Properties

Label 75.22.b.d.49.2
Level $75$
Weight $22$
Character 75.49
Analytic conductor $209.608$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,22,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(209.608008215\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{649})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 325x^{2} + 26244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 3)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(-13.2377i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.22.b.d.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1271.96i q^{2} -59049.0i q^{3} +479282. q^{4} -7.51077e7 q^{6} +6.32076e8i q^{7} -3.27711e9i q^{8} -3.48678e9 q^{9} +O(q^{10})\) \(q-1271.96i q^{2} -59049.0i q^{3} +479282. q^{4} -7.51077e7 q^{6} +6.32076e8i q^{7} -3.27711e9i q^{8} -3.48678e9 q^{9} +5.97585e10 q^{11} -2.83011e10i q^{12} -7.38499e11i q^{13} +8.03972e11 q^{14} -3.16321e12 q^{16} -8.35876e12i q^{17} +4.43503e12i q^{18} -4.19061e13 q^{19} +3.73234e13 q^{21} -7.60101e13i q^{22} -4.48926e13i q^{23} -1.93510e14 q^{24} -9.39338e14 q^{26} +2.05891e14i q^{27} +3.02943e14i q^{28} +2.76669e15 q^{29} +8.36452e15 q^{31} -2.84914e15i q^{32} -3.52868e15i q^{33} -1.06320e16 q^{34} -1.67115e15 q^{36} -1.77675e16i q^{37} +5.33027e16i q^{38} -4.36077e16 q^{39} +1.45253e17 q^{41} -4.74737e16i q^{42} -1.24744e17i q^{43} +2.86412e16 q^{44} -5.71014e16 q^{46} +4.28566e17i q^{47} +1.86784e17i q^{48} +1.59026e17 q^{49} -4.93577e17 q^{51} -3.53950e17i q^{52} +4.77017e17i q^{53} +2.61884e17 q^{54} +2.07138e18 q^{56} +2.47452e18i q^{57} -3.51911e18i q^{58} -1.61959e18 q^{59} -3.76882e18 q^{61} -1.06393e19i q^{62} -2.20391e18i q^{63} -1.02577e19 q^{64} -4.48832e18 q^{66} -2.81797e18i q^{67} -4.00621e18i q^{68} -2.65086e18 q^{69} +1.00228e19 q^{71} +1.14266e19i q^{72} +1.72739e19i q^{73} -2.25995e19 q^{74} -2.00849e19 q^{76} +3.77719e19i q^{77} +5.54670e19i q^{78} +3.28276e19 q^{79} +1.21577e19 q^{81} -1.84755e20i q^{82} -3.05240e17i q^{83} +1.78885e19 q^{84} -1.58669e20 q^{86} -1.63370e20i q^{87} -1.95835e20i q^{88} -2.34593e20 q^{89} +4.66787e20 q^{91} -2.15162e19i q^{92} -4.93917e20i q^{93} +5.45116e20 q^{94} -1.68239e20 q^{96} -5.92086e20i q^{97} -2.02274e20i q^{98} -2.08365e20 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2358472 q^{4} + 78653268 q^{6} - 13947137604 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2358472 q^{4} + 78653268 q^{6} - 13947137604 q^{9} + 439738245936 q^{11} + 1422595413792 q^{14} - 16577472881120 q^{16} - 23921170023248 q^{19} + 80294371034976 q^{21} - 286630441537104 q^{24} - 49\!\cdots\!32 q^{26}+ \cdots - 15\!\cdots\!36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1271.96i − 0.878328i −0.898407 0.439164i \(-0.855275\pi\)
0.898407 0.439164i \(-0.144725\pi\)
\(3\) − 59049.0i − 0.577350i
\(4\) 479282. 0.228540
\(5\) 0 0
\(6\) −7.51077e7 −0.507103
\(7\) 6.32076e8i 0.845745i 0.906189 + 0.422873i \(0.138978\pi\)
−0.906189 + 0.422873i \(0.861022\pi\)
\(8\) − 3.27711e9i − 1.07906i
\(9\) −3.48678e9 −0.333333
\(10\) 0 0
\(11\) 5.97585e10 0.694666 0.347333 0.937742i \(-0.387087\pi\)
0.347333 + 0.937742i \(0.387087\pi\)
\(12\) − 2.83011e10i − 0.131947i
\(13\) − 7.38499e11i − 1.48575i −0.669432 0.742874i \(-0.733462\pi\)
0.669432 0.742874i \(-0.266538\pi\)
\(14\) 8.03972e11 0.742842
\(15\) 0 0
\(16\) −3.16321e12 −0.719230
\(17\) − 8.35876e12i − 1.00561i −0.864401 0.502804i \(-0.832302\pi\)
0.864401 0.502804i \(-0.167698\pi\)
\(18\) 4.43503e12i 0.292776i
\(19\) −4.19061e13 −1.56807 −0.784034 0.620718i \(-0.786841\pi\)
−0.784034 + 0.620718i \(0.786841\pi\)
\(20\) 0 0
\(21\) 3.73234e13 0.488291
\(22\) − 7.60101e13i − 0.610145i
\(23\) − 4.48926e13i − 0.225961i −0.993597 0.112980i \(-0.963960\pi\)
0.993597 0.112980i \(-0.0360397\pi\)
\(24\) −1.93510e14 −0.622996
\(25\) 0 0
\(26\) −9.39338e14 −1.30497
\(27\) 2.05891e14i 0.192450i
\(28\) 3.02943e14i 0.193286i
\(29\) 2.76669e15 1.22119 0.610593 0.791945i \(-0.290931\pi\)
0.610593 + 0.791945i \(0.290931\pi\)
\(30\) 0 0
\(31\) 8.36452e15 1.83292 0.916459 0.400128i \(-0.131034\pi\)
0.916459 + 0.400128i \(0.131034\pi\)
\(32\) − 2.84914e15i − 0.447341i
\(33\) − 3.52868e15i − 0.401066i
\(34\) −1.06320e16 −0.883253
\(35\) 0 0
\(36\) −1.67115e15 −0.0761798
\(37\) − 1.77675e16i − 0.607447i −0.952760 0.303724i \(-0.901770\pi\)
0.952760 0.303724i \(-0.0982299\pi\)
\(38\) 5.33027e16i 1.37728i
\(39\) −4.36077e16 −0.857797
\(40\) 0 0
\(41\) 1.45253e17 1.69003 0.845013 0.534745i \(-0.179592\pi\)
0.845013 + 0.534745i \(0.179592\pi\)
\(42\) − 4.74737e16i − 0.428880i
\(43\) − 1.24744e17i − 0.880239i −0.897939 0.440119i \(-0.854936\pi\)
0.897939 0.440119i \(-0.145064\pi\)
\(44\) 2.86412e16 0.158759
\(45\) 0 0
\(46\) −5.71014e16 −0.198468
\(47\) 4.28566e17i 1.18847i 0.804290 + 0.594237i \(0.202546\pi\)
−0.804290 + 0.594237i \(0.797454\pi\)
\(48\) 1.86784e17i 0.415248i
\(49\) 1.59026e17 0.284715
\(50\) 0 0
\(51\) −4.93577e17 −0.580588
\(52\) − 3.53950e17i − 0.339552i
\(53\) 4.77017e17i 0.374660i 0.982297 + 0.187330i \(0.0599834\pi\)
−0.982297 + 0.187330i \(0.940017\pi\)
\(54\) 2.61884e17 0.169034
\(55\) 0 0
\(56\) 2.07138e18 0.912611
\(57\) 2.47452e18i 0.905324i
\(58\) − 3.51911e18i − 1.07260i
\(59\) −1.61959e18 −0.412533 −0.206267 0.978496i \(-0.566131\pi\)
−0.206267 + 0.978496i \(0.566131\pi\)
