) 120.000 1.13208
\(107\) −29.3939 29.3939i −0.274709 0.274709i 0.556283 0.830993i \(-0.312227\pi\)
−0.830993 + 0.556283i \(0.812227\pi\)
\(108\) −29.3939 + 29.3939i −0.272166 + 0.272166i
\(109\) 167.000i 1.53211i −0.642775 0.766055i \(-0.722217\pi\)
0.642775 0.766055i \(-0.277783\pi\)
\(110\) 0 0
\(111\) 60.0000 0.540541
\(112\) −97.9796 97.9796i −0.874818 0.874818i
\(113\) −58.7878 + 58.7878i −0.520246 + 0.520246i −0.917646 0.397400i \(-0.869913\pi\)
0.397400 + 0.917646i \(0.369913\pi\)
\(114\) 138.000i 1.21053i
\(115\) 0 0
\(116\) −48.0000 −0.413793
\(117\) −11.0227 11.0227i −0.0942111 0.0942111i
\(118\) −44.0908 + 44.0908i −0.373651 + 0.373651i
\(119\) 210.000i 1.76471i
\(120\) 0 0
\(121\) −85.0000 −0.702479
\(122\) 90.6311 + 90.6311i 0.742878 + 0.742878i
\(123\) 73.4847 73.4847i 0.597437 0.597437i
\(124\) 200.000i 1.61290i
\(125\) 0 0
\(126\) −90.0000 −0.714286
\(127\) −44.0908 44.0908i −0.347172 0.347172i 0.511883 0.859055i \(-0.328948\pi\)
−0.859055 + 0.511883i \(0.828948\pi\)
\(128\) 156.767 156.767i 1.22474 1.22474i
\(129\) 147.000i 1.13953i
\(130\) 0 0
\(131\) 108.000 0.824427 0.412214 0.911087i \(-0.364756\pi\)
0.412214 + 0.911087i \(0.364756\pi\)
\(132\) −58.7878 58.7878i −0.445362 0.445362i
\(133\) −140.846 + 140.846i −1.05899 + 1.05899i
\(134\) 126.000i 0.940299i
\(135\) 0 0
\(136\) 336.000 2.47059
\(137\) 120.025 + 120.025i 0.876095 + 0.876095i 0.993128 0.117033i \(-0.0373384\pi\)
−0.117033 + 0.993128i \(0.537338\pi\)
\(138\) −73.4847 + 73.4847i −0.532498 + 0.532498i
\(139\) 58.0000i 0.417266i −0.977994 0.208633i \(-0.933099\pi\)
0.977994 0.208633i \(-0.0669014\pi\)
\(140\) 0 0
\(141\) −18.0000 −0.127660
\(142\) −323.333 323.333i −2.27699 2.27699i
\(143\) 22.0454 22.0454i 0.154164 0.154164i
\(144\) 48.0000i 0.333333i
\(145\) 0 0
\(146\) 120.000 0.821918
\(147\) −31.8434 31.8434i −0.216622 0.216622i
\(148\) 195.959 195.959i 1.32405 1.32405i
\(149\) 186.000i 1.24832i −0.781296 0.624161i \(-0.785441\pi\)
0.781296 0.624161i \(-0.214559\pi\)
\(150\) 0 0
\(151\) −83.0000 −0.549669 −0.274834 0.961492i \(-0.588623\pi\)
−0.274834 + 0.961492i \(0.588623\pi\)
\(152\) 225.353 + 225.353i 1.48259 + 1.48259i
\(153\) 51.4393 51.4393i 0.336204 0.336204i
\(154\) 180.000i 1.16883i
\(155\) 0 0
\(156\) −72.0000 −0.461538
\(157\) −45.3156 45.3156i −0.288634 0.288634i 0.547906 0.836540i \(-0.315425\pi\)
−0.836540 + 0.547906i \(0.815425\pi\)
\(158\) 24.4949 24.4949i 0.155031 0.155031i
\(159\) 60.0000i 0.377358i
\(160\) 0 0
\(161\) −150.000 −0.931677
\(162\) 22.0454 + 22.0454i 0.136083 + 0.136083i
\(163\) 99.2043 99.2043i 0.608616 0.608616i −0.333969 0.942584i \(-0.608388\pi\)
0.942584 + 0.333969i \(0.108388\pi\)
\(164\) 480.000i 2.92683i
\(165\) 0 0
\(166\) −12.0000 −0.0722892
\(167\) −97.9796 97.9796i −0.586704 0.586704i 0.350033 0.936737i \(-0.386170\pi\)
−0.936737 + 0.350033i \(0.886170\pi\)
\(168\) −146.969 + 146.969i −0.874818 + 0.874818i
\(169\) 142.000i 0.840237i
\(170\) 0 0
\(171\) 69.0000 0.403509
\(172\) 480.100 + 480.100i 2.79128 + 2.79128i
\(173\) 173.914 173.914i 1.00528 1.00528i 0.00529594 0.999986i \(-0.498314\pi\)
0.999986 0.00529594i \(-0.00168576\pi\)
\(174\) 36.0000i 0.206897i
\(175\) 0 0
\(176\) −96.0000 −0.545455
\(177\) 22.0454 + 22.0454i 0.124550 + 0.124550i
\(178\) −323.333 + 323.333i −1.81648 + 1.81648i
\(179\) 150.000i 0.837989i 0.907989 + 0.418994i \(0.137617\pi\)
−0.907989 + 0.418994i \(0.862383\pi\)
\(180\) 0 0
\(181\) −215.000 −1.18785 −0.593923 0.804522i \(-0.702421\pi\)
−0.593923 + 0.804522i \(0.702421\pi\)
\(182\) −110.227 110.227i −0.605643 0.605643i
\(183\) 45.3156 45.3156i 0.247626 0.247626i
\(184\) 240.000i 1.30435i
\(185\) 0 0
\(186\) 150.000 0.806452
\(187\) 102.879 + 102.879i 0.550153 + 0.550153i
\(188\) −58.7878 + 58.7878i −0.312701 + 0.312701i
\(189\) 45.0000i 0.238095i
\(190\) 0 0
\(191\) −234.000 −1.22513 −0.612565 0.790420i \(-0.709862\pi\)
−0.612565 + 0.790420i \(0.709862\pi\)
\(192\) −78.3837 78.3837i −0.408248 0.408248i
\(193\) −64.9115 + 64.9115i −0.336329 + 0.336329i −0.854984 0.518655i \(-0.826433\pi\)
0.518655 + 0.854984i \(0.326433\pi\)
\(194\) 114.000i 0.587629i
\(195\) 0 0
\(196\) −208.000 −1.06122
\(197\) −193.510 193.510i −0.982283 0.982283i 0.0175631 0.999846i \(-0.494409\pi\)
−0.999846 + 0.0175631i \(0.994409\pi\)
\(198\) −44.0908 + 44.0908i −0.222681 + 0.222681i
\(199\) 11.0000i 0.0552764i −0.999618 0.0276382i \(-0.991201\pi\)
0.999618 0.0276382i \(-0.00879863\pi\)
\(200\) 0 0
\(201\) 63.0000 0.313433
\(202\) −235.151 235.151i −1.16411 1.16411i
\(203\) −36.7423 + 36.7423i −0.180997 + 0.180997i
\(204\) 336.000i 1.64706i
\(205\) 0 0
\(206\) 96.0000 0.466019
\(207\) 36.7423 + 36.7423i 0.177499 + 0.177499i
\(208\) −58.7878 + 58.7878i −0.282633 + 0.282633i
\(209\) 138.000i 0.660287i
\(210\) 0 0
\(211\) −85.0000 −0.402844 −0.201422 0.979505i \(-0.564556\pi\)
−0.201422 + 0.979505i \(0.564556\pi\)
\(212\) −195.959 195.959i −0.924336 0.924336i
\(213\) −161.666 + 161.666i −0.758997 + 0.758997i
