Properties

Label 75.3.d.a.74.1
Level $75$
Weight $3$
Character 75.74
Analytic conductor $2.044$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,3,Mod(74,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.74");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 74.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 75.74
Dual form 75.3.d.a.74.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} -4.00000 q^{4} -11.0000i q^{7} -9.00000 q^{9} +O(q^{10})\) \(q-3.00000i q^{3} -4.00000 q^{4} -11.0000i q^{7} -9.00000 q^{9} +12.0000i q^{12} -1.00000i q^{13} +16.0000 q^{16} +37.0000 q^{19} -33.0000 q^{21} +27.0000i q^{27} +44.0000i q^{28} -13.0000 q^{31} +36.0000 q^{36} -26.0000i q^{37} -3.00000 q^{39} -61.0000i q^{43} -48.0000i q^{48} -72.0000 q^{49} +4.00000i q^{52} -111.000i q^{57} +47.0000 q^{61} +99.0000i q^{63} -64.0000 q^{64} +109.000i q^{67} -46.0000i q^{73} -148.000 q^{76} +142.000 q^{79} +81.0000 q^{81} +132.000 q^{84} -11.0000 q^{91} +39.0000i q^{93} +169.000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 18 q^{9} + 32 q^{16} + 74 q^{19} - 66 q^{21} - 26 q^{31} + 72 q^{36} - 6 q^{39} - 144 q^{49} + 94 q^{61} - 128 q^{64} - 296 q^{76} + 284 q^{79} + 162 q^{81} + 264 q^{84} - 22 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) − 3.00000i − 1.00000i
\(4\) −4.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) − 11.0000i − 1.57143i −0.618590 0.785714i \(-0.712296\pi\)
0.618590 0.785714i \(-0.287704\pi\)
\(8\) 0 0
\(9\) −9.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 12.0000i 1.00000i
\(13\) − 1.00000i − 0.0769231i −0.999260 0.0384615i \(-0.987754\pi\)
0.999260 0.0384615i \(-0.0122457\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 37.0000 1.94737 0.973684 0.227901i \(-0.0731864\pi\)
0.973684 + 0.227901i \(0.0731864\pi\)
\(20\) 0 0
\(21\) −33.0000 −1.57143
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 1.00000i
\(28\) 44.0000i 1.57143i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −13.0000 −0.419355 −0.209677 0.977771i \(-0.567241\pi\)
−0.209677 + 0.977771i \(0.567241\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 36.0000 1.00000
\(37\) − 26.0000i − 0.702703i −0.936244 0.351351i \(-0.885722\pi\)
0.936244 0.351351i \(-0.114278\pi\)
\(38\) 0 0
\(39\) −3.00000 −0.0769231
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) − 61.0000i − 1.41860i −0.704904 0.709302i \(-0.749010\pi\)
0.704904 0.709302i \(-0.250990\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) − 48.0000i − 1.00000i
\(49\) −72.0000 −1.46939
\(50\) 0 0
\(51\) 0 0
\(52\) 4.00000i 0.0769231i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 111.000i − 1.94737i
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 47.0000 0.770492 0.385246 0.922814i \(-0.374117\pi\)
0.385246 + 0.922814i \(0.374117\pi\)
\(62\) 0 0
\(63\) 99.0000i 1.57143i
\(64\) −64.0000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 109.000i 1.62687i 0.581659 + 0.813433i \(0.302404\pi\)
−0.581659 + 0.813433i \(0.697596\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) − 46.0000i − 0.630137i −0.949069 0.315068i \(-0.897973\pi\)
0.949069 0.315068i \(-0.102027\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −148.000 −1.94737
\(77\) 0 0
\(78\) 0 0
\(79\) 142.000 1.79747 0.898734 0.438494i \(-0.144488\pi\)
0.898734 + 0.438494i \(0.144488\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 132.000 1.57143
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −11.0000 −0.120879
\(92\) 0 0
\(93\) 39.0000i 0.419355i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 169.000i 1.74227i 0.491045 + 0.871134i \(0.336615\pi\)
−0.491045 + 0.871134i \(0.663385\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 194.000i 1.88350i 0.336321 + 0.941748i \(0.390817\pi\)