\(60\) 0 0
\(61\) −3.76882e18 −0.676461 −0.338230 0.941063i \(-0.609828\pi\)
−0.338230 + 0.941063i \(0.609828\pi\)
\(62\) − 1.06393e19i − 1.60990i
\(63\) − 2.20391e18i − 0.281915i
\(64\) −1.02577e19 −1.11214
\(65\) 0 0
\(66\) −4.48832e18 −0.352267
\(67\) − 2.81797e18i − 0.188865i −0.995531 0.0944324i \(-0.969896\pi\)
0.995531 0.0944324i \(-0.0301036\pi\)
\(68\) − 4.00621e18i − 0.229821i
\(69\) −2.65086e18 −0.130458
\(70\) 0 0
\(71\) 1.00228e19 0.365407 0.182704 0.983168i \(-0.441515\pi\)
0.182704 + 0.983168i \(0.441515\pi\)
\(72\) 1.14266e19i 0.359687i
\(73\) 1.72739e19i 0.470435i 0.971943 + 0.235218i \(0.0755803\pi\)
−0.971943 + 0.235218i \(0.924420\pi\)
\(74\) −2.25995e19 −0.533538
\(75\) 0 0
\(76\) −2.00849e19 −0.358365
\(77\) 3.77719e19i 0.587511i
\(78\) 5.54670e19i 0.753427i
\(79\) 3.28276e19 0.390080 0.195040 0.980795i \(-0.437516\pi\)
0.195040 + 0.980795i \(0.437516\pi\)
\(80\) 0 0
\(81\) 1.21577e19 0.111111
\(82\) − 1.84755e20i − 1.48440i
\(83\) − 3.05240e17i − 0.00215934i −0.999999 0.00107967i \(-0.999656\pi\)
0.999999 0.00107967i \(-0.000343670\pi\)
\(84\) 1.78885e19 0.111594
\(85\) 0 0
\(86\) −1.58669e20 −0.773139
\(87\) − 1.63370e20i − 0.705052i
\(88\) − 1.95835e20i − 0.749587i
\(89\) −2.34593e20 −0.797480 −0.398740 0.917064i \(-0.630552\pi\)
−0.398740 + 0.917064i \(0.630552\pi\)
\(90\) 0 0
\(91\) 4.66787e20 1.25656
\(92\) − 2.15162e19i − 0.0516409i
\(93\) − 4.93917e20i − 1.05824i
\(94\) 5.45116e20 1.04387
\(95\) 0 0
\(96\) −1.68239e20 −0.258272
\(97\) − 5.92086e20i − 0.815233i −0.913153 0.407616i \(-0.866360\pi\)
0.913153 0.407616i \(-0.133640\pi\)
\(98\) − 2.02274e20i − 0.250073i
\(99\) −2.08365e20 −0.231555
\(100\) 0 0
\(101\) −1.66229e21 −1.49739 −0.748693 0.662917i \(-0.769318\pi\)
−0.748693 + 0.662917i \(0.769318\pi\)
\(102\) 6.27807e20i 0.509946i
\(103\) − 1.17919e21i − 0.864552i −0.901741 0.432276i \(-0.857711\pi\)
0.901741 0.432276i \(-0.142289\pi\)
\(104\) −2.42014e21 −1.60321
\(105\) 0 0
\(106\) 6.06745e20 0.329075
\(107\) − 8.69160e20i − 0.427140i −0.976928 0.213570i \(-0.931491\pi\)
0.976928 0.213570i \(-0.0685091\pi\)
\(108\) 9.86799e19i 0.0439825i
\(109\) −4.12021e20 −0.166702 −0.0833510 0.996520i \(-0.526562\pi\)
−0.0833510 + 0.996520i \(0.526562\pi\)
\(110\) 0 0
\(111\) −1.04915e21 −0.350710
\(112\) − 1.99939e21i − 0.608286i
\(113\) − 2.45943e21i − 0.681569i −0.940141 0.340785i \(-0.889307\pi\)
0.940141 0.340785i \(-0.110693\pi\)
\(114\) 3.14747e21 0.795172
\(115\) 0 0
\(116\) 1.32602e21 0.279089
\(117\) 2.57499e21i 0.495249i
\(118\) 2.06005e21i 0.362340i
\(119\) 5.28337e21 0.850487
\(120\) 0 0
\(121\) −3.82917e21 −0.517439
\(122\) 4.79378e21i 0.594155i
\(123\) − 8.57702e21i − 0.975737i
\(124\) 4.00896e21 0.418894
\(125\) 0 0
\(126\) −2.80328e21 −0.247614
\(127\) 5.53783e21i 0.450195i 0.974336 + 0.225097i \(0.0722700\pi\)
−0.974336 + 0.225097i \(0.927730\pi\)
\(128\) 7.07226e21i 0.529485i
\(129\) −7.36600e21 −0.508206
\(130\) 0 0
\(131\) −2.54630e22 −1.49472 −0.747362 0.664417i \(-0.768680\pi\)
−0.747362 + 0.664417i \(0.768680\pi\)
\(132\) − 1.69123e21i − 0.0916594i
\(133\) − 2.64878e22i − 1.32619i
\(134\) −3.58433e21 −0.165885
\(135\) 0 0
\(136\) −2.73926e22 −1.08511
\(137\) − 4.82088e22i − 1.76832i −0.467188 0.884158i \(-0.654733\pi\)
0.467188 0.884158i \(-0.345267\pi\)
\(138\) 3.37178e21i 0.114585i
\(139\) 2.18194e22 0.687363 0.343682 0.939086i \(-0.388326\pi\)
0.343682 + 0.939086i \(0.388326\pi\)
\(140\) 0 0
\(141\) 2.53064e22 0.686166
\(142\) − 1.27486e22i − 0.320948i
\(143\) − 4.41316e22i − 1.03210i
\(144\) 1.10294e22 0.239743
\(145\) 0 0
\(146\) 2.19716e22 0.413197
\(147\) − 9.39035e21i − 0.164380i
\(148\) − 8.51565e21i − 0.138826i
\(149\) −4.84140e22 −0.735386 −0.367693 0.929947i \(-0.619852\pi\)
−0.367693 + 0.929947i \(0.619852\pi\)
\(150\) 0 0
\(151\) −1.22948e23 −1.62354 −0.811770 0.583977i \(-0.801496\pi\)
−0.811770 + 0.583977i \(0.801496\pi\)
\(152\) 1.37331e23i 1.69204i
\(153\) 2.91452e22i 0.335202i
\(154\) 4.80441e22 0.516027
\(155\) 0 0
\(156\) −2.09004e22 −0.196040
\(157\) 5.89828e22i 0.517344i 0.965965 + 0.258672i \(0.0832848\pi\)
−0.965965 + 0.258672i \(0.916715\pi\)
\(158\) − 4.17552e22i − 0.342619i
\(159\) 2.81674e22 0.216310
\(160\) 0 0
\(161\) 2.83755e22 0.191105
\(162\) − 1.54640e22i − 0.0975920i
\(163\) 3.18244e22i 0.188274i 0.995559 + 0.0941369i \(0.0300091\pi\)
−0.995559 + 0.0941369i \(0.969991\pi\)
\(164\) 6.96170e22 0.386238
\(165\) 0 0
\(166\) −3.88252e20 −0.00189661
\(167\) − 3.62822e22i − 0.166407i −0.996533 0.0832033i \(-0.973485\pi\)
0.996533 0.0832033i \(-0.0265151\pi\)
\(168\) − 1.22313e23i − 0.526896i
\(169\) −2.98317e23 −1.20744
\(170\) 0 0
\(171\) 1.46118e23 0.522689
\(172\) − 5.97875e22i − 0.201169i
\(173\) − 3.21510e23i − 1.01791i −0.860792 0.508956i \(-0.830031\pi\)
0.860792 0.508956i \(-0.169969\pi\)
\(174\) −2.07800e23 −0.619267
\(175\) 0 0
\(176\) −1.89028e23 −0.499625
\(177\) 9.56351e22i 0.238176i
\(178\) 2.98392e23i 0.700449i
\(179\) 1.80418e23 0.399321 0.199661 0.979865i \(-0.436016\pi\)
0.199661 + 0.979865i \(0.436016\pi\)
\(180\) 0 0
\(181\) −6.36646e21 −0.0125393 −0.00626965 0.999980i \(-0.501996\pi\)
−0.00626965 + 0.999980i \(0.501996\pi\)
\(182\) − 5.93733e23i − 1.10368i
\(183\) 2.22545e23i 0.390555i
\(184\) −1.47118e23 −0.243825
\(185\) 0 0
\(186\) −6.28240e23 −0.929479