\(214\) 144.000i 0.672897i
\(215\) 0 0
\(216\) 72.0000 0.333333
\(217\) 153.093 + 153.093i 0.705498 + 0.705498i
\(218\) −409.065 + 409.065i −1.87644 + 1.87644i
\(219\) 60.0000i 0.273973i
\(220\) 0 0
\(221\) 126.000 0.570136
\(222\) −146.969 146.969i −0.662024 0.662024i
\(223\) 101.654 101.654i 0.455847 0.455847i −0.441443 0.897289i \(-0.645533\pi\)
0.897289 + 0.441443i \(0.145533\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 288.000 1.27434
\(227\) 195.959 + 195.959i 0.863256 + 0.863256i 0.991715 0.128459i \(-0.0410029\pi\)
−0.128459 + 0.991715i \(0.541003\pi\)
\(228\) 225.353 225.353i 0.988391 0.988391i
\(229\) 227.000i 0.991266i 0.868532 + 0.495633i \(0.165064\pi\)
−0.868532 + 0.495633i \(0.834936\pi\)
\(230\) 0 0
\(231\) −90.0000 −0.389610
\(232\) 58.7878 + 58.7878i 0.253395 + 0.253395i
\(233\) 102.879 102.879i 0.441539 0.441539i −0.450990 0.892529i \(-0.648929\pi\)
0.892529 + 0.450990i \(0.148929\pi\)
\(234\) 54.0000i 0.230769i
\(235\) 0 0
\(236\) 144.000 0.610169
\(237\) −12.2474 12.2474i −0.0516770 0.0516770i
\(238\) 514.393 514.393i 2.16131 2.16131i
\(239\) 228.000i 0.953975i 0.878910 + 0.476987i \(0.158271\pi\)
−0.878910 + 0.476987i \(0.841729\pi\)
\(240\) 0 0
\(241\) 191.000 0.792531 0.396266 0.918136i \(-0.370306\pi\)
0.396266 + 0.918136i \(0.370306\pi\)
\(242\) 208.207 + 208.207i 0.860358 + 0.860358i
\(243\) 11.0227 11.0227i 0.0453609 0.0453609i
\(244\) 296.000i 1.21311i
\(245\) 0 0
\(246\) −360.000 −1.46341
\(247\) 84.5074 + 84.5074i 0.342135 + 0.342135i
\(248\) 244.949 244.949i 0.987697 0.987697i
\(249\) 6.00000i 0.0240964i
\(250\) 0 0
\(251\) 192.000 0.764940 0.382470 0.923968i \(-0.375073\pi\)
0.382470 + 0.923968i \(0.375073\pi\)
\(252\) 146.969 + 146.969i 0.583212 + 0.583212i
\(253\) −73.4847 + 73.4847i −0.290453 + 0.290453i
\(254\) 216.000i 0.850394i
\(255\) 0 0
\(256\) −512.000 −2.00000
\(257\) 142.070 + 142.070i 0.552803 + 0.552803i 0.927249 0.374446i \(-0.122167\pi\)
−0.374446 + 0.927249i \(0.622167\pi\)
\(258\) 360.075 360.075i 1.39564 1.39564i
\(259\) 300.000i 1.15830i
\(260\) 0 0
\(261\) 18.0000 0.0689655
\(262\) −264.545 264.545i −1.00971 1.00971i
\(263\) −249.848 + 249.848i −0.949992 + 0.949992i −0.998808 0.0488156i \(-0.984455\pi\)
0.0488156 + 0.998808i \(0.484455\pi\)
\(264\) 144.000i 0.545455i
\(265\) 0 0
\(266\) 690.000 2.59398
\(267\) 161.666 + 161.666i 0.605492 + 0.605492i
\(268\) 205.757 205.757i 0.767751 0.767751i
\(269\) 462.000i 1.71747i −0.512418 0.858736i \(-0.671250\pi\)
0.512418 0.858736i \(-0.328750\pi\)
\(270\) 0 0
\(271\) 446.000 1.64576 0.822878 0.568218i \(-0.192367\pi\)
0.822878 + 0.568218i \(0.192367\pi\)
\(272\) −274.343 274.343i −1.00861 1.00861i
\(273\) −55.1135 + 55.1135i −0.201881 + 0.201881i
\(274\) 588.000i 2.14599i
\(275\) 0 0
\(276\) 240.000 0.869565
\(277\) −175.139 175.139i −0.632269 0.632269i 0.316368 0.948637i \(-0.397537\pi\)
−0.948637 + 0.316368i \(0.897537\pi\)
\(278\) −142.070 + 142.070i −0.511045 + 0.511045i
\(279\) 75.0000i 0.268817i
\(280\) 0 0
\(281\) −546.000 −1.94306 −0.971530 0.236916i \(-0.923864\pi\)
−0.971530 + 0.236916i \(0.923864\pi\)
\(282\) 44.0908 + 44.0908i 0.156350 + 0.156350i
\(283\) −192.285 + 192.285i −0.679452 + 0.679452i −0.959876 0.280424i \(-0.909525\pi\)
0.280424 + 0.959876i \(0.409525\pi\)
\(284\) 1056.00i 3.71831i
\(285\) 0 0
\(286\) −108.000 −0.377622
\(287\) −367.423 367.423i −1.28022 1.28022i
\(288\) 0 0
\(289\) 299.000i 1.03460i
\(290\) 0 0
\(291\) −57.0000 −0.195876
\(292\) −195.959 195.959i −0.671093 0.671093i
\(293\) 276.792 276.792i 0.944684 0.944684i −0.0538645 0.998548i \(-0.517154\pi\)
0.998548 + 0.0538645i \(0.0171539\pi\)
\(294\) 156.000i 0.530612i
\(295\) 0 0
\(296\) −480.000 −1.62162
\(297\) 22.0454 + 22.0454i 0.0742270 + 0.0742270i
\(298\) −455.605 + 455.605i −1.52888 + 1.52888i
\(299\) 90.0000i 0.301003i
\(300\) 0 0
\(301\) 735.000 2.44186
\(302\) 203.308 + 203.308i 0.673204 + 0.673204i
\(303\) −117.576 + 117.576i −0.388038 + 0.388038i
\(304\) 368.000i 1.21053i
\(305\) 0 0
\(306\) −252.000 −0.823529
\(307\) 86.9569 + 86.9569i 0.283247 + 0.283247i 0.834403 0.551155i \(-0.185813\pi\)
−0.551155 + 0.834403i \(0.685813\pi\)
\(308\) −293.939 + 293.939i −0.954347 + 0.954347i
\(309\) 48.0000i 0.155340i
\(310\) 0 0
\(311\) −294.000 −0.945338 −0.472669 0.881240i \(-0.656709\pi\)
−0.472669 + 0.881240i \(0.656709\pi\)
\(312\) 88.1816 + 88.1816i 0.282633 + 0.282633i
\(313\) 393.143 393.143i 1.25605 1.25605i 0.303085 0.952964i \(-0.401984\pi\)
0.952964 0.303085i \(-0.0980165\pi\)
\(314\) 222.000i 0.707006i
\(315\) 0 0
\(316\) −80.0000 −0.253165
\(317\) 93.0806 + 93.0806i 0.293630 + 0.293630i 0.838512 0.544883i \(-0.183426\pi\)
−0.544883 + 0.838512i \(0.683426\pi\)
\(318\) −146.969 + 146.969i −0.462168 + 0.462168i
\(319\) 36.0000i 0.112853i
\(320\) 0 0
\(321\) 72.0000 0.224299
\(322\) 367.423 + 367.423i 1.14107 + 1.14107i
\(323\) −394.368 + 394.368i −1.22095 + 1.22095i
\(324\) 72.0000i 0.222222i
\(325\) 0 0
\(326\) −486.000 −1.49080