−0.336321 + 0.941748i \(0.609183\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) − 108.000i − 1.00000i
\(109\) −143.000 −1.31193 −0.655963 0.754793i \(-0.727737\pi\)
−0.655963 + 0.754793i \(0.727737\pi\)
\(110\) 0 0
\(111\) −78.0000 −0.702703
\(112\) − 176.000i − 1.57143i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9.00000i 0.0769231i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 52.0000 0.419355
\(125\) 0 0
\(126\) 0 0
\(127\) − 146.000i − 1.14961i −0.818292 0.574803i \(-0.805079\pi\)
0.818292 0.574803i \(-0.194921\pi\)
\(128\) 0 0
\(129\) −183.000 −1.41860
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) − 407.000i − 3.06015i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 22.0000 0.158273 0.0791367 0.996864i \(-0.474784\pi\)
0.0791367 + 0.996864i \(0.474784\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −144.000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 216.000i 1.46939i
\(148\) 104.000i 0.702703i
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 227.000 1.50331 0.751656 0.659556i \(-0.229256\pi\)
0.751656 + 0.659556i \(0.229256\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 12.0000 0.0769231
\(157\) − 311.000i − 1.98089i −0.137902 0.990446i \(-0.544036\pi\)
0.137902 0.990446i \(-0.455964\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 299.000i 1.83436i 0.398478 + 0.917178i \(0.369539\pi\)
−0.398478 + 0.917178i \(0.630461\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 168.000 0.994083
\(170\) 0 0
\(171\) −333.000 −1.94737
\(172\) 244.000i 1.41860i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −313.000 −1.72928 −0.864641 0.502390i \(-0.832454\pi\)
−0.864641 + 0.502390i \(0.832454\pi\)
\(182\) 0 0
\(183\) − 141.000i − 0.770492i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 297.000 1.57143
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 192.000i 1.00000i
\(193\) 239.000i 1.23834i 0.785256 + 0.619171i \(0.212531\pi\)
−0.785256 + 0.619171i \(0.787469\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 288.000 1.46939
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 277.000 1.39196 0.695980 0.718061i \(-0.254970\pi\)
0.695980 + 0.718061i \(0.254970\pi\)
\(200\) 0 0
\(201\) 327.000 1.62687
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) − 16.0000i − 0.0769231i
\(209\) 0 0
\(210\) 0 0
\(211\) −253.000 −1.19905 −0.599526 0.800355i \(-0.704644\pi\)
−0.599526 + 0.800355i \(0.704644\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 143.000i 0.658986i
\(218\) 0 0
\(219\) −138.000 −0.630137
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 421.000i − 1.88789i −0.330099 0.943946i \(-0.607082\pi\)
0.330099 0.943946i \(-0.392918\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 444.000i 1.94737i
\(229\) −383.000 −1.67249 −0.836245 0.548357i \(-0.815254\pi\)
−0.836245 + 0.548357i \(0.815254\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 426.000i − 1.79747i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −193.000 −0.800830 −0.400415 0.916334i \(-0.631134\pi\)
−0.400415 + 0.916334i \(0.631134\pi\)
\(242\) 0 0
\(243\) − 243.000i − 1.00000i
\(244\) −188.000 −0.770492
\(245\) 0 0
\(246\) 0 0
\(247\) − 37.0000i − 0.149798i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) − 396.000i − 1.57143i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 256.000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −286.000 −1.10425
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) − 436.000i − 1.62687i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 242.000 0.892989 0.446494 0.894786i \(-0.352672\pi\)
0.446494 + 0.894786i \(0.352672\pi\)
\(272\) 0 0
\(273\) 33.0000i 0.120879i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 529.000i 1.90975i 0.297012 + 0.954874i \(0.404010\pi\)
−0.297012 + 0.954874i \(0.595990\pi\)
