Defining parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(75, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 52 | 12 | 40 |
Cusp forms | 28 | 12 | 16 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(75, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
75.3.f.a | $4$ | $2.044$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{3}q^{3}-\beta _{2}q^{4}+3q^{6}+6\beta _{1}q^{7}+\cdots\) |
75.3.f.b | $4$ | $2.044$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta _{1}q^{2}-\beta _{3}q^{3}+8\beta _{2}q^{4}+6q^{6}+\cdots\) |
75.3.f.c | $4$ | $2.044$ | \(\Q(i, \sqrt{6})\) | None | \(4\) | \(0\) | \(0\) | \(-4\) | \(q+(1+\beta _{1}+\beta _{2})q^{2}+\beta _{3}q^{3}+(2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(75, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)