\(327\) 204.532 + 204.532i 0.625481 + 0.625481i
\(328\) −587.878 + 587.878i −1.79231 + 1.79231i
\(329\) 90.0000i 0.273556i
\(330\) 0 0
\(331\) −178.000 −0.537764 −0.268882 0.963173i \(-0.586654\pi\)
−0.268882 + 0.963173i \(0.586654\pi\)
\(332\) 19.5959 + 19.5959i 0.0590238 + 0.0590238i
\(333\) −73.4847 + 73.4847i −0.220675 + 0.220675i
\(334\) 480.000i 1.43713i
\(335\) 0 0
\(336\) 240.000 0.714286
\(337\) −150.644 150.644i −0.447014 0.447014i 0.447347 0.894361i \(-0.352369\pi\)
−0.894361 + 0.447347i \(0.852369\pi\)
\(338\) 347.828 347.828i 1.02908 1.02908i
\(339\) 144.000i 0.424779i
\(340\) 0 0
\(341\) 150.000 0.439883
\(342\) −169.015 169.015i −0.494195 0.494195i
\(343\) 140.846 140.846i 0.410629 0.410629i
\(344\) 1176.00i 3.41860i
\(345\) 0 0
\(346\) −852.000 −2.46243
\(347\) −374.772 374.772i −1.08003 1.08003i −0.996505 0.0835290i \(-0.973381\pi\)
−0.0835290 0.996505i \(-0.526619\pi\)
\(348\) 58.7878 58.7878i 0.168930 0.168930i
\(349\) 514.000i 1.47278i −0.676558 0.736390i \(-0.736529\pi\)
0.676558 0.736390i \(-0.263471\pi\)
\(350\) 0 0
\(351\) 27.0000 0.0769231
\(352\) 0 0
\(353\) 242.499 242.499i 0.686967 0.686967i −0.274593 0.961561i \(-0.588543\pi\)
0.961561 + 0.274593i \(0.0885432\pi\)
\(354\) 108.000i 0.305085i
\(355\) 0 0
\(356\) 1056.00 2.96629
\(357\) −257.196 257.196i −0.720438 0.720438i
\(358\) 367.423 367.423i 1.02632 1.02632i
\(359\) 648.000i 1.80501i −0.430675 0.902507i \(-0.641725\pi\)
0.430675 0.902507i \(-0.358275\pi\)
\(360\) 0 0
\(361\) −168.000 −0.465374
\(362\) 526.640 + 526.640i 1.45481 + 1.45481i
\(363\) 104.103 104.103i 0.286786 0.286786i
\(364\) 360.000i 0.989011i
\(365\) 0 0
\(366\) −222.000 −0.606557
\(367\) 143.295 + 143.295i 0.390450 + 0.390450i 0.874848 0.484398i \(-0.160961\pi\)
−0.484398 + 0.874848i \(0.660961\pi\)
\(368\) 195.959 195.959i 0.532498 0.532498i
\(369\) 180.000i 0.487805i
\(370\) 0 0
\(371\) −300.000 −0.808625
\(372\) −244.949 244.949i −0.658465 0.658465i
\(373\) 35.5176 35.5176i 0.0952215 0.0952215i −0.657891 0.753113i \(-0.728551\pi\)
0.753113 + 0.657891i \(0.228551\pi\)
\(374\) 504.000i 1.34759i
\(375\) 0 0
\(376\) 144.000 0.382979
\(377\) 22.0454 + 22.0454i 0.0584759 + 0.0584759i
\(378\) 110.227 110.227i 0.291606 0.291606i
\(379\) 215.000i 0.567282i 0.958930 + 0.283641i \(0.0915425\pi\)
−0.958930 + 0.283641i \(0.908458\pi\)
\(380\) 0 0
\(381\) 108.000 0.283465
\(382\) 573.181 + 573.181i 1.50047 + 1.50047i
\(383\) 19.5959 19.5959i 0.0511643 0.0511643i −0.681062 0.732226i \(-0.738481\pi\)
0.732226 + 0.681062i \(0.238481\pi\)
\(384\) 384.000i 1.00000i
\(385\) 0 0
\(386\) 318.000 0.823834
\(387\) −180.037 180.037i −0.465213 0.465213i
\(388\) −186.161 + 186.161i −0.479797 + 0.479797i
\(389\) 192.000i 0.493573i 0.969070 + 0.246787i \(0.0793747\pi\)
−0.969070 + 0.246787i \(0.920625\pi\)
\(390\) 0 0
\(391\) −420.000 −1.07417
\(392\) 254.747 + 254.747i 0.649865 + 0.649865i
\(393\) −132.272 + 132.272i −0.336571 + 0.336571i
\(394\) 948.000i 2.40609i
\(395\) 0 0
\(396\) 144.000 0.363636
\(397\) −366.199 366.199i −0.922415 0.922415i 0.0747848 0.997200i \(-0.476173\pi\)
−0.997200 + 0.0747848i \(0.976173\pi\)
\(398\) −26.9444 + 26.9444i −0.0676995 + 0.0676995i
\(399\) 345.000i 0.864662i
\(400\) 0 0
\(401\) 228.000 0.568579 0.284289 0.958739i \(-0.408242\pi\)
0.284289 + 0.958739i \(0.408242\pi\)
\(402\) −154.318 154.318i −0.383875 0.383875i
\(403\) 91.8559 91.8559i 0.227930 0.227930i
\(404\) 768.000i 1.90099i
\(405\) 0 0
\(406\) 180.000 0.443350
\(407\) −146.969 146.969i −0.361104 0.361104i
\(408\) −411.514 + 411.514i −1.00861 + 1.00861i
\(409\) 707.000i 1.72861i 0.502971 + 0.864303i \(0.332240\pi\)
−0.502971 + 0.864303i \(0.667760\pi\)
\(410\) 0 0
\(411\) −294.000 −0.715328
\(412\) −156.767 156.767i −0.380503 0.380503i
\(413\) 110.227 110.227i 0.266894 0.266894i
\(414\) 180.000i 0.434783i
\(415\) 0 0
\(416\) 0 0
\(417\) 71.0352 + 71.0352i 0.170348 + 0.170348i
\(418\) 338.030 338.030i 0.808683 0.808683i
\(419\) 48.0000i 0.114558i 0.998358 + 0.0572792i \(0.0182425\pi\)
−0.998358 + 0.0572792i \(0.981757\pi\)
\(420\) 0 0
\(421\) 514.000 1.22090 0.610451 0.792054i \(-0.290988\pi\)
0.610451 + 0.792054i \(0.290988\pi\)
\(422\) 208.207 + 208.207i 0.493381 + 0.493381i
\(423\) 22.0454 22.0454i 0.0521168 0.0521168i
\(424\) 480.000i 1.13208i
\(425\) 0 0
\(426\) 792.000 1.85915
\(427\) −226.578 226.578i −0.530627 0.530627i
\(428\) 235.151 235.151i 0.549418 0.549418i
\(429\) 54.0000i 0.125874i
\(430\) 0 0
\(431\) 30.0000 0.0696056 0.0348028 0.999394i \(-0.488920\pi\)
0.0348028 + 0.999394i \(0.488920\pi\)
\(432\) −58.7878 58.7878i −0.136083 0.136083i
\(433\) −353.951 + 353.951i −0.817439 + 0.817439i −0.985736 0.168297i \(-0.946173\pi\)
0.168297 + 0.985736i \(0.446173\pi\)
\(434\) 750.000i 1.72811i
\(435\) 0 0
\(436\) 1336.00 3.06422
\(437\) −281.691 281.691i −0.644603 0.644603i
\(438\) −146.969 + 146.969i −0.335547 + 0.335547i
\(439\) 575.000i 1.30979i −0.755718 0.654897i \(-0.772712\pi\)