\(278\) 0 0
\(279\) 117.000 0.419355
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 59.0000i 0.208481i 0.994552 + 0.104240i \(0.0332411\pi\)
−0.994552 + 0.104240i \(0.966759\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −289.000 −1.00000
\(290\) 0 0
\(291\) 507.000 1.74227
\(292\) 184.000i 0.630137i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −671.000 −2.22924
\(302\) 0 0
\(303\) 0 0
\(304\) 592.000 1.94737
\(305\) 0 0
\(306\) 0 0
\(307\) − 611.000i − 1.99023i −0.0987325 0.995114i \(-0.531479\pi\)
0.0987325 0.995114i \(-0.468521\pi\)
\(308\) 0 0
\(309\) 582.000 1.88350
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 599.000i 1.91374i 0.290520 + 0.956869i \(0.406172\pi\)
−0.290520 + 0.956869i \(0.593828\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −568.000 −1.79747
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −324.000 −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 429.000i 1.31193i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 362.000 1.09366 0.546828 0.837245i \(-0.315835\pi\)
0.546828 + 0.837245i \(0.315835\pi\)
\(332\) 0 0
\(333\) 234.000i 0.702703i
\(334\) 0 0
\(335\) 0 0
\(336\) −528.000 −1.57143
\(337\) 649.000i 1.92582i 0.269830 + 0.962908i \(0.413033\pi\)
−0.269830 + 0.962908i \(0.586967\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 253.000i 0.737609i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 502.000 1.43840 0.719198 0.694805i \(-0.244510\pi\)
0.719198 + 0.694805i \(0.244510\pi\)
\(350\) 0 0
\(351\) 27.0000 0.0769231
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1008.00 2.79224
\(362\) 0 0
\(363\) − 363.000i − 1.00000i
\(364\) 44.0000 0.120879
\(365\) 0 0
\(366\) 0 0
\(367\) − 491.000i − 1.33787i −0.743319 0.668937i \(-0.766749\pi\)
0.743319 0.668937i \(-0.233251\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) − 156.000i − 0.419355i
\(373\) − 121.000i − 0.324397i −0.986758 0.162198i \(-0.948142\pi\)
0.986758 0.162198i \(-0.0518585\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −83.0000 −0.218997 −0.109499 0.993987i \(-0.534925\pi\)
−0.109499 + 0.993987i \(0.534925\pi\)
\(380\) 0 0
\(381\) −438.000 −1.14961
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 549.000i 1.41860i
\(388\) − 676.000i − 1.74227i
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 431.000i − 1.08564i −0.839848 0.542821i \(-0.817356\pi\)
0.839848 0.542821i \(-0.182644\pi\)
\(398\) 0 0
\(399\) −1221.00 −3.06015
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 13.0000i 0.0322581i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −143.000 −0.349633 −0.174817 0.984601i \(-0.555933\pi\)
−0.174817 + 0.984601i \(0.555933\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 776.000i − 1.88350i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 66.0000i − 0.158273i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −358.000 −0.850356 −0.425178 0.905110i \(-0.639789\pi\)
−0.425178 + 0.905110i \(0.639789\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 517.000i − 1.21077i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 432.000i 1.00000i
\(433\) 359.000i 0.829099i 0.910027 + 0.414550i \(0.136061\pi\)
−0.910027 + 0.414550i \(0.863939\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 572.000 1.31193
\(437\) 0 0
\(438\) 0 0
\(439\) −803.000 −1.82916 −0.914579 0.404408i \(-0.867478\pi\)
−0.914579 + 0.404408i \(0.867478\pi\)
\(440\) 0 0
\(441\) 648.000 1.46939
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 312.000 0.702703
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 704.000i 1.57143i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 681.000i − 1.50331i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 814.000i 1.78118i 0.454805 + 0.890591i \(0.349709\pi\)