\(187\) − 4.99507e23i − 0.698561i
\(188\) 2.05404e23i 0.271613i
\(189\) −1.30139e23 −0.162764
\(190\) 0 0
\(191\) 8.17882e23 0.915883 0.457942 0.888982i \(-0.348587\pi\)
0.457942 + 0.888982i \(0.348587\pi\)
\(192\) 6.05707e23i 0.642096i
\(193\) 1.80064e23i 0.180748i 0.995908 + 0.0903742i \(0.0288063\pi\)
−0.995908 + 0.0903742i \(0.971194\pi\)
\(194\) −7.53107e23 −0.716042
\(195\) 0 0
\(196\) 7.62185e22 0.0650686
\(197\) 1.65216e24i 1.33708i 0.743675 + 0.668541i \(0.233081\pi\)
−0.743675 + 0.668541i \(0.766919\pi\)
\(198\) 2.65031e23i 0.203382i
\(199\) 1.52537e24 1.11024 0.555120 0.831770i \(-0.312672\pi\)
0.555120 + 0.831770i \(0.312672\pi\)
\(200\) 0 0
\(201\) −1.66398e23 −0.109041
\(202\) 2.11436e24i 1.31520i
\(203\) 1.74876e24i 1.03281i
\(204\) −2.36562e23 −0.132687
\(205\) 0 0
\(206\) −1.49987e24 −0.759361
\(207\) 1.56531e23i 0.0753202i
\(208\) 2.33603e24i 1.06859i
\(209\) −2.50425e24 −1.08928
\(210\) 0 0
\(211\) 1.35748e24 0.534277 0.267138 0.963658i \(-0.413922\pi\)
0.267138 + 0.963658i \(0.413922\pi\)
\(212\) 2.28626e23i 0.0856247i
\(213\) − 5.91838e23i − 0.210968i
\(214\) −1.10553e24 −0.375169
\(215\) 0 0
\(216\) 6.74728e23 0.207665
\(217\) 5.28701e24i 1.55018i
\(218\) 5.24072e23i 0.146419i
\(219\) 1.02001e24 0.271606
\(220\) 0 0
\(221\) −6.17294e24 −1.49408
\(222\) 1.33448e24i 0.308038i
\(223\) − 4.73192e24i − 1.04192i −0.853580 0.520962i \(-0.825573\pi\)
0.853580 0.520962i \(-0.174427\pi\)
\(224\) 1.80087e24 0.378336
\(225\) 0 0
\(226\) −3.12828e24 −0.598642
\(227\) 8.00226e24i 1.46198i 0.682389 + 0.730989i \(0.260941\pi\)
−0.682389 + 0.730989i \(0.739059\pi\)
\(228\) 1.18599e24i 0.206902i
\(229\) −2.72111e24 −0.453391 −0.226696 0.973966i \(-0.572792\pi\)
−0.226696 + 0.973966i \(0.572792\pi\)
\(230\) 0 0
\(231\) 2.23039e24 0.339200
\(232\) − 9.06674e24i − 1.31773i
\(233\) 6.60115e24i 0.917028i 0.888687 + 0.458514i \(0.151618\pi\)
−0.888687 + 0.458514i \(0.848382\pi\)
\(234\) 3.27527e24 0.434991
\(235\) 0 0
\(236\) −7.76240e23 −0.0942801
\(237\) − 1.93843e24i − 0.225213i
\(238\) − 6.72021e24i − 0.747007i
\(239\) −9.92224e24 −1.05544 −0.527718 0.849420i \(-0.676952\pi\)
−0.527718 + 0.849420i \(0.676952\pi\)
\(240\) 0 0
\(241\) −1.54177e25 −1.50259 −0.751295 0.659966i \(-0.770571\pi\)
−0.751295 + 0.659966i \(0.770571\pi\)
\(242\) 4.87054e24i 0.454481i
\(243\) − 7.17898e23i − 0.0641500i
\(244\) −1.80633e24 −0.154598
\(245\) 0 0
\(246\) −1.09096e25 −0.857018
\(247\) 3.09477e25i 2.32975i
\(248\) − 2.74114e25i − 1.97783i
\(249\) −1.80241e22 −0.00124670
\(250\) 0 0
\(251\) −1.00009e25 −0.636014 −0.318007 0.948088i \(-0.603014\pi\)
−0.318007 + 0.948088i \(0.603014\pi\)
\(252\) − 1.05630e24i − 0.0644287i
\(253\) − 2.68271e24i − 0.156967i
\(254\) 7.04387e24 0.395419
\(255\) 0 0
\(256\) −1.25164e25 −0.647080
\(257\) − 3.06596e25i − 1.52149i −0.649052 0.760744i \(-0.724834\pi\)
0.649052 0.760744i \(-0.275166\pi\)
\(258\) 9.36923e24i 0.446372i
\(259\) 1.12304e25 0.513746
\(260\) 0 0
\(261\) −9.64685e24 −0.407062
\(262\) 3.23878e25i 1.31286i
\(263\) 2.33455e25i 0.909216i 0.890692 + 0.454608i \(0.150221\pi\)
−0.890692 + 0.454608i \(0.849779\pi\)
\(264\) −1.15639e25 −0.432775
\(265\) 0 0
\(266\) −3.36914e25 −1.16483
\(267\) 1.38525e25i 0.460425i
\(268\) − 1.35060e24i − 0.0431631i
\(269\) −2.29737e25 −0.706043 −0.353022 0.935615i \(-0.614846\pi\)
−0.353022 + 0.935615i \(0.614846\pi\)
\(270\) 0 0
\(271\) −4.02085e25 −1.14325 −0.571624 0.820516i \(-0.693686\pi\)
−0.571624 + 0.820516i \(0.693686\pi\)
\(272\) 2.64405e25i 0.723263i
\(273\) − 2.75633e25i − 0.725477i
\(274\) −6.13194e25 −1.55316
\(275\) 0 0
\(276\) −1.27051e24 −0.0298149
\(277\) − 4.48722e25i − 1.01377i −0.862013 0.506886i \(-0.830797\pi\)
0.862013 0.506886i \(-0.169203\pi\)
\(278\) − 2.77532e25i − 0.603731i
\(279\) −2.91653e25 −0.610973
\(280\) 0 0
\(281\) −6.06489e25 −1.17871 −0.589355 0.807874i \(-0.700618\pi\)
−0.589355 + 0.807874i \(0.700618\pi\)
\(282\) − 3.21886e25i − 0.602679i
\(283\) − 1.04229e26i − 1.88032i −0.340739 0.940158i \(-0.610677\pi\)
0.340739 0.940158i \(-0.389323\pi\)
\(284\) 4.80376e24 0.0835100
\(285\) 0 0
\(286\) −5.61334e25 −0.906521
\(287\) 9.18107e25i 1.42933i
\(288\) 9.93433e24i 0.149114i
\(289\) −7.76980e23 −0.0112456
\(290\) 0 0
\(291\) −3.49621e25 −0.470675
\(292\) 8.27907e24i 0.107513i
\(293\) − 6.24634e25i − 0.782556i −0.920273 0.391278i \(-0.872033\pi\)
0.920273 0.391278i \(-0.127967\pi\)
\(294\) −1.19441e25 −0.144380
\(295\) 0 0
\(296\) −5.82261e25 −0.655472
\(297\) 1.23037e25i 0.133689i
\(298\) 6.15805e25i 0.645911i
\(299\) −3.31532e25 −0.335720
\(300\) 0 0
\(301\) 7.88476e25 0.744458
\(302\) 1.56384e26i 1.42600i
\(303\) 9.81568e25i 0.864516i
\(304\) 1.32558e26 1.12780
\(305\) 0 0
\(306\) 3.70714e25 0.294418
\(307\) 7.14411e25i 0.548271i 0.961691 + 0.274135i \(0.0883917\pi\)
−0.961691 + 0.274135i \(0.911608\pi\)
\(308\) 1.81034e25i 0.134269i
\(309\) −6.96297e25 −0.499150
\(310\) 0 0
\(311\) −6.01915e25 −0.403228 −0.201614 0.979465i \(-0.564619\pi\)
−0.201614 + 0.979465i \(0.564619\pi\)
\(312\) 1.42907e26i 0.925615i
\(313\) 1.69049e26i 1.05876i 0.848385 + 0.529379i \(0.177575\pi\)
−0.848385 + 0.529379i \(0.822425\pi\)
\(314\) 7.50235e25 0.454398
\(315\) 0 0
\(316\) 1.57337e25 0.0891488
\(317\) − 5.71691e25i − 0.313357i −0.987650 0.156678i \(-0.949921\pi\)