0.755718 0.654897i \(-0.227288\pi\)
\(440\) 0 0
\(441\) 78.0000 0.176871
\(442\) −308.636 308.636i −0.698271 0.698271i
\(443\) −112.677 + 112.677i −0.254349 + 0.254349i −0.822751 0.568402i \(-0.807562\pi\)
0.568402 + 0.822751i \(0.307562\pi\)
\(444\) 480.000i 1.08108i
\(445\) 0 0
\(446\) −498.000 −1.11659
\(447\) 227.803 + 227.803i 0.509625 + 0.509625i
\(448\) −391.918 + 391.918i −0.874818 + 0.874818i
\(449\) 204.000i 0.454343i 0.973855 + 0.227171i \(0.0729478\pi\)
−0.973855 + 0.227171i \(0.927052\pi\)
\(450\) 0 0
\(451\) −360.000 −0.798226
\(452\) −470.302 470.302i −1.04049 1.04049i
\(453\) 101.654 101.654i 0.224401 0.224401i
\(454\) 960.000i 2.11454i
\(455\) 0 0
\(456\) −552.000 −1.21053
\(457\) 440.908 + 440.908i 0.964788 + 0.964788i 0.999401 0.0346127i \(-0.0110198\pi\)
−0.0346127 + 0.999401i \(0.511020\pi\)
\(458\) 556.034 556.034i 1.21405 1.21405i
\(459\) 126.000i 0.274510i
\(460\) 0 0
\(461\) 132.000 0.286334 0.143167 0.989699i \(-0.454271\pi\)
0.143167 + 0.989699i \(0.454271\pi\)
\(462\) 220.454 + 220.454i 0.477173 + 0.477173i
\(463\) −436.009 + 436.009i −0.941704 + 0.941704i −0.998392 0.0566875i \(-0.981946\pi\)
0.0566875 + 0.998392i \(0.481946\pi\)
\(464\) 96.0000i 0.206897i
\(465\) 0 0
\(466\) −504.000 −1.08155
\(467\) 276.792 + 276.792i 0.592703 + 0.592703i 0.938361 0.345658i \(-0.112344\pi\)
−0.345658 + 0.938361i \(0.612344\pi\)
\(468\) 88.1816 88.1816i 0.188422 0.188422i
\(469\) 315.000i 0.671642i
\(470\) 0 0
\(471\) 111.000 0.235669
\(472\) −176.363 176.363i −0.373651 0.373651i
\(473\) 360.075 360.075i 0.761258 0.761258i
\(474\) 60.0000i 0.126582i
\(475\) 0 0
\(476\) −1680.00 −3.52941
\(477\) 73.4847 + 73.4847i 0.154056 + 0.154056i
\(478\) 558.484 558.484i 1.16838 1.16838i
\(479\) 810.000i 1.69102i 0.533957 + 0.845511i \(0.320704\pi\)
−0.533957 + 0.845511i \(0.679296\pi\)
\(480\) 0 0
\(481\) −180.000 −0.374220
\(482\) −467.853 467.853i −0.970648 0.970648i
\(483\) 183.712 183.712i 0.380356 0.380356i
\(484\) 680.000i 1.40496i
\(485\) 0 0
\(486\) −54.0000 −0.111111
\(487\) 488.673 + 488.673i 1.00344 + 1.00344i 0.999994 + 0.00344166i \(0.00109552\pi\)
0.00344166 + 0.999994i \(0.498904\pi\)
\(488\) −362.524 + 362.524i −0.742878 + 0.742878i
\(489\) 243.000i 0.496933i
\(490\) 0 0
\(491\) 348.000 0.708758 0.354379 0.935102i \(-0.384692\pi\)
0.354379 + 0.935102i \(0.384692\pi\)
\(492\) 587.878 + 587.878i 1.19487 + 1.19487i
\(493\) −102.879 + 102.879i −0.208679 + 0.208679i
\(494\) 414.000i 0.838057i
\(495\) 0 0
\(496\) −400.000 −0.806452
\(497\) 808.332 + 808.332i 1.62642 + 1.62642i
\(498\) 14.6969 14.6969i 0.0295119 0.0295119i
\(499\) 227.000i 0.454910i −0.973789 0.227455i \(-0.926960\pi\)
0.973789 0.227455i \(-0.0730404\pi\)
\(500\) 0 0
\(501\) 240.000 0.479042
\(502\) −470.302 470.302i −0.936857 0.936857i
\(503\) −137.171 + 137.171i −0.272707 + 0.272707i −0.830189 0.557482i \(-0.811767\pi\)
0.557482 + 0.830189i \(0.311767\pi\)
\(504\) 360.000i 0.714286i
\(505\) 0 0
\(506\) 360.000 0.711462
\(507\) −173.914 173.914i −0.343025 0.343025i
\(508\) 352.727 352.727i 0.694344 0.694344i
\(509\) 618.000i 1.21415i −0.794646 0.607073i \(-0.792344\pi\)
0.794646 0.607073i \(-0.207656\pi\)
\(510\) 0 0
\(511\) −300.000 −0.587084
\(512\) 627.069 + 627.069i 1.22474 + 1.22474i
\(513\) −84.5074 + 84.5074i −0.164732 + 0.164732i
\(514\) 696.000i 1.35409i
\(515\) 0 0
\(516\) −1176.00 −2.27907
\(517\) 44.0908 + 44.0908i 0.0852820 + 0.0852820i
\(518\) −734.847 + 734.847i −1.41862 + 1.41862i
\(519\) 426.000i 0.820809i
\(520\) 0 0
\(521\) 690.000 1.32438 0.662188 0.749338i \(-0.269628\pi\)
0.662188 + 0.749338i \(0.269628\pi\)
\(522\) −44.0908 44.0908i −0.0844652 0.0844652i
\(523\) 255.972 255.972i 0.489430 0.489430i −0.418697 0.908126i \(-0.637513\pi\)
0.908126 + 0.418697i \(0.137513\pi\)
\(524\) 864.000i 1.64885i
\(525\) 0 0
\(526\) 1224.00 2.32700
\(527\) 428.661 + 428.661i 0.813398 + 0.813398i
\(528\) 117.576 117.576i 0.222681 0.222681i
\(529\) 229.000i 0.432892i
\(530\) 0 0
\(531\) −54.0000 −0.101695
\(532\) −1126.77 1126.77i −2.11798 2.11798i
\(533\) −220.454 + 220.454i −0.413610 + 0.413610i
\(534\) 792.000i 1.48315i
\(535\) 0 0
\(536\) −504.000 −0.940299
\(537\) −183.712 183.712i −0.342108 0.342108i
\(538\) −1131.66 + 1131.66i −2.10347 + 2.10347i
\(539\) 156.000i 0.289425i
\(540\) 0 0
\(541\) −325.000 −0.600739 −0.300370 0.953823i \(-0.597110\pi\)
−0.300370 + 0.953823i \(0.597110\pi\)
\(542\) −1092.47 1092.47i −2.01563 2.01563i
\(543\) 263.320 263.320i 0.484936 0.484936i
\(544\) 0 0
\(545\) 0 0
\(546\) 270.000 0.494505
\(547\) −489.898 489.898i −0.895609 0.895609i 0.0994353 0.995044i \(-0.468296\pi\)
−0.995044 + 0.0994353i \(0.968296\pi\)
\(548\) −960.200 + 960.200i −1.75219 + 1.75219i
\(549\) 111.000i 0.202186i
\(550\) 0 0
\(551\) −138.000 −0.250454
\(552\) −293.939 293.939i −0.532498 0.532498i
\(553\) −61.2372 + 61.2372i −0.110736 + 0.110736i
\(554\) 858.000i 1.54874i
\(555\) 0 0
\(556\) 464.000 0.834532
\(557\) −154.318 154.318i −0.277052 0.277052i 0.554879 0.831931i \(-0.312764\pi\)