−0.454805 + 0.890591i \(0.650291\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) − 526.000i − 1.13607i −0.823005 0.568035i \(-0.807704\pi\)
0.823005 0.568035i \(-0.192296\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) − 36.0000i − 0.0769231i
\(469\) 1199.00 2.55650
\(470\) 0 0
\(471\) −933.000 −1.98089
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −26.0000 −0.0540541
\(482\) 0 0
\(483\) 0 0
\(484\) −484.000 −1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 349.000i 0.716632i 0.933600 + 0.358316i \(0.116649\pi\)
−0.933600 + 0.358316i \(0.883351\pi\)
\(488\) 0 0
\(489\) 897.000 1.83436
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −208.000 −0.419355
\(497\) 0 0
\(498\) 0 0
\(499\) 877.000 1.75752 0.878758 0.477269i \(-0.158373\pi\)
0.878758 + 0.477269i \(0.158373\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 504.000i − 0.994083i
\(508\) 584.000i 1.14961i
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) −506.000 −0.990215
\(512\) 0 0
\(513\) 999.000i 1.94737i
\(514\) 0 0
\(515\) 0 0
\(516\) 732.000 1.41860
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 179.000i 0.342256i 0.985249 + 0.171128i \(0.0547412\pi\)
−0.985249 + 0.171128i \(0.945259\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −529.000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 1628.00i 3.06015i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −793.000 −1.46580 −0.732902 0.680334i \(-0.761835\pi\)
−0.732902 + 0.680334i \(0.761835\pi\)
\(542\) 0 0
\(543\) 939.000i 1.72928i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 506.000i − 0.925046i −0.886607 0.462523i \(-0.846944\pi\)
0.886607 0.462523i \(-0.153056\pi\)
\(548\) 0 0
\(549\) −423.000 −0.770492
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) − 1562.00i − 2.82459i
\(554\) 0 0
\(555\) 0 0
\(556\) −88.0000 −0.158273
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) −61.0000 −0.109123
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 891.000i − 1.57143i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 1067.00 1.86865 0.934326 0.356420i \(-0.116003\pi\)
0.934326 + 0.356420i \(0.116003\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 576.000 1.00000
\(577\) − 71.0000i − 0.123050i −0.998106 0.0615251i \(-0.980404\pi\)
0.998106 0.0615251i \(-0.0195964\pi\)
\(578\) 0 0
\(579\) 717.000 1.23834
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) − 864.000i − 1.46939i
\(589\) −481.000 −0.816638
\(590\) 0 0
\(591\) 0 0
\(592\) − 416.000i − 0.702703i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 831.000i − 1.39196i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −673.000 −1.11980 −0.559900 0.828560i \(-0.689161\pi\)
−0.559900 + 0.828560i \(0.689161\pi\)
\(602\) 0 0
\(603\) − 981.000i − 1.62687i
\(604\) −908.000 −1.50331
\(605\) 0 0
\(606\) 0 0
\(607\) 814.000i 1.34102i 0.741900 + 0.670511i \(0.233925\pi\)
−0.741900 + 0.670511i \(0.766075\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 1126.00i − 1.83687i −0.395574 0.918434i \(-0.629454\pi\)
0.395574 0.918434i \(-0.370546\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −1163.00 −1.87884 −0.939418 0.342773i \(-0.888634\pi\)
−0.939418 + 0.342773i \(0.888634\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −48.0000 −0.0769231
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 1244.00i 1.98089i
\(629\) 0 0
\(630\) 0 0
\(631\) 587.000 0.930269 0.465135 0.885240i \(-0.346006\pi\)
0.465135 + 0.885240i \(0.346006\pi\)
\(632\) 0 0
\(633\) 759.000i 1.19905i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 72.0000i 0.113030i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 314.000i 0.488336i 0.969733 + 0.244168i \(0.0785148\pi\)
−0.969733 + 0.244168i \(0.921485\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 429.000 0.658986