0.987650 0.156678i \(-0.0500786\pi\)
\(318\) − 3.58277e25i − 0.189991i
\(319\) 1.65333e26 0.848316
\(320\) 0 0
\(321\) −5.13230e25 −0.246609
\(322\) − 3.60924e25i − 0.167853i
\(323\) 3.50283e26i 1.57686i
\(324\) 5.82695e24 0.0253933
\(325\) 0 0
\(326\) 4.04792e25 0.165366
\(327\) 2.43294e25i 0.0962454i
\(328\) − 4.76009e26i − 1.82364i
\(329\) −2.70886e26 −1.00515
\(330\) 0 0
\(331\) 6.67957e25 0.232571 0.116285 0.993216i \(-0.462901\pi\)
0.116285 + 0.993216i \(0.462901\pi\)
\(332\) − 1.46296e23i 0 0.000493495i
\(333\) 6.19515e25i 0.202482i
\(334\) −4.61493e25 −0.146160
\(335\) 0 0
\(336\) −1.18062e26 −0.351194
\(337\) 3.55365e26i 1.02461i 0.858802 + 0.512307i \(0.171209\pi\)
−0.858802 + 0.512307i \(0.828791\pi\)
\(338\) 3.79446e26i 1.06053i
\(339\) −1.45227e26 −0.393504
\(340\) 0 0
\(341\) 4.99851e26 1.27327
\(342\) − 1.85855e26i − 0.459093i
\(343\) 4.53560e26i 1.08654i
\(344\) −4.08799e26 −0.949832
\(345\) 0 0
\(346\) −4.08947e26 −0.894062
\(347\) − 3.94238e25i − 0.0836179i −0.999126 0.0418090i \(-0.986688\pi\)
0.999126 0.0418090i \(-0.0133121\pi\)
\(348\) − 7.83004e25i − 0.161132i
\(349\) 5.84299e26 1.16672 0.583362 0.812212i \(-0.301737\pi\)
0.583362 + 0.812212i \(0.301737\pi\)
\(350\) 0 0
\(351\) 1.52050e26 0.285932
\(352\) − 1.70260e26i − 0.310753i
\(353\) − 4.96062e26i − 0.878823i −0.898286 0.439412i \(-0.855187\pi\)
0.898286 0.439412i \(-0.144813\pi\)
\(354\) 1.21644e26 0.209197
\(355\) 0 0
\(356\) −1.12436e26 −0.182256
\(357\) − 3.11978e26i − 0.491029i
\(358\) − 2.29483e26i − 0.350735i
\(359\) 3.35136e26 0.497426 0.248713 0.968577i \(-0.419992\pi\)
0.248713 + 0.968577i \(0.419992\pi\)
\(360\) 0 0
\(361\) 1.04192e27 1.45884
\(362\) 8.09785e24i 0.0110136i
\(363\) 2.26109e26i 0.298743i
\(364\) 2.23723e26 0.287174
\(365\) 0 0
\(366\) 2.83068e26 0.343035
\(367\) 9.70198e25i 0.114253i 0.998367 + 0.0571264i \(0.0181938\pi\)
−0.998367 + 0.0571264i \(0.981806\pi\)
\(368\) 1.42005e26i 0.162518i
\(369\) −5.06465e26 −0.563342
\(370\) 0 0
\(371\) −3.01511e26 −0.316867
\(372\) − 2.36725e26i − 0.241849i
\(373\) − 1.03252e27i − 1.02554i −0.858525 0.512771i \(-0.828619\pi\)
0.858525 0.512771i \(-0.171381\pi\)
\(374\) −6.35350e26 −0.613566
\(375\) 0 0
\(376\) 1.40446e27 1.28244
\(377\) − 2.04320e27i − 1.81437i
\(378\) 1.65531e26i 0.142960i
\(379\) −2.20881e26 −0.185544 −0.0927721 0.995687i \(-0.529573\pi\)
−0.0927721 + 0.995687i \(0.529573\pi\)
\(380\) 0 0
\(381\) 3.27003e26 0.259920
\(382\) − 1.04031e27i − 0.804446i
\(383\) 1.59547e27i 1.20033i 0.799876 + 0.600165i \(0.204899\pi\)
−0.799876 + 0.600165i \(0.795101\pi\)
\(384\) 4.17610e26 0.305698
\(385\) 0 0
\(386\) 2.29033e26 0.158756
\(387\) 4.34955e26i 0.293413i
\(388\) − 2.83776e26i − 0.186313i
\(389\) 3.60474e26 0.230358 0.115179 0.993345i \(-0.463256\pi\)
0.115179 + 0.993345i \(0.463256\pi\)
\(390\) 0 0
\(391\) −3.75247e26 −0.227228
\(392\) − 5.21147e26i − 0.307225i
\(393\) 1.50357e27i 0.862980i
\(394\) 2.10148e27 1.17440
\(395\) 0 0
\(396\) −9.98656e25 −0.0529196
\(397\) − 1.47191e27i − 0.759595i −0.925070 0.379798i \(-0.875994\pi\)
0.925070 0.379798i \(-0.124006\pi\)
\(398\) − 1.94020e27i − 0.975156i
\(399\) −1.56408e27 −0.765674
\(400\) 0 0
\(401\) 1.00401e27 0.466360 0.233180 0.972434i \(-0.425087\pi\)
0.233180 + 0.972434i \(0.425087\pi\)
\(402\) 2.11651e26i 0.0957740i
\(403\) − 6.17719e27i − 2.72325i
\(404\) −7.96708e26 −0.342212
\(405\) 0 0
\(406\) 2.22434e27 0.907148
\(407\) − 1.06176e27i − 0.421973i
\(408\) 1.61750e27i 0.626489i
\(409\) 4.41838e27 1.66789 0.833947 0.551845i \(-0.186076\pi\)
0.833947 + 0.551845i \(0.186076\pi\)
\(410\) 0 0
\(411\) −2.84668e27 −1.02094
\(412\) − 5.65163e26i − 0.197584i
\(413\) − 1.02370e27i − 0.348898i
\(414\) 1.99100e26 0.0661559
\(415\) 0 0
\(416\) −2.10409e27 −0.664635
\(417\) − 1.28841e27i − 0.396849i
\(418\) 3.18529e27i 0.956749i
\(419\) 2.36639e27 0.693169 0.346584 0.938019i \(-0.387341\pi\)
0.346584 + 0.938019i \(0.387341\pi\)
\(420\) 0 0
\(421\) 2.72067e27 0.758078 0.379039 0.925381i \(-0.376255\pi\)
0.379039 + 0.925381i \(0.376255\pi\)
\(422\) − 1.72665e27i − 0.469271i
\(423\) − 1.49432e27i − 0.396158i
\(424\) 1.56324e27 0.404281
\(425\) 0 0
\(426\) −7.52791e26 −0.185299
\(427\) − 2.38218e27i − 0.572114i
\(428\) − 4.16573e26i − 0.0976183i
\(429\) −2.60593e27 −0.595883
\(430\) 0 0
\(431\) 8.87397e27 1.93244 0.966222 0.257713i \(-0.0829688\pi\)
0.966222 + 0.257713i \(0.0829688\pi\)
\(432\) − 6.51276e26i − 0.138416i
\(433\) 3.39994e27i 0.705258i 0.935763 + 0.352629i \(0.114712\pi\)
−0.935763 + 0.352629i \(0.885288\pi\)
\(434\) 6.72484e27 1.36157
\(435\) 0 0
\(436\) −1.97474e26 −0.0380980
\(437\) 1.88128e27i 0.354322i
\(438\) − 1.29740e27i − 0.238559i
\(439\) −2.29516e27 −0.412037 −0.206018 0.978548i \(-0.566051\pi\)
−0.206018 + 0.978548i \(0.566051\pi\)
\(440\) 0 0
\(441\) −5.54491e26 −0.0949050
\(442\) 7.85170e27i 1.31229i
\(443\) 5.65265e27i 0.922599i 0.887245 + 0.461299i \(0.152617\pi\)
−0.887245 + 0.461299i \(0.847383\pi\)
\(444\) −5.02841e26 −0.0801510
\(445\) 0 0
\(446\) −6.01879e27 −0.915152
\(447\) 2.85880e27i 0.424576i
\(448\) − 6.48364e27i − 0.940589i
\(449\) −1.23324e28 −1.74768 −0.873839 0.486216i \(-0.838377\pi\)
−0.873839 + 0.486216i \(0.838377\pi\)
\(450\) 0 0
\(451\) 8.68008e27 1.17400
\(452\) − 1.17876e27i − 0.155766i
\(453\) 7.25995e27i 0.937351i
\(454\) 1.01785e28 1.28410