−0.831931 + 0.554879i \(0.812764\pi\)
\(558\) −183.712 + 183.712i −0.329232 + 0.329232i
\(559\) 441.000i 0.788909i
\(560\) 0 0
\(561\) −252.000 −0.449198
\(562\) 1337.42 + 1337.42i 2.37975 + 2.37975i
\(563\) −609.923 + 609.923i −1.08334 + 1.08334i −0.0871492 + 0.996195i \(0.527776\pi\)
−0.996195 + 0.0871492i \(0.972224\pi\)
\(564\) 144.000i 0.255319i
\(565\) 0 0
\(566\) 942.000 1.66431
\(567\) −55.1135 55.1135i −0.0972020 0.0972020i
\(568\) 1293.33 1293.33i 2.27699 2.27699i
\(569\) 198.000i 0.347979i 0.984748 + 0.173989i \(0.0556659\pi\)
−0.984748 + 0.173989i \(0.944334\pi\)
\(570\) 0 0
\(571\) −169.000 −0.295972 −0.147986 0.988989i \(-0.547279\pi\)
−0.147986 + 0.988989i \(0.547279\pi\)
\(572\) 176.363 + 176.363i 0.308327 + 0.308327i
\(573\) 286.590 286.590i 0.500158 0.500158i
\(574\) 1800.00i 3.13589i
\(575\) 0 0
\(576\) 192.000 0.333333
\(577\) 243.724 + 243.724i 0.422399 + 0.422399i 0.886029 0.463630i \(-0.153453\pi\)
−0.463630 + 0.886029i \(0.653453\pi\)
\(578\) 732.397 732.397i 1.26712 1.26712i
\(579\) 159.000i 0.274611i
\(580\) 0 0
\(581\) 30.0000 0.0516351
\(582\) 139.621 + 139.621i 0.239898 + 0.239898i
\(583\) −146.969 + 146.969i −0.252092 + 0.252092i
\(584\) 480.000i 0.821918i
\(585\) 0 0
\(586\) −1356.00 −2.31399
\(587\) 289.040 + 289.040i 0.492402 + 0.492402i 0.909062 0.416660i \(-0.136800\pi\)
−0.416660 + 0.909062i \(0.636800\pi\)
\(588\) 254.747 254.747i 0.433243 0.433243i
\(589\) 575.000i 0.976231i
\(590\) 0 0
\(591\) 474.000 0.802030
\(592\) 391.918 + 391.918i 0.662024 + 0.662024i
\(593\) 421.312 421.312i 0.710476 0.710476i −0.256159 0.966635i \(-0.582457\pi\)
0.966635 + 0.256159i \(0.0824570\pi\)
\(594\) 108.000i 0.181818i
\(595\) 0 0
\(596\) 1488.00 2.49664
\(597\) 13.4722 + 13.4722i 0.0225665 + 0.0225665i
\(598\) 220.454 220.454i 0.368652 0.368652i
\(599\) 144.000i 0.240401i 0.992750 + 0.120200i \(0.0383537\pi\)
−0.992750 + 0.120200i \(0.961646\pi\)
\(600\) 0 0
\(601\) −899.000 −1.49584 −0.747920 0.663789i \(-0.768947\pi\)
−0.747920 + 0.663789i \(0.768947\pi\)
\(602\) −1800.37 1800.37i −2.99066 2.99066i
\(603\) −77.1589 + 77.1589i −0.127958 + 0.127958i
\(604\) 664.000i 1.09934i
\(605\) 0 0
\(606\) 576.000 0.950495
\(607\) 4.89898 + 4.89898i 0.00807081 + 0.00807081i 0.711131 0.703060i \(-0.248183\pi\)
−0.703060 + 0.711131i \(0.748183\pi\)
\(608\) 0 0
\(609\) 90.0000i 0.147783i
\(610\) 0 0
\(611\) 54.0000 0.0883797
\(612\) 411.514 + 411.514i 0.672409 + 0.672409i
\(613\) 259.646 259.646i 0.423566 0.423566i −0.462864 0.886430i \(-0.653178\pi\)
0.886430 + 0.462864i \(0.153178\pi\)
\(614\) 426.000i 0.693811i
\(615\) 0 0
\(616\) 720.000 1.16883
\(617\) 9.79796 + 9.79796i 0.0158800 + 0.0158800i 0.715002 0.699122i \(-0.246426\pi\)
−0.699122 + 0.715002i \(0.746426\pi\)
\(618\) −117.576 + 117.576i −0.190252 + 0.190252i
\(619\) 637.000i 1.02908i 0.857467 + 0.514540i \(0.172037\pi\)
−0.857467 + 0.514540i \(0.827963\pi\)
\(620\) 0 0
\(621\) −90.0000 −0.144928
\(622\) 720.150 + 720.150i 1.15780 + 1.15780i
\(623\) 808.332 808.332i 1.29748 1.29748i
\(624\) 144.000i 0.230769i
\(625\) 0 0
\(626\) −1926.00 −3.07668
\(627\) −169.015 169.015i −0.269561 0.269561i
\(628\) 362.524 362.524i 0.577268 0.577268i
\(629\) 840.000i 1.33545i
\(630\) 0 0
\(631\) 287.000 0.454834 0.227417 0.973798i \(-0.426972\pi\)
0.227417 + 0.973798i \(0.426972\pi\)
\(632\) 97.9796 + 97.9796i 0.155031 + 0.155031i
\(633\) 104.103 104.103i 0.164460 0.164460i
\(634\) 456.000i 0.719243i
\(635\) 0 0
\(636\) 480.000 0.754717
\(637\) 95.5301 + 95.5301i 0.149969 + 0.149969i
\(638\) 88.1816 88.1816i 0.138216 0.138216i
\(639\) 396.000i 0.619718i
\(640\) 0 0
\(641\) −60.0000 −0.0936037 −0.0468019 0.998904i \(-0.514903\pi\)
−0.0468019 + 0.998904i \(0.514903\pi\)
\(642\) −176.363 176.363i −0.274709 0.274709i
\(643\) −191.060 + 191.060i −0.297139 + 0.297139i −0.839892 0.542753i \(-0.817382\pi\)
0.542753 + 0.839892i \(0.317382\pi\)
\(644\) 1200.00i 1.86335i
\(645\) 0 0
\(646\) 1932.00 2.99071
\(647\) −656.463 656.463i −1.01463 1.01463i −0.999891 0.0147349i \(-0.995310\pi\)
−0.0147349 0.999891i \(-0.504690\pi\)
\(648\) −88.1816 + 88.1816i −0.136083 + 0.136083i
\(649\) 108.000i 0.166410i
\(650\) 0 0
\(651\) −375.000 −0.576037
\(652\) 793.635 + 793.635i 1.21723 + 1.21723i
\(653\) −751.993 + 751.993i −1.15160 + 1.15160i −0.165365 + 0.986232i \(0.552880\pi\)
−0.986232 + 0.165365i \(0.947120\pi\)
\(654\) 1002.00i 1.53211i
\(655\) 0 0
\(656\) 960.000 1.46341
\(657\) 73.4847 + 73.4847i 0.111849 + 0.111849i
\(658\) 220.454 220.454i 0.335037 0.335037i
\(659\) 420.000i 0.637329i 0.947868 + 0.318665i \(0.103234\pi\)
−0.947868 + 0.318665i \(0.896766\pi\)
\(660\) 0 0
\(661\) −158.000 −0.239032 −0.119516 0.992832i \(-0.538134\pi\)
−0.119516 + 0.992832i \(0.538134\pi\)
\(662\) 436.009 + 436.009i 0.658624 + 0.658624i
\(663\) −154.318 + 154.318i −0.232757 + 0.232757i
\(664\) 48.0000i 0.0722892i
\(665\) 0 0
\(666\) 360.000 0.540541
\(667\) −73.4847 73.4847i −0.110172 0.110172i
