Properties

Label 75.3.f
Level $75$
Weight $3$
Character orbit 75.f
Rep. character $\chi_{75}(7,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $12$
Newform subspaces $3$
Sturm bound $30$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(30\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(75, [\chi])\).

Total New Old
Modular forms 52 12 40
Cusp forms 28 12 16
Eisenstein series 24 0 24

Trace form

\( 12 q + 4 q^{2} + 24 q^{6} - 4 q^{7} - 12 q^{8} - 32 q^{11} - 24 q^{12} + 32 q^{13} - 40 q^{16} + 40 q^{17} + 12 q^{18} - 12 q^{21} - 20 q^{22} - 56 q^{23} - 56 q^{26} - 44 q^{28} + 172 q^{31} + 76 q^{32}+ \cdots + 188 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(75, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
75.3.f.a 75.f 5.c $4$ $2.044$ \(\Q(i, \sqrt{6})\) None 75.3.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}-\beta _{2}q^{4}+3q^{6}+6\beta _{1}q^{7}+\cdots\)
75.3.f.b 75.f 5.c $4$ $2.044$ \(\Q(i, \sqrt{6})\) None 75.3.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+2\beta _{1}q^{2}-\beta _{3}q^{3}+8\beta _{2}q^{4}+6q^{6}+\cdots\)
75.3.f.c 75.f 5.c $4$ $2.044$ \(\Q(i, \sqrt{6})\) None 15.3.f.a \(4\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}+\beta _{2})q^{2}+\beta _{3}q^{3}+(2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(75, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)