\(652\) − 1196.00i − 1.83436i
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 414.000i 0.630137i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 122.000 0.184569 0.0922844 0.995733i \(-0.470583\pi\)
0.0922844 + 0.995733i \(0.470583\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1263.00 −1.88789
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1154.00i 1.71471i 0.514725 + 0.857355i \(0.327894\pi\)
−0.514725 + 0.857355i \(0.672106\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −672.000 −0.994083
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 1859.00 2.73785
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 1332.00 1.94737
\(685\) 0 0
\(686\) 0 0
\(687\) 1149.00i 1.67249i
\(688\) − 976.000i − 1.41860i
\(689\) 0 0
\(690\) 0 0
\(691\) −1318.00 −1.90738 −0.953690 0.300790i \(-0.902750\pi\)
−0.953690 + 0.300790i \(0.902750\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) − 962.000i − 1.36842i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 457.000 0.644570 0.322285 0.946643i \(-0.395549\pi\)
0.322285 + 0.946643i \(0.395549\pi\)
\(710\) 0 0
\(711\) −1278.00 −1.79747
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 2134.00 2.95978
\(722\) 0 0
\(723\) 579.000i 0.800830i
\(724\) 1252.00 1.72928
\(725\) 0 0
\(726\) 0 0
\(727\) 1429.00i 1.96561i 0.184641 + 0.982806i \(0.440888\pi\)
−0.184641 + 0.982806i \(0.559112\pi\)
\(728\) 0 0
\(729\) −729.000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 564.000i 0.770492i
\(733\) 1034.00i 1.41064i 0.708888 + 0.705321i \(0.249197\pi\)
−0.708888 + 0.705321i \(0.750803\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1222.00 1.65359 0.826793 0.562506i \(-0.190163\pi\)
0.826793 + 0.562506i \(0.190163\pi\)
\(740\) 0 0
\(741\) −111.000 −0.149798
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1202.00 1.60053 0.800266 0.599645i \(-0.204691\pi\)
0.800266 + 0.599645i \(0.204691\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −1188.00 −1.57143
\(757\) − 1511.00i − 1.99604i −0.0629213 0.998018i \(-0.520042\pi\)
0.0629213 0.998018i \(-0.479958\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1573.00i 2.06160i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) − 768.000i − 1.00000i
\(769\) −863.000 −1.12224 −0.561118 0.827736i \(-0.689629\pi\)
−0.561118 + 0.827736i \(0.689629\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 956.000i − 1.23834i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 858.000i 1.10425i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1152.00 −1.46939
\(785\) 0 0
\(786\) 0 0
\(787\) 949.000i 1.20584i 0.797800 + 0.602922i \(0.205997\pi\)
−0.797800 + 0.602922i \(0.794003\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) − 47.0000i − 0.0592686i
\(794\) 0 0
\(795\) 0 0
\(796\) −1108.00 −1.39196
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1308.00 −1.62687
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) −253.000 −0.311961 −0.155980 0.987760i \(-0.549854\pi\)
−0.155980 + 0.987760i \(0.549854\pi\)
\(812\) 0 0
\(813\) − 726.000i − 0.892989i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2257.00i − 2.76255i
\(818\) 0 0
\(819\) 99.0000 0.120879
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 1621.00i − 1.96962i −0.173626 0.984812i \(-0.555548\pi\)
0.173626 0.984812i \(-0.444452\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −458.000 −0.552473 −0.276236 0.961090i \(-0.589087\pi\)
−0.276236 + 0.961090i \(0.589087\pi\)
\(830\) 0 0
\(831\) 1587.00 1.90975
\(832\) 64.0000i 0.0769231i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 351.000i − 0.419355i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 1012.00 1.19905
\(845\) 0 0
\(846\) 0 0
\(847\) − 1331.00i − 1.57143i
\(848\) 0 0
\(849\) 177.000 0.208481