\(668\) 783.837 783.837i 1.17341 1.17341i
\(669\) 249.000i 0.372197i
\(670\) 0 0
\(671\) −222.000 −0.330849
\(672\) 0 0
\(673\) 122.474 122.474i 0.181983 0.181983i −0.610236 0.792219i \(-0.708926\pi\)
0.792219 + 0.610236i \(0.208926\pi\)
\(674\) 738.000i 1.09496i
\(675\) 0 0
\(676\) −1136.00 −1.68047
\(677\) −242.499 242.499i −0.358197 0.358197i 0.504951 0.863148i \(-0.331511\pi\)
−0.863148 + 0.504951i \(0.831511\pi\)
\(678\) −352.727 + 352.727i −0.520246 + 0.520246i
\(679\) 285.000i 0.419735i
\(680\) 0 0
\(681\) −480.000 −0.704846
\(682\) −367.423 367.423i −0.538744 0.538744i
\(683\) 19.5959 19.5959i 0.0286909 0.0286909i −0.692616 0.721307i \(-0.743542\pi\)
0.721307 + 0.692616i \(0.243542\pi\)
\(684\) 552.000i 0.807018i
\(685\) 0 0
\(686\) −690.000 −1.00583
\(687\) −278.017 278.017i −0.404683 0.404683i
\(688\) −960.200 + 960.200i −1.39564 + 1.39564i
\(689\) 180.000i 0.261248i
\(690\) 0 0
\(691\) −74.0000 −0.107091 −0.0535456 0.998565i \(-0.517052\pi\)
−0.0535456 + 0.998565i \(0.517052\pi\)
\(692\) 1391.31 + 1391.31i 2.01056 + 2.01056i
\(693\) 110.227 110.227i 0.159058 0.159058i
\(694\) 1836.00i 2.64553i
\(695\) 0 0
\(696\) −144.000 −0.206897
\(697\) −1028.79 1028.79i −1.47602 1.47602i
\(698\) −1259.04 + 1259.04i −1.80378 + 1.80378i
\(699\) 252.000i 0.360515i
\(700\) 0 0
\(701\) −102.000 −0.145506 −0.0727532 0.997350i \(-0.523179\pi\)
−0.0727532 + 0.997350i \(0.523179\pi\)
\(702\) −66.1362 66.1362i −0.0942111 0.0942111i
\(703\) 563.383 563.383i 0.801398 0.801398i
\(704\) 384.000i 0.545455i
\(705\) 0 0
\(706\) −1188.00 −1.68272
\(707\) 587.878 + 587.878i 0.831510 + 0.831510i
\(708\) −176.363 + 176.363i −0.249101 + 0.249101i
\(709\) 817.000i 1.15233i −0.817334 0.576164i \(-0.804549\pi\)
0.817334 0.576164i \(-0.195451\pi\)
\(710\) 0 0
\(711\) 30.0000 0.0421941
\(712\) −1293.33 1293.33i −1.81648 1.81648i
\(713\) −306.186 + 306.186i −0.429434 + 0.429434i
\(714\) 1260.00i 1.76471i
\(715\) 0 0
\(716\) −1200.00 −1.67598
\(717\) −279.242 279.242i −0.389459 0.389459i
\(718\) −1587.27 + 1587.27i −2.21068 + 2.21068i
\(719\) 6.00000i 0.00834492i −0.999991 0.00417246i \(-0.998672\pi\)
0.999991 0.00417246i \(-0.00132814\pi\)
\(720\) 0 0
\(721\) −240.000 −0.332871
\(722\) 411.514 + 411.514i 0.569964 + 0.569964i
\(723\) −233.926 + 233.926i −0.323549 + 0.323549i
\(724\) 1720.00i 2.37569i
\(725\) 0 0
\(726\) −510.000 −0.702479
\(727\) −45.3156 45.3156i −0.0623323 0.0623323i 0.675253 0.737586i \(-0.264034\pi\)
−0.737586 + 0.675253i \(0.764034\pi\)
\(728\) 440.908 440.908i 0.605643 0.605643i
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) 2058.00 2.81532
\(732\) 362.524 + 362.524i 0.495252 + 0.495252i
\(733\) −484.999 + 484.999i −0.661663 + 0.661663i −0.955772 0.294109i \(-0.904977\pi\)
0.294109 + 0.955772i \(0.404977\pi\)
\(734\) 702.000i 0.956403i
\(735\) 0 0
\(736\) 0 0
\(737\) −154.318 154.318i −0.209387 0.209387i
\(738\) 440.908 440.908i 0.597437 0.597437i
\(739\) 298.000i 0.403248i −0.979463 0.201624i \(-0.935378\pi\)
0.979463 0.201624i \(-0.0646218\pi\)
\(740\) 0 0
\(741\) −207.000 −0.279352
\(742\) 734.847 + 734.847i 0.990360 + 0.990360i
\(743\) 249.848 249.848i 0.336269 0.336269i −0.518692 0.854961i \(-0.673581\pi\)
0.854961 + 0.518692i \(0.173581\pi\)
\(744\) 600.000i 0.806452i
\(745\) 0 0
\(746\) −174.000 −0.233244
\(747\) −7.34847 7.34847i −0.00983731 0.00983731i
\(748\) −823.029 + 823.029i −1.10031 + 1.10031i
\(749\) 360.000i 0.480641i
\(750\) 0 0
\(751\) 1186.00 1.57923 0.789614 0.613604i \(-0.210281\pi\)
0.789614 + 0.613604i \(0.210281\pi\)
\(752\) −117.576 117.576i −0.156350 0.156350i
\(753\) −235.151 + 235.151i −0.312286 + 0.312286i
\(754\) 108.000i 0.143236i
\(755\) 0 0
\(756\) −360.000 −0.476190
\(757\) −743.420 743.420i −0.982061 0.982061i 0.0177810 0.999842i \(-0.494340\pi\)
−0.999842 + 0.0177810i \(0.994340\pi\)
\(758\) 526.640 526.640i 0.694776 0.694776i
\(759\) 180.000i 0.237154i
\(760\) 0 0
\(761\) −576.000 −0.756899 −0.378449 0.925622i \(-0.623543\pi\)
−0.378449 + 0.925622i \(0.623543\pi\)
\(762\) −264.545 264.545i −0.347172 0.347172i
\(763\) 1022.66 1022.66i 1.34032 1.34032i
\(764\) 1872.00i 2.45026i
\(765\) 0 0
\(766\) −96.0000 −0.125326
\(767\) −66.1362 66.1362i −0.0862271 0.0862271i
\(768\) 627.069 627.069i 0.816497 0.816497i
\(769\) 491.000i 0.638492i −0.947672 0.319246i \(-0.896570\pi\)
0.947672 0.319246i \(-0.103430\pi\)
\(770\) 0 0
\(771\) −348.000 −0.451362
\(772\) −519.292 519.292i −0.672658 0.672658i
\(773\) −519.292 + 519.292i −0.671788 + 0.671788i −0.958128 0.286340i \(-0.907561\pi\)
0.286340 + 0.958128i \(0.407561\pi\)
\(774\) 882.000i 1.13953i
\(775\) 0 0
\(776\) 456.000 0.587629
\(777\) 367.423 + 367.423i 0.472874 + 0.472874i
\(778\) 470.302 470.302i 0.604501 0.604501i
\(779\) 1380.00i 1.77150i
\(780\) 0 0
\(781\) 792.000 1.01408
\(782\) 1028.79 + 1028.79i 1.31558 + 1.31558i
\(783\) −22.0454 + 22.0454i −0.0281551 + 0.0281551i
\(784\) 416.000i 0.530612i
\(785\) 0 0
\(786\) 648.000 0.824427