\(455\) 0 0
\(456\) 8.10926e27 0.976900
\(457\) − 7.62646e27i − 0.897848i −0.893570 0.448924i \(-0.851807\pi\)
0.893570 0.448924i \(-0.148193\pi\)
\(458\) 3.46113e27i 0.398226i
\(459\) 1.72100e27 0.193529
\(460\) 0 0
\(461\) −9.04851e26 −0.0972114 −0.0486057 0.998818i \(-0.515478\pi\)
−0.0486057 + 0.998818i \(0.515478\pi\)
\(462\) − 2.83696e27i − 0.297929i
\(463\) 1.19705e27i 0.122889i 0.998111 + 0.0614443i \(0.0195707\pi\)
−0.998111 + 0.0614443i \(0.980429\pi\)
\(464\) −8.75161e27 −0.878313
\(465\) 0 0
\(466\) 8.39637e27 0.805452
\(467\) − 1.16951e28i − 1.09693i −0.836174 0.548464i \(-0.815213\pi\)
0.836174 0.548464i \(-0.184787\pi\)
\(468\) 1.23415e27i 0.113184i
\(469\) 1.78117e27 0.159732
\(470\) 0 0
\(471\) 3.48288e27 0.298689
\(472\) 5.30757e27i 0.445148i
\(473\) − 7.45451e27i − 0.611472i
\(474\) −2.46560e27 −0.197811
\(475\) 0 0
\(476\) 2.53222e27 0.194370
\(477\) − 1.66326e27i − 0.124887i
\(478\) 1.26206e28i 0.927019i
\(479\) −2.04856e28 −1.47206 −0.736029 0.676950i \(-0.763301\pi\)
−0.736029 + 0.676950i \(0.763301\pi\)
\(480\) 0 0
\(481\) −1.31213e28 −0.902513
\(482\) 1.96106e28i 1.31977i
\(483\) − 1.67555e27i − 0.110335i
\(484\) −1.83525e27 −0.118255
\(485\) 0 0
\(486\) −9.13134e26 −0.0563448
\(487\) − 3.75693e27i − 0.226871i −0.993545 0.113436i \(-0.963814\pi\)
0.993545 0.113436i \(-0.0361856\pi\)
\(488\) 1.23508e28i 0.729942i
\(489\) 1.87920e27 0.108700
\(490\) 0 0
\(491\) −1.53173e28 −0.848841 −0.424420 0.905465i \(-0.639522\pi\)
−0.424420 + 0.905465i \(0.639522\pi\)
\(492\) − 4.11081e27i − 0.222995i
\(493\) − 2.31261e28i − 1.22803i
\(494\) 3.93640e28 2.04629
\(495\) 0 0
\(496\) −2.64587e28 −1.31829
\(497\) 6.33518e27i 0.309042i
\(498\) 2.29259e25i 0.00109501i
\(499\) −3.84836e27 −0.179978 −0.0899890 0.995943i \(-0.528683\pi\)
−0.0899890 + 0.995943i \(0.528683\pi\)
\(500\) 0 0
\(501\) −2.14243e27 −0.0960749
\(502\) 1.27208e28i 0.558629i
\(503\) 2.25177e28i 0.968411i 0.874954 + 0.484205i \(0.160891\pi\)
−0.874954 + 0.484205i \(0.839109\pi\)
\(504\) −7.22246e27 −0.304204
\(505\) 0 0
\(506\) −3.41229e27 −0.137869
\(507\) 1.76153e28i 0.697119i
\(508\) 2.65418e27i 0.102887i
\(509\) −2.09122e27 −0.0794078 −0.0397039 0.999211i \(-0.512641\pi\)
−0.0397039 + 0.999211i \(0.512641\pi\)
\(510\) 0 0
\(511\) −1.09184e28 −0.397869
\(512\) 3.07519e28i 1.09783i
\(513\) − 8.62810e27i − 0.301775i
\(514\) −3.89976e28 −1.33637
\(515\) 0 0
\(516\) −3.53039e27 −0.116145
\(517\) 2.56104e28i 0.825594i
\(518\) − 1.42846e28i − 0.451237i
\(519\) −1.89849e28 −0.587692
\(520\) 0 0
\(521\) −3.76486e27 −0.111932 −0.0559659 0.998433i \(-0.517824\pi\)
−0.0559659 + 0.998433i \(0.517824\pi\)
\(522\) 1.22704e28i 0.357534i
\(523\) 1.74944e28i 0.499611i 0.968296 + 0.249806i \(0.0803667\pi\)
−0.968296 + 0.249806i \(0.919633\pi\)
\(524\) −1.22040e28 −0.341604
\(525\) 0 0
\(526\) 2.96944e28 0.798590
\(527\) − 6.99170e28i − 1.84320i
\(528\) 1.11619e28i 0.288459i
\(529\) 3.74562e28 0.948942
\(530\) 0 0
\(531\) 5.64716e27 0.137511
\(532\) − 1.26952e28i − 0.303086i
\(533\) − 1.07269e29i − 2.51095i
\(534\) 1.76197e28 0.404404
\(535\) 0 0
\(536\) −9.23480e27 −0.203797
\(537\) − 1.06535e28i − 0.230548i
\(538\) 2.92215e28i 0.620138i
\(539\) 9.50317e27 0.197782
\(540\) 0 0
\(541\) −6.99960e28 −1.40121 −0.700603 0.713552i \(-0.747085\pi\)
−0.700603 + 0.713552i \(0.747085\pi\)
\(542\) 5.11434e28i 1.00415i
\(543\) 3.75933e26i 0.00723956i
\(544\) −2.38153e28 −0.449849
\(545\) 0 0
\(546\) −3.50593e28 −0.637207
\(547\) 3.00896e28i 0.536476i 0.963353 + 0.268238i \(0.0864413\pi\)
−0.963353 + 0.268238i \(0.913559\pi\)
\(548\) − 2.31056e28i − 0.404130i
\(549\) 1.31411e28 0.225487
\(550\) 0 0
\(551\) −1.15941e29 −1.91490
\(552\) 8.68717e27i 0.140773i
\(553\) 2.07495e28i 0.329909i
\(554\) −5.70754e28 −0.890424
\(555\) 0 0
\(556\) 1.04576e28 0.157090
\(557\) 1.17263e29i 1.72855i 0.503017 + 0.864277i \(0.332223\pi\)
−0.503017 + 0.864277i \(0.667777\pi\)
\(558\) 3.70969e28i 0.536635i
\(559\) −9.21233e28 −1.30781
\(560\) 0 0
\(561\) −2.94954e28 −0.403315
\(562\) 7.71427e28i 1.03529i
\(563\) − 6.46986e28i − 0.852230i −0.904669 0.426115i \(-0.859882\pi\)
0.904669 0.426115i \(-0.140118\pi\)
\(564\) 1.21289e28 0.156816
\(565\) 0 0
\(566\) −1.32575e29 −1.65153
\(567\) 7.68456e27i 0.0939717i
\(568\) − 3.28459e28i − 0.394297i
\(569\) 1.35009e29 1.59105 0.795527 0.605918i \(-0.207194\pi\)
0.795527 + 0.605918i \(0.207194\pi\)
\(570\) 0 0
\(571\) 2.55750e28 0.290494 0.145247 0.989395i \(-0.453602\pi\)
0.145247 + 0.989395i \(0.453602\pi\)
\(572\) − 2.11515e28i − 0.235875i
\(573\) − 4.82951e28i − 0.528786i
\(574\) 1.16779e29 1.25542
\(575\) 0 0
\(576\) 3.57664e28 0.370714
\(577\) − 1.52580e29i − 1.55293i −0.630160 0.776465i \(-0.717011\pi\)
0.630160 0.776465i \(-0.282989\pi\)
\(578\) 9.88284e26i 0.00987733i
\(579\) 1.06326e28 0.104355
\(580\) 0 0
\(581\) 1.92935e26 0.00182625
\(582\) 4.44702e28i 0.413407i
\(583\) 2.85058e28i 0.260264i
\(584\) 5.66084e28 0.507629
\(585\) 0 0
\(586\) −7.94506e28 −0.687341
\(587\) − 1.08485e29i − 0.921868i −0.887434 0.460934i \(-0.847514\pi\)
0.887434 0.460934i \(-0.152486\pi\)
\(588\) − 4.50063e27i − 0.0375674i
\(589\) −3.50525e29 −2.87414
\(590\) 0 0
\(591\) 9.75587e28 0.771965
\(592\) 5.62023e28i 0.436894i
\(593\) − 8.82363e28i − 0.673865i −0.941529 0.336933i \(-0.890611\pi\)