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 481.000i − 0.563892i −0.959430 0.281946i \(-0.909020\pi\)
0.959430 0.281946i \(-0.0909799\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −1418.00 −1.65076 −0.825378 0.564580i \(-0.809038\pi\)
−0.825378 + 0.564580i \(0.809038\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 867.000i 1.00000i
\(868\) − 572.000i − 0.658986i
\(869\) 0 0
\(870\) 0 0
\(871\) 109.000 0.125144
\(872\) 0 0
\(873\) − 1521.00i − 1.74227i
\(874\) 0 0
\(875\) 0 0
\(876\) 552.000 0.630137
\(877\) 1129.00i 1.28734i 0.765302 + 0.643672i \(0.222590\pi\)
−0.765302 + 0.643672i \(0.777410\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 1259.00i 1.42582i 0.701255 + 0.712911i \(0.252623\pi\)
−0.701255 + 0.712911i \(0.747377\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −1606.00 −1.80652
\(890\) 0 0
\(891\) 0 0
\(892\) 1684.00i 1.88789i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 2013.00i 2.22924i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 214.000i 0.235943i 0.993017 + 0.117971i \(0.0376391\pi\)
−0.993017 + 0.117971i \(0.962361\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) − 1776.00i − 1.94737i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1532.00 1.67249
\(917\) 0 0
\(918\) 0 0
\(919\) 1837.00 1.99891 0.999456 0.0329825i \(-0.0105006\pi\)
0.999456 + 0.0329825i \(0.0105006\pi\)
\(920\) 0 0
\(921\) −1833.00 −1.99023
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 1746.00i − 1.88350i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −2664.00 −2.86144
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 649.000i 0.692636i 0.938117 + 0.346318i \(0.112568\pi\)
−0.938117 + 0.346318i \(0.887432\pi\)
\(938\) 0 0
\(939\) 1797.00 1.91374
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 1704.00i 1.79747i
\(949\) −46.0000 −0.0484721
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −792.000 −0.824142
\(962\) 0 0
\(963\) 0 0
\(964\) 772.000 0.800830
\(965\) 0 0
\(966\) 0 0
\(967\) 1534.00i 1.58635i 0.608994 + 0.793175i \(0.291573\pi\)
−0.608994 + 0.793175i \(0.708427\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 972.000i 1.00000i
\(973\) − 242.000i − 0.248715i
\(974\) 0 0
\(975\) 0 0
\(976\) 752.000 0.770492
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1287.00 1.31193
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 148.000i 0.149798i
\(989\) 0 0
\(990\) 0 0
\(991\) −1693.00 −1.70838 −0.854188 0.519965i \(-0.825945\pi\)
−0.854188 + 0.519965i \(0.825945\pi\)
\(992\) 0 0
\(993\) − 1086.00i − 1.09366i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1894.00i 1.89970i 0.312707 + 0.949850i \(0.398764\pi\)
−0.312707 + 0.949850i \(0.601236\pi\)
\(998\) 0 0
\(999\) 702.000 0.702703
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.d.a.74.1 2
3.2 odd 2 CM 75.3.d.a.74.1 2
4.3 odd 2 1200.3.c.a.449.2 2
5.2 odd 4 75.3.c.a.26.1 1
5.3 odd 4 75.3.c.b.26.1 yes 1
5.4 even 2 inner 75.3.d.a.74.2 2
12.11 even 2 1200.3.c.a.449.2 2
15.2 even 4 75.3.c.a.26.1 1
15.8 even 4 75.3.c.b.26.1 yes 1
15.14 odd 2 inner 75.3.d.a.74.2 2
20.3 even 4 1200.3.l.c.401.1 1
20.7 even 4 1200.3.l.d.401.1 1
20.19 odd 2 1200.3.c.a.449.1 2
60.23 odd 4 1200.3.l.c.401.1 1
60.47 odd 4 1200.3.l.d.401.1 1
60.59 even 2 1200.3.c.a.449.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.c.a.26.1 1 5.2 odd 4
75.3.c.a.26.1 1 15.2 even 4
75.3.c.b.26.1 yes 1 5.3 odd 4
75.3.c.b.26.1 yes 1 15.8 even 4
75.3.d.a.74.1 2 1.1 even 1 trivial
75.3.d.a.74.1 2 3.2 odd 2 CM
75.3.d.a.74.2 2 5.4 even 2 inner
75.3.d.a.74.2 2 15.14 odd 2 inner
1200.3.c.a.449.1 2 20.19 odd 2
1200.3.c.a.449.1 2 60.59 even 2
1200.3.c.a.449.2 2 4.3 odd 2
1200.3.c.a.449.2 2 12.11 even 2
1200.3.l.c.401.1 1 20.3 even 4
1200.3.l.c.401.1 1 60.23 odd 4
1200.3.l.d.401.1 1 20.7 even 4
1200.3.l.d.401.1 1 60.47 odd 4