\(787\) 123.699 + 123.699i 0.157178 + 0.157178i 0.781315 0.624137i \(-0.214549\pi\)
−0.624137 + 0.781315i \(0.714549\pi\)
\(788\) 1548.08 1548.08i 1.96457 1.96457i
\(789\) 612.000i 0.775665i
\(790\) 0 0
\(791\) −720.000 −0.910240
\(792\) −176.363 176.363i −0.222681 0.222681i
\(793\) −135.947 + 135.947i −0.171433 + 0.171433i
\(794\) 1794.00i 2.25945i
\(795\) 0 0
\(796\) 88.0000 0.110553
\(797\) 460.504 + 460.504i 0.577797 + 0.577797i 0.934296 0.356499i \(-0.116030\pi\)
−0.356499 + 0.934296i \(0.616030\pi\)
\(798\) −845.074 + 845.074i −1.05899 + 1.05899i
\(799\) 252.000i 0.315394i
\(800\) 0 0
\(801\) −396.000 −0.494382
\(802\) −558.484 558.484i −0.696364 0.696364i
\(803\) −146.969 + 146.969i −0.183025 + 0.183025i
\(804\) 504.000i 0.626866i
\(805\) 0 0
\(806\) −450.000 −0.558313
\(807\) 565.832 + 565.832i 0.701155 + 0.701155i
\(808\) 940.604 940.604i 1.16411 1.16411i
\(809\) 900.000i 1.11248i 0.831020 + 0.556242i \(0.187757\pi\)
−0.831020 + 0.556242i \(0.812243\pi\)
\(810\) 0 0
\(811\) 1477.00 1.82121 0.910604 0.413280i \(-0.135617\pi\)
0.910604 + 0.413280i \(0.135617\pi\)
\(812\) −293.939 293.939i −0.361994 0.361994i
\(813\) −546.236 + 546.236i −0.671877 + 0.671877i
\(814\) 720.000i 0.884521i
\(815\) 0 0
\(816\) 672.000 0.823529
\(817\) 1380.29 + 1380.29i 1.68946 + 1.68946i
\(818\) 1731.79 1731.79i 2.11710 2.11710i
\(819\) 135.000i 0.164835i
\(820\) 0 0
\(821\) −786.000 −0.957369 −0.478685 0.877987i \(-0.658886\pi\)
−0.478685 + 0.877987i \(0.658886\pi\)
\(822\) 720.150 + 720.150i 0.876095 + 0.876095i
\(823\) −371.098 + 371.098i −0.450909 + 0.450909i −0.895656 0.444747i \(-0.853293\pi\)
0.444747 + 0.895656i \(0.353293\pi\)
\(824\) 384.000i 0.466019i
\(825\) 0 0
\(826\) −540.000 −0.653753
\(827\) 788.736 + 788.736i 0.953731 + 0.953731i 0.998976 0.0452447i \(-0.0144068\pi\)
−0.0452447 + 0.998976i \(0.514407\pi\)
\(828\) −293.939 + 293.939i −0.354999 + 0.354999i
\(829\) 170.000i 0.205066i 0.994730 + 0.102533i \(0.0326948\pi\)
−0.994730 + 0.102533i \(0.967305\pi\)
\(830\) 0 0
\(831\) 429.000 0.516245
\(832\) 235.151 + 235.151i 0.282633 + 0.282633i
\(833\) −445.807 + 445.807i −0.535183 + 0.535183i
\(834\) 348.000i 0.417266i
\(835\) 0 0
\(836\) −1104.00 −1.32057
\(837\) 91.8559 + 91.8559i 0.109744 + 0.109744i
\(838\) 117.576 117.576i 0.140305 0.140305i
\(839\) 990.000i 1.17998i −0.807412 0.589988i \(-0.799132\pi\)
0.807412 0.589988i \(-0.200868\pi\)
\(840\) 0 0
\(841\) 805.000 0.957194
\(842\) −1259.04 1259.04i −1.49529 1.49529i
\(843\) 668.711 668.711i 0.793251 0.793251i
\(844\) 680.000i 0.805687i
\(845\) 0 0
\(846\) −108.000 −0.127660
\(847\) −520.517 520.517i −0.614541 0.614541i
\(848\) 391.918 391.918i 0.462168 0.462168i
\(849\) 471.000i 0.554770i
\(850\) 0 0
\(851\) 600.000 0.705053
\(852\) −1293.33 1293.33i −1.51799 1.51799i
\(853\) 723.824 723.824i 0.848563 0.848563i −0.141391 0.989954i \(-0.545157\pi\)
0.989954 + 0.141391i \(0.0451574\pi\)
\(854\) 1110.00i 1.29977i
\(855\) 0 0
\(856\) −576.000 −0.672897
\(857\) −739.746 739.746i −0.863181 0.863181i 0.128525 0.991706i \(-0.458976\pi\)
−0.991706 + 0.128525i \(0.958976\pi\)
\(858\) 132.272 132.272i 0.154164 0.154164i
\(859\) 1510.00i 1.75786i 0.476953 + 0.878929i \(0.341741\pi\)
−0.476953 + 0.878929i \(0.658259\pi\)
\(860\) 0 0
\(861\) 900.000 1.04530
\(862\) −73.4847 73.4847i −0.0852491 0.0852491i
\(863\) 372.322 372.322i 0.431428 0.431428i −0.457686 0.889114i \(-0.651322\pi\)
0.889114 + 0.457686i \(0.151322\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1734.00 2.00231
\(867\) −366.199 366.199i −0.422375 0.422375i
\(868\) −1224.74 + 1224.74i −1.41100 + 1.41100i
\(869\) 60.0000i 0.0690449i
\(870\) 0 0
\(871\) −189.000 −0.216992
\(872\) −1636.26 1636.26i −1.87644 1.87644i
\(873\) 69.8105 69.8105i 0.0799662 0.0799662i
\(874\) 1380.00i 1.57895i
\(875\) 0 0
\(876\) 480.000 0.547945
\(877\) 300.062 + 300.062i 0.342147 + 0.342147i 0.857174 0.515027i \(-0.172218\pi\)
−0.515027 + 0.857174i \(0.672218\pi\)
\(878\) −1408.46 + 1408.46i −1.60416 + 1.60416i
\(879\) 678.000i 0.771331i
\(880\) 0 0
\(881\) −216.000 −0.245176 −0.122588 0.992458i \(-0.539119\pi\)
−0.122588 + 0.992458i \(0.539119\pi\)
\(882\) −191.060 191.060i −0.216622 0.216622i
\(883\) −846.299 + 846.299i −0.958436 + 0.958436i −0.999170 0.0407343i \(-0.987030\pi\)
0.0407343 + 0.999170i \(0.487030\pi\)
\(884\) 1008.00i 1.14027i
\(885\) 0 0
\(886\) 552.000 0.623025
\(887\) −996.942 996.942i −1.12395 1.12395i −0.991142 0.132807i \(-0.957601\pi\)
−0.132807 0.991142i \(-0.542399\pi\)
\(888\) 587.878 587.878i 0.662024 0.662024i
\(889\) 540.000i 0.607424i
\(890\) 0 0
\(891\) −54.0000 −0.0606061
\(892\) 813.231 + 813.231i 0.911693 + 0.911693i
\(893\) −169.015 + 169.015i −0.189266 + 0.189266i
\(894\) 1116.00i 1.24832i
\(895\) 0 0
\(896\) 1920.00 2.14286
\(897\) −110.227 110.227i −0.122884 0.122884i
\(898\) 499.696 499.696i 0.556454 0.556454i
\(899\) 150.000i 0.166852i
\(900\) 0 0
\(901\) −840.000 −0.932297
\(902\) 881.816 + 881.816i 0.977623 + 0.977623i