0.941529 0.336933i \(-0.109389\pi\)
\(594\) 1.56498e28 0.117422
\(595\) 0 0
\(596\) −2.32040e28 −0.168065
\(597\) − 9.00714e28i − 0.640998i
\(598\) 4.21694e28i 0.294873i
\(599\) −9.23342e28 −0.634426 −0.317213 0.948354i \(-0.602747\pi\)
−0.317213 + 0.948354i \(0.602747\pi\)
\(600\) 0 0
\(601\) −7.30699e28 −0.484793 −0.242397 0.970177i \(-0.577934\pi\)
−0.242397 + 0.970177i \(0.577934\pi\)
\(602\) − 1.00291e29i − 0.653878i
\(603\) 9.82566e27i 0.0629550i
\(604\) −5.89267e28 −0.371043
\(605\) 0 0
\(606\) 1.24851e29 0.759329
\(607\) 8.07544e28i 0.482709i 0.970437 + 0.241354i \(0.0775916\pi\)
−0.970437 + 0.241354i \(0.922408\pi\)
\(608\) 1.19396e29i 0.701461i
\(609\) 1.03262e29 0.596294
\(610\) 0 0
\(611\) 3.16496e29 1.76577
\(612\) 1.39688e28i 0.0766070i
\(613\) 2.21326e29i 1.19316i 0.802555 + 0.596578i \(0.203473\pi\)
−0.802555 + 0.596578i \(0.796527\pi\)
\(614\) 9.08699e28 0.481562
\(615\) 0 0
\(616\) 1.23783e29 0.633960
\(617\) − 2.16026e29i − 1.08771i −0.839180 0.543854i \(-0.816965\pi\)
0.839180 0.543854i \(-0.183035\pi\)
\(618\) 8.85659e28i 0.438417i
\(619\) 2.09908e29 1.02159 0.510795 0.859702i \(-0.329351\pi\)
0.510795 + 0.859702i \(0.329351\pi\)
\(620\) 0 0
\(621\) 9.24299e27 0.0434861
\(622\) 7.65609e28i 0.354167i
\(623\) − 1.48280e29i − 0.674465i
\(624\) 1.37940e29 0.616953
\(625\) 0 0
\(626\) 2.15023e29 0.929938
\(627\) 1.47873e29i 0.628899i
\(628\) 2.82694e28i 0.118234i
\(629\) −1.48514e29 −0.610853
\(630\) 0 0
\(631\) 4.81094e28 0.191391 0.0956955 0.995411i \(-0.469492\pi\)
0.0956955 + 0.995411i \(0.469492\pi\)
\(632\) − 1.07580e29i − 0.420921i
\(633\) − 8.01576e28i − 0.308465i
\(634\) −7.27166e28 −0.275230
\(635\) 0 0
\(636\) 1.35001e28 0.0494354
\(637\) − 1.17441e29i − 0.423014i
\(638\) − 2.10296e29i − 0.745100i
\(639\) −3.49474e28 −0.121802
\(640\) 0 0
\(641\) −5.04867e28 −0.170282 −0.0851408 0.996369i \(-0.527134\pi\)
−0.0851408 + 0.996369i \(0.527134\pi\)
\(642\) 6.52806e28i 0.216604i
\(643\) 3.93930e29i 1.28589i 0.765912 + 0.642945i \(0.222288\pi\)
−0.765912 + 0.642945i \(0.777712\pi\)
\(644\) 1.35999e28 0.0436751
\(645\) 0 0
\(646\) 4.45545e29 1.38500
\(647\) − 1.38475e29i − 0.423523i −0.977321 0.211762i \(-0.932080\pi\)
0.977321 0.211762i \(-0.0679201\pi\)
\(648\) − 3.98420e28i − 0.119896i
\(649\) −9.67842e28 −0.286573
\(650\) 0 0
\(651\) 3.12193e29 0.894998
\(652\) 1.52528e28i 0.0430280i
\(653\) − 1.16655e29i − 0.323830i −0.986805 0.161915i \(-0.948233\pi\)
0.986805 0.161915i \(-0.0517670\pi\)
\(654\) 3.09459e28 0.0845350
\(655\) 0 0
\(656\) −4.59464e29 −1.21552
\(657\) − 6.02303e28i − 0.156812i
\(658\) 3.44555e29i 0.882849i
\(659\) 3.36819e29 0.849377 0.424688 0.905340i \(-0.360384\pi\)
0.424688 + 0.905340i \(0.360384\pi\)
\(660\) 0 0
\(661\) 4.31449e29 1.05394 0.526968 0.849885i \(-0.323329\pi\)
0.526968 + 0.849885i \(0.323329\pi\)
\(662\) − 8.49612e28i − 0.204273i
\(663\) 3.64506e29i 0.862606i
\(664\) −1.00030e27 −0.00233006
\(665\) 0 0
\(666\) 7.87995e28 0.177846
\(667\) − 1.24204e29i − 0.275940i
\(668\) − 1.73894e28i − 0.0380305i
\(669\) −2.79415e29 −0.601555
\(670\) 0 0
\(671\) −2.25219e29 −0.469915
\(672\) − 1.06340e29i − 0.218433i
\(673\) 1.19710e29i 0.242088i 0.992647 + 0.121044i \(0.0386243\pi\)
−0.992647 + 0.121044i \(0.961376\pi\)
\(674\) 4.52008e29 0.899948
\(675\) 0 0
\(676\) −1.42978e29 −0.275949
\(677\) 7.71503e29i 1.46608i 0.680188 + 0.733038i \(0.261898\pi\)
−0.680188 + 0.733038i \(0.738102\pi\)
\(678\) 1.84722e29i 0.345626i
\(679\) 3.74243e29 0.689479
\(680\) 0 0
\(681\) 4.72525e29 0.844074
\(682\) − 6.35788e29i − 1.11835i
\(683\) − 6.40488e29i − 1.10941i −0.832046 0.554707i \(-0.812830\pi\)
0.832046 0.554707i \(-0.187170\pi\)
\(684\) 7.00316e28 0.119455
\(685\) 0 0
\(686\) 5.76908e29 0.954340
\(687\) 1.60679e29i 0.261766i
\(688\) 3.94591e29i 0.633094i
\(689\) 3.52277e29 0.556650
\(690\) 0 0
\(691\) 1.07309e30 1.64482 0.822408 0.568898i \(-0.192630\pi\)
0.822408 + 0.568898i \(0.192630\pi\)
\(692\) − 1.54094e29i − 0.232633i
\(693\) − 1.31702e29i − 0.195837i
\(694\) −5.01454e28 −0.0734440
\(695\) 0 0
\(696\) −5.35382e29 −0.760794
\(697\) − 1.21413e30i − 1.69950i
\(698\) − 7.43202e29i − 1.02477i
\(699\) 3.89791e29 0.529446
\(700\) 0 0
\(701\) −7.18115e29 −0.946574 −0.473287 0.880908i \(-0.656933\pi\)
−0.473287 + 0.880908i \(0.656933\pi\)
\(702\) − 1.93401e29i − 0.251142i
\(703\) 7.44568e29i 0.952518i
\(704\) −6.12985e29 −0.772568
\(705\) 0 0
\(706\) −6.30969e29 −0.771895
\(707\) − 1.05070e30i − 1.26641i
\(708\) 4.58362e28i 0.0544327i
\(709\) −4.24360e29 −0.496534 −0.248267 0.968692i \(-0.579861\pi\)
−0.248267 + 0.968692i \(0.579861\pi\)
\(710\) 0 0
\(711\) −1.14463e29 −0.130027
\(712\) 7.68786e29i 0.860529i
\(713\) − 3.75505e29i − 0.414167i
\(714\) −3.96822e29 −0.431285
\(715\) 0 0
\(716\) 8.64710e28 0.0912607
\(717\) 5.85898e29i 0.609356i
\(718\) − 4.26277e29i − 0.436904i
\(719\) 5.73272e29 0.579038 0.289519 0.957172i \(-0.406505\pi\)
0.289519 + 0.957172i \(0.406505\pi\)
\(720\) 0 0
\(721\) 7.45334e29 0.731191
\(722\) − 1.32527e30i − 1.28134i
\(723\) 9.10400e29i 0.867521i
\(724\) −3.05133e27 −0.00286572
\(725\) 0 0
\(726\) 2.87600e29 0.262395
\(727\) 1.42987e30i 1.28583i 0.765937 + 0.642916i \(0.222275\pi\)
−0.765937 + 0.642916i \(0.777725\pi\)
\(728\) − 1.52971e30i − 1.35591i
\(729\) −4.23912e28 −0.0370370
\(730\) 0 0