\(903\) −900.187 + 900.187i −0.996885 + 0.996885i
\(904\) 1152.00i 1.27434i
\(905\) 0 0
\(906\) −498.000 −0.549669
\(907\) −53.8888 53.8888i −0.0594143 0.0594143i 0.676775 0.736190i \(-0.263377\pi\)
−0.736190 + 0.676775i \(0.763377\pi\)
\(908\) −1567.67 + 1567.67i −1.72651 + 1.72651i
\(909\) 288.000i 0.316832i
\(910\) 0 0
\(911\) −558.000 −0.612514 −0.306257 0.951949i \(-0.599077\pi\)
−0.306257 + 0.951949i \(0.599077\pi\)
\(912\) 450.706 + 450.706i 0.494195 + 0.494195i
\(913\) 14.6969 14.6969i 0.0160974 0.0160974i
\(914\) 2160.00i 2.36324i
\(915\) 0 0
\(916\) −1816.00 −1.98253
\(917\) 661.362 + 661.362i 0.721224 + 0.721224i
\(918\) 308.636 308.636i 0.336204 0.336204i
\(919\) 755.000i 0.821545i 0.911738 + 0.410773i \(0.134741\pi\)
−0.911738 + 0.410773i \(0.865259\pi\)
\(920\) 0 0
\(921\) −213.000 −0.231270
\(922\) −323.333 323.333i −0.350686 0.350686i
\(923\) 484.999 484.999i 0.525459 0.525459i
\(924\) 720.000i 0.779221i
\(925\) 0 0
\(926\) 2136.00 2.30670
\(927\) 58.7878 + 58.7878i 0.0634172 + 0.0634172i
\(928\) 0 0
\(929\) 762.000i 0.820237i −0.912032 0.410118i \(-0.865487\pi\)
0.912032 0.410118i \(-0.134513\pi\)
\(930\) 0 0
\(931\) −598.000 −0.642320
\(932\) 823.029 + 823.029i 0.883078 + 0.883078i
\(933\) 360.075 360.075i 0.385932 0.385932i
\(934\) 1356.00i 1.45182i
\(935\) 0 0
\(936\) −216.000 −0.230769
\(937\) 388.244 + 388.244i 0.414348 + 0.414348i 0.883250 0.468902i \(-0.155350\pi\)
−0.468902 + 0.883250i \(0.655350\pi\)
\(938\) −771.589 + 771.589i −0.822590 + 0.822590i
\(939\) 963.000i 1.02556i
\(940\) 0 0
\(941\) −690.000 −0.733262 −0.366631 0.930366i \(-0.619489\pi\)
−0.366631 + 0.930366i \(0.619489\pi\)
\(942\) −271.893 271.893i −0.288634 0.288634i
\(943\) 734.847 734.847i 0.779265 0.779265i
\(944\) 288.000i 0.305085i
\(945\) 0 0
\(946\) −1764.00 −1.86469
\(947\) −100.429 100.429i −0.106050 0.106050i 0.652091 0.758141i \(-0.273892\pi\)
−0.758141 + 0.652091i \(0.773892\pi\)
\(948\) 97.9796 97.9796i 0.103354 0.103354i
\(949\) 180.000i 0.189673i
\(950\) 0 0
\(951\) −228.000 −0.239748
\(952\) 2057.57 + 2057.57i 2.16131 + 2.16131i
\(953\) −749.544 + 749.544i −0.786510 + 0.786510i −0.980920 0.194410i \(-0.937721\pi\)
0.194410 + 0.980920i \(0.437721\pi\)
\(954\) 360.000i 0.377358i
\(955\) 0 0
\(956\) −1824.00 −1.90795
\(957\) −44.0908 44.0908i −0.0460719 0.0460719i
\(958\) 1984.09 1984.09i 2.07107 2.07107i
\(959\) 1470.00i 1.53285i
\(960\) 0 0
\(961\) −336.000 −0.349636
\(962\) 440.908 + 440.908i 0.458324 + 0.458324i
\(963\) −88.1816 + 88.1816i −0.0915697 + 0.0915697i
\(964\) 1528.00i 1.58506i
\(965\) 0 0
\(966\) −900.000 −0.931677
\(967\) 4.89898 + 4.89898i 0.00506616 + 0.00506616i 0.709635 0.704569i \(-0.248860\pi\)
−0.704569 + 0.709635i \(0.748860\pi\)
\(968\) −832.827 + 832.827i −0.860358 + 0.860358i
\(969\) 966.000i 0.996904i
\(970\) 0 0
\(971\) 90.0000 0.0926880 0.0463440 0.998926i \(-0.485243\pi\)
0.0463440 + 0.998926i \(0.485243\pi\)
\(972\) 88.1816 + 88.1816i 0.0907218 + 0.0907218i
\(973\) 355.176 355.176i 0.365032 0.365032i
\(974\) 2394.00i 2.45791i
\(975\) 0 0
\(976\) 592.000 0.606557
\(977\) −301.287 301.287i −0.308380 0.308380i 0.535901 0.844281i \(-0.319972\pi\)
−0.844281 + 0.535901i \(0.819972\pi\)
\(978\) 595.226 595.226i 0.608616 0.608616i
\(979\) 792.000i 0.808989i
\(980\) 0 0
\(981\) −501.000 −0.510703
\(982\) −852.422 852.422i −0.868047 0.868047i
\(983\) 465.403 465.403i 0.473452 0.473452i −0.429578 0.903030i \(-0.641338\pi\)
0.903030 + 0.429578i \(0.141338\pi\)
\(984\) 1440.00i 1.46341i
\(985\) 0 0
\(986\) 504.000 0.511156
\(987\) −110.227 110.227i −0.111679 0.111679i
\(988\) −676.059 + 676.059i −0.684270 + 0.684270i
\(989\) 1470.00i 1.48635i
\(990\) 0 0
\(991\) 1067.00 1.07669 0.538345 0.842724i \(-0.319050\pi\)
0.538345 + 0.842724i \(0.319050\pi\)
\(992\) 0 0
\(993\) 218.005 218.005i 0.219541 0.219541i
\(994\) 3960.00i 3.98390i
\(995\) 0 0
\(996\) −48.0000 −0.0481928
\(997\) 279.242 + 279.242i 0.280082 + 0.280082i 0.833142 0.553060i \(-0.186540\pi\)
−0.553060 + 0.833142i \(0.686540\pi\)
\(998\) −556.034 + 556.034i −0.557148 + 0.557148i
\(999\) 180.000i 0.180180i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.f.b.7.1 4
3.2 odd 2 225.3.g.b.82.2 4
4.3 odd 2 1200.3.bg.g.1057.2 4
5.2 odd 4 inner 75.3.f.b.43.2 yes 4
5.3 odd 4 inner 75.3.f.b.43.1 yes 4
5.4 even 2 inner 75.3.f.b.7.2 yes 4
15.2 even 4 225.3.g.b.118.1 4
15.8 even 4 225.3.g.b.118.2 4
15.14 odd 2 225.3.g.b.82.1 4
20.3 even 4 1200.3.bg.g.193.2 4
20.7 even 4 1200.3.bg.g.193.1 4
20.19 odd 2 1200.3.bg.g.1057.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.f.b.7.1 4 1.1 even 1 trivial
75.3.f.b.7.2 yes 4 5.4 even 2 inner
75.3.f.b.43.1 yes 4 5.3 odd 4 inner
75.3.f.b.43.2 yes 4 5.2 odd 4 inner
225.3.g.b.82.1 4 15.14 odd 2
225.3.g.b.82.2 4 3.2 odd 2
225.3.g.b.118.1 4 15.2 even 4
225.3.g.b.118.2 4 15.8 even 4
1200.3.bg.g.193.1 4 20.7 even 4
1200.3.bg.g.193.2 4 20.3 even 4
1200.3.bg.g.1057.1 4 20.19 odd 2
1200.3.bg.g.1057.2 4 4.3 odd 2