\(731\) −1.04270e30 −0.885175
\(732\) 1.06662e29i 0.0892572i
\(733\) − 1.99143e30i − 1.64276i −0.570381 0.821380i \(-0.693205\pi\)
0.570381 0.821380i \(-0.306795\pi\)
\(734\) 1.23405e29 0.100351
\(735\) 0 0
\(736\) −1.27905e29 −0.101081
\(737\) − 1.68398e29i − 0.131198i
\(738\) 6.44200e29i 0.494799i
\(739\) 2.11124e30 1.59872 0.799359 0.600854i \(-0.205173\pi\)
0.799359 + 0.600854i \(0.205173\pi\)
\(740\) 0 0
\(741\) 1.82743e30 1.34508
\(742\) 3.83509e29i 0.278313i
\(743\) − 1.11538e30i − 0.798067i −0.916936 0.399033i \(-0.869346\pi\)
0.916936 0.399033i \(-0.130654\pi\)
\(744\) −1.61862e30 −1.14190
\(745\) 0 0
\(746\) −1.31331e30 −0.900763
\(747\) 1.06431e27i 0 0.000719781i
\(748\) − 2.39405e29i − 0.159649i
\(749\) 5.49375e29 0.361251
\(750\) 0 0
\(751\) −2.28371e30 −1.46023 −0.730116 0.683323i \(-0.760534\pi\)
−0.730116 + 0.683323i \(0.760534\pi\)
\(752\) − 1.35564e30i − 0.854787i
\(753\) 5.90546e29i 0.367203i
\(754\) −2.59886e30 −1.59361
\(755\) 0 0
\(756\) −6.23732e28 −0.0371980
\(757\) 9.73411e29i 0.572519i 0.958152 + 0.286259i \(0.0924119\pi\)
−0.958152 + 0.286259i \(0.907588\pi\)
\(758\) 2.80951e29i 0.162969i
\(759\) −1.58412e29 −0.0906251
\(760\) 0 0
\(761\) −3.06985e30 −1.70836 −0.854179 0.519979i \(-0.825940\pi\)
−0.854179 + 0.519979i \(0.825940\pi\)
\(762\) − 4.15933e29i − 0.228295i
\(763\) − 2.60428e29i − 0.140987i
\(764\) 3.91996e29 0.209316
\(765\) 0 0
\(766\) 2.02936e30 1.05428
\(767\) 1.19607e30i 0.612920i
\(768\) 7.39078e29i 0.373592i
\(769\) 7.51816e29 0.374874 0.187437 0.982277i \(-0.439982\pi\)
0.187437 + 0.982277i \(0.439982\pi\)
\(770\) 0 0
\(771\) −1.81042e30 −0.878432
\(772\) 8.63013e28i 0.0413081i
\(773\) − 1.23771e30i − 0.584434i −0.956352 0.292217i \(-0.905607\pi\)
0.956352 0.292217i \(-0.0943930\pi\)
\(774\) 5.53243e29 0.257713
\(775\) 0 0
\(776\) −1.94033e30 −0.879686
\(777\) − 6.63144e29i − 0.296611i
\(778\) − 4.58507e29i − 0.202330i
\(779\) −6.08698e30 −2.65008
\(780\) 0 0
\(781\) 5.98949e29 0.253836
\(782\) 4.77297e29i 0.199580i
\(783\) 5.69637e29i 0.235017i
\(784\) −5.03033e29 −0.204776
\(785\) 0 0
\(786\) 1.91247e30 0.757979
\(787\) 2.14352e30i 0.838288i 0.907920 + 0.419144i \(0.137670\pi\)
−0.907920 + 0.419144i \(0.862330\pi\)
\(788\) 7.91853e29i 0.305576i
\(789\) 1.37853e30 0.524936
\(790\) 0 0
\(791\) 1.55454e30 0.576434
\(792\) 6.82834e29i 0.249862i
\(793\) 2.78327e30i 1.00505i
\(794\) −1.87221e30 −0.667174
\(795\) 0 0
\(796\) 7.31081e29 0.253734
\(797\) 3.01280e30i 1.03195i 0.856605 + 0.515974i \(0.172570\pi\)
−0.856605 + 0.515974i \(0.827430\pi\)
\(798\) 1.98944e30i 0.672513i
\(799\) 3.58228e30 1.19514
\(800\) 0 0
\(801\) 8.17975e29 0.265827
\(802\) − 1.27705e30i − 0.409617i
\(803\) 1.03226e30i 0.326796i
\(804\) −7.97518e28 −0.0249202
\(805\) 0 0
\(806\) −7.85711e30 −2.39191
\(807\) 1.35657e30i 0.407634i
\(808\) 5.44752e30i 1.61577i
\(809\) 5.76883e30 1.68900 0.844498 0.535559i \(-0.179899\pi\)
0.844498 + 0.535559i \(0.179899\pi\)
\(810\) 0 0
\(811\) 3.98728e30 1.13752 0.568759 0.822504i \(-0.307424\pi\)
0.568759 + 0.822504i \(0.307424\pi\)
\(812\) 8.38148e29i 0.236038i
\(813\) 2.37427e30i 0.660055i
\(814\) −1.35051e30 −0.370631
\(815\) 0 0
\(816\) 1.56129e30 0.417576
\(817\) 5.22754e30i 1.38027i
\(818\) − 5.61998e30i − 1.46496i
\(819\) −1.62759e30 −0.418855
\(820\) 0 0
\(821\) −4.09615e30 −1.02748 −0.513739 0.857946i \(-0.671740\pi\)
−0.513739 + 0.857946i \(0.671740\pi\)
\(822\) 3.62085e30i 0.896719i
\(823\) − 1.43384e30i − 0.350592i −0.984516 0.175296i \(-0.943912\pi\)
0.984516 0.175296i \(-0.0560882\pi\)
\(824\) −3.86432e30 −0.932905
\(825\) 0 0
\(826\) −1.30210e30 −0.306447
\(827\) − 3.13142e30i − 0.727668i −0.931464 0.363834i \(-0.881468\pi\)
0.931464 0.363834i \(-0.118532\pi\)
\(828\) 7.50225e28i 0.0172136i
\(829\) 4.44329e30 1.00666 0.503329 0.864095i \(-0.332108\pi\)
0.503329 + 0.864095i \(0.332108\pi\)
\(830\) 0 0
\(831\) −2.64966e30 −0.585301
\(832\) 7.57531e30i 1.65236i
\(833\) − 1.32926e30i − 0.286311i
\(834\) −1.63880e30 −0.348564
\(835\) 0 0
\(836\) −1.20024e30 −0.248944
\(837\) 1.72218e30i 0.352745i
\(838\) − 3.00994e30i − 0.608829i
\(839\) 9.30057e29 0.185784 0.0928922 0.995676i \(-0.470389\pi\)
0.0928922 + 0.995676i \(0.470389\pi\)
\(840\) 0 0
\(841\) 2.52173e30 0.491293
\(842\) − 3.46057e30i − 0.665842i
\(843\) 3.58126e30i 0.680528i
\(844\) 6.50614e29 0.122103
\(845\) 0 0
\(846\) −1.90070e30 −0.347957
\(847\) − 2.42033e30i − 0.437621i
\(848\) − 1.50891e30i − 0.269467i
\(849\) −6.15462e30 −1.08560
\(850\) 0 0
\(851\) −7.97630e29 −0.137259
\(852\) − 2.83657e29i − 0.0482145i
\(853\) 2.27471e30i 0.381911i 0.981599 + 0.190955i \(0.0611586\pi\)
−0.981599 + 0.190955i \(0.938841\pi\)
\(854\) −3.03003e30 −0.502503
\(855\) 0 0
\(856\) −2.84833e30 −0.460910
\(857\) 3.05003e30i 0.487534i 0.969834 + 0.243767i \(0.0783832\pi\)
−0.969834 + 0.243767i \(0.921617\pi\)
\(858\) 3.31462e30i 0.523380i
\(859\) −1.34073e30 −0.209128 −0.104564 0.994518i \(-0.533345\pi\)
−0.104564 + 0.994518i \(0.533345\pi\)
\(860\) 0 0
\(861\) 5.42133e30 0.825225
\(862\) − 1.12873e31i − 1.69732i
\(863\) − 1.14916e31i − 1.70713i −0.520985 0.853566i \(-0.674435\pi\)
0.520985 0.853566i \(-0.325565\pi\)
\(864\) 5.86612e29 0.0860908
\(865\) 0 0
\(866\) 4.32457e30 0.619448
\(867\) 4.58799e28i 0.00649265i
\(868\) 2.53397e30i 0.354278i
\(869\) 1.96173e30 0.270976
\(870\) 0 0
\(871\) −2.08107e30 −0.280606
\(872\) 1.35024e30i 0.179882i
\(873\) 2.06448e30i 0.271744i
\(874\) 2.39290e30 0.311211
\(875\) 0 0
\(876\) 4.88871e29 0.0620727
\(877\) 9.06320e30i 1.13707i 0.822660 + 0.568533i \(0.192489\pi\)
−0.822660 + 0.568533i \(0.807511\pi\)
\(878\) 2.91934e30i 0.361904i
\(879\) −3.68840e30 −0.451809
\(880\) 0 0
\(881\) −6.50767e30 −0.778356 −0.389178 0.921163i \(-0.627241\pi\)
−0.389178 + 0.921163i \(0.627241\pi\)
\(882\) 7.05287e29i 0.0833577i
\(883\) − 5.90742e30i − 0.689939i −0.938614 0.344969i \(-0.887889\pi\)
0.938614 0.344969i \(-0.112111\pi\)
\(884\) −2.95858e30 −0.341456
\(885\) 0 0
\(886\) 7.18992e30 0.810344
\(887\) − 3.42312e30i − 0.381263i −0.981662 0.190632i \(-0.938946\pi\)
0.981662 0.190632i \(-0.0610536\pi\)
\(888\) 3.43819e30i 0.378437i
\(889\) −3.50032e30 −0.380750
\(890\) 0 0
\(891\) 7.26524e29 0.0771852
\(892\) − 2.26792e30i − 0.238121i
\(893\) − 1.79595e31i − 1.86361i
\(894\) 3.63627e30 0.372917
\(895\) 0 0
\(896\) −4.47020e30 −0.447810
\(897\) 1.95766e30i 0.193828i
\(898\) 1.56863e31i 1.53503i
\(899\) 2.31420e31 2.23833
\(900\) 0 0
\(901\) 3.98728e30 0.376761
\(902\) − 1.10407e31i − 1.03116i
\(903\) − 4.65587e30i − 0.429813i
\(904\) −8.05980e30 −0.735455
\(905\) 0 0
\(906\) 9.23433e30 0.823302
\(907\) − 1.16251e31i − 1.02452i −0.858829 0.512262i \(-0.828808\pi\)
0.858829 0.512262i \(-0.171192\pi\)
\(908\) 3.83534e30i 0.334120i
\(909\) 5.79606e30 0.499128
\(910\) 0 0
\(911\) −1.34510e31 −1.13191 −0.565957 0.824435i \(-0.691493\pi\)
−0.565957 + 0.824435i \(0.691493\pi\)
\(912\) − 7.82741e30i − 0.651137i
\(913\) − 1.82407e28i − 0.00150002i
\(914\) −9.70051e30 −0.788605
\(915\) 0 0
\(916\) −1.30418e30 −0.103618
\(917\) − 1.60945e31i − 1.26416i
\(918\) − 2.18903e30i − 0.169982i
\(919\) 8.55562e30 0.656808 0.328404 0.944537i \(-0.393489\pi\)
0.328404 + 0.944537i \(0.393489\pi\)
\(920\) 0 0
\(921\) 4.21853e30 0.316544
\(922\) 1.15093e30i 0.0853835i
\(923\) − 7.40185e30i − 0.542903i
\(924\) 1.06899e30 0.0775205
\(925\) 0 0
\(926\) 1.52259e30 0.107937
\(927\) 4.11157e30i 0.288184i
\(928\) − 7.88268e30i − 0.546286i
\(929\) −9.93712e30 −0.680919 −0.340460 0.940259i \(-0.610583\pi\)
−0.340460 + 0.940259i \(0.610583\pi\)
\(930\) 0 0
\(931\) −6.66418e30 −0.446452
\(932\) 3.16381e30i 0.209577i
\(933\) 3.55425e30i 0.232804i
\(934\) −1.48757e31 −0.963462
\(935\) 0 0
\(936\) 8.43852e30 0.534404
\(937\) − 2.14272e30i − 0.134183i −0.997747 0.0670917i \(-0.978628\pi\)
0.997747 0.0670917i \(-0.0213720\pi\)
\(938\) − 2.26557e30i − 0.140297i
\(939\) 9.98217e30 0.611275
\(940\) 0 0
\(941\) 1.69148e31 1.01292 0.506459 0.862264i \(-0.330954\pi\)
0.506459 + 0.862264i \(0.330954\pi\)
\(942\) − 4.43006e30i − 0.262347i
\(943\) − 6.52077e30i − 0.381879i
\(944\) 5.12310e30 0.296706
\(945\) 0 0
\(946\) −9.48180e30 −0.537074
\(947\) − 1.96530e31i − 1.10092i −0.834862 0.550459i \(-0.814453\pi\)
0.834862 0.550459i \(-0.185547\pi\)
\(948\) − 9.29057e29i − 0.0514701i
\(949\) 1.27568e31 0.698948
\(950\) 0 0
\(951\) −3.37578e30 −0.180917
\(952\) − 1.73142e31i − 0.917728i
\(953\) − 2.39001e31i − 1.25292i −0.779452 0.626462i \(-0.784502\pi\)
0.779452 0.626462i \(-0.215498\pi\)
\(954\) −2.11559e30 −0.109692
\(955\) 0 0
\(956\) −4.75555e30 −0.241209
\(957\) − 9.76276e30i − 0.489776i
\(958\) 2.60567e31i 1.29295i
\(959\) 3.04716e31 1.49555
\(960\) 0 0
\(961\) 4.91397e31 2.35959
\(962\) 1.66897e31i 0.792703i
\(963\) 3.03057e30i 0.142380i
\(964\) −7.38943e30 −0.343401
\(965\) 0 0
\(966\) −2.13122e30 −0.0969100
\(967\) 1.63072e31i 0.733504i 0.930319 + 0.366752i \(0.119530\pi\)
−0.930319 + 0.366752i \(0.880470\pi\)
\(968\) 1.25486e31i 0.558348i
\(969\) 2.06839e31 0.910401
\(970\) 0 0
\(971\) 3.09343e31 1.33241 0.666207 0.745767i \(-0.267917\pi\)
0.666207 + 0.745767i \(0.267917\pi\)
\(972\) − 3.44076e29i − 0.0146608i
\(973\) 1.37915e31i 0.581334i
\(974\) −4.77865e30 −0.199267
\(975\) 0 0
\(976\) 1.19216e31 0.486531
\(977\) 1.98044e31i 0.799592i 0.916604 + 0.399796i \(0.130919\pi\)
−0.916604 + 0.399796i \(0.869081\pi\)
\(978\) − 2.39025e30i − 0.0954742i
\(979\) −1.40189e31 −0.553982
\(980\) 0 0
\(981\) 1.43663e30 0.0555673
\(982\) 1.94829e31i 0.745561i
\(983\) 4.34284e30i 0.164423i 0.996615 + 0.0822114i \(0.0261983\pi\)
−0.996615 + 0.0822114i \(0.973802\pi\)
\(984\) −2.81078e31 −1.05288
\(985\) 0 0
\(986\) −2.94154e31 −1.07862
\(987\) 1.59955e31i 0.580322i
\(988\) 1.48327e31i 0.532441i
\(989\) −5.60008e30 −0.198899
\(990\) 0 0
\(991\) 4.70795e30 0.163704 0.0818518 0.996645i \(-0.473917\pi\)
0.0818518 + 0.996645i \(0.473917\pi\)
\(992\) − 2.38317e31i − 0.819939i
\(993\) − 3.94422e30i − 0.134275i
\(994\) 8.05807e30 0.271440
\(995\) 0 0
\(996\) −8.63864e27 −0.000284920 0
\(997\) − 1.58934e31i − 0.518700i −0.965783 0.259350i \(-0.916492\pi\)
0.965783 0.259350i \(-0.0835084\pi\)
\(998\) 4.89494e30i 0.158080i
\(999\) 3.65817e30 0.116903
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.22.b.d.49.2 4
5.2 odd 4 75.22.a.d.1.2 2
5.3 odd 4 3.22.a.c.1.1 2
5.4 even 2 inner 75.22.b.d.49.3 4
15.8 even 4 9.22.a.e.1.2 2
20.3 even 4 48.22.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3.22.a.c.1.1 2 5.3 odd 4
9.22.a.e.1.2 2 15.8 even 4
48.22.a.g.1.1 2 20.3 even 4
75.22.a.d.1.2 2 5.2 odd 4
75.22.b.d.49.2 4 1.1 even 1 trivial
75.22.b.d.49.3 4 5.4 even 2 inner