[N,k,chi] = [75,22,Mod(1,75)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(75, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("75.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(5\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 897T_{2}^{3} - 3210438T_{2}^{2} + 1891862624T_{2} + 2065963121664 \)
T2^4 - 897*T2^3 - 3210438*T2^2 + 1891862624*T2 + 2065963121664
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(75))\).
$p$
$F_p(T)$
$2$
\( T^{4} - 897 T^{3} + \cdots + 2065963121664 \)
T^4 - 897*T^3 - 3210438*T^2 + 1891862624*T + 2065963121664
$3$
\( (T - 59049)^{4} \)
(T - 59049)^4
$5$
\( T^{4} \)
T^4
$7$
\( T^{4} - 234577504 T^{3} + \cdots + 38\!\cdots\!00 \)
T^4 - 234577504*T^3 - 1862168801977510656*T^2 + 396328883227766325337374720*T + 383743482120644300925415661666304000
$11$
\( T^{4} - 31491830256 T^{3} + \cdots + 28\!\cdots\!64 \)
T^4 - 31491830256*T^3 - 19312068120074551638432*T^2 + 135828530855307080234681438933248*T + 28381277872317888219670139675616823821099264
$13$
\( T^{4} - 27017977768 T^{3} + \cdots + 26\!\cdots\!84 \)
T^4 - 27017977768*T^3 - 1108036936737950777531688*T^2 - 36800716070593616924938915126169504*T + 268873426021349807386537001480915737460523405584
$17$
\( T^{4} - 2946095028888 T^{3} + \cdots + 31\!\cdots\!56 \)
T^4 - 2946095028888*T^3 - 161949279185939054113955496*T^2 - 134270127188204789858228137516735511392*T + 3126117540636703998211126081393748221064885507075856
$19$
\( T^{4} + 24270353300752 T^{3} + \cdots + 34\!\cdots\!00 \)
T^4 + 24270353300752*T^3 - 1122016742390773364602642464*T^2 - 26784438194108588296787353606124744323840*T + 34500498078945485655609309571828525112069536990726400
$23$
\( T^{4} + 10350924920928 T^{3} + \cdots - 97\!\cdots\!00 \)
T^4 + 10350924920928*T^3 - 87375522042917234112129801984*T^2 + 5857681076185688239010378768097020725985280*T - 97882467896375776778600843562402968945696606150590464000
$29$
\( T^{4} + \cdots - 51\!\cdots\!00 \)
T^4 - 4728924677079096*T^3 - 8615954128680003089181792109416*T^2 + 55419366035739131036274669582211845253426230560*T - 51698111869114919407013904642078816008357499442382589806742000
$31$
\( T^{4} + \cdots + 15\!\cdots\!00 \)
T^4 + 1094923910405536*T^3 - 15156177263813620949946948216576*T^2 - 23497228991071117292317787916848512360253030400*T + 15093410036755809776644877250045788748316048818091917312000000
$37$
\( T^{4} + \cdots + 50\!\cdots\!00 \)
T^4 + 4813435696247096*T^3 - 1705834780620370056883044361244136*T^2 - 8983718392327521355605213392645332306489573484320*T + 50902738028276392754835826318461524106289535057504308221626256400
$41$
\( T^{4} + \cdots - 70\!\cdots\!00 \)
T^4 - 289731591445930344*T^3 + 20040100471128790395212720627129304*T^2 + 626717668457751634185028633974815287340950462916960*T - 70988148097466694306937224635755838526356528447560110781120580790000
$43$
\( T^{4} + \cdots - 16\!\cdots\!04 \)
T^4 + 451091912658458000*T^3 + 53628003549075469769577221428204128*T^2 - 170723039919168078381360773034697421295228688889600*T - 168142645200656821462271400373249337797668046106286833261808276315904
$47$
\( T^{4} + \cdots - 21\!\cdots\!44 \)
T^4 + 813883435638492480*T^3 + 70996736532884308065355717627189632*T^2 - 41469855076302193875730133323223232087146163091640320*T - 2138282441670918163149287458126602544875689169627082198304261357727744
$53$
\( T^{4} + \cdots + 34\!\cdots\!00 \)
T^4 + 697278335404085208*T^3 - 1751504316097265064122009922806505384*T^2 - 1112410904110422387734151233417074967993524228690487200*T + 343049512911392603732127080919361151128523776416223802671027584756080400
$59$
\( T^{4} + \cdots + 97\!\cdots\!00 \)
T^4 - 6622888614569598192*T^3 - 20793368156049157056622924058857704864*T^2 + 106209756365166093460538215589859685076290107897579700480*T + 97735591953825442742647737025190871064295690763197115617191783742714323200
$61$
\( T^{4} + \cdots + 27\!\cdots\!76 \)
T^4 - 7390887218011683320*T^3 - 94130994221938032607154340302683356648*T^2 + 408657984562613119556592010625197705791750721801388802080*T + 2772748853140256623478100799493790410058598971685572177396824249132296284176
$67$
\( T^{4} + \cdots + 28\!\cdots\!56 \)
T^4 - 24188188449376788688*T^3 - 229042213596636635406215328262853083296*T^2 + 3775330820854699506521328410729408975665271817224760945408*T + 28101773869313131338352518536798403955571804051674653865985795157035971481856
$71$
\( T^{4} + \cdots - 17\!\cdots\!44 \)
T^4 + 37390337803999713312*T^3 - 1139463428933347426505646390231682375296*T^2 - 34885138177175458229586900690027461748786696708493950318592*T - 174155452652628671764487922142823029352266186382196214441059763328791533318144
$73$
\( T^{4} + \cdots - 99\!\cdots\!00 \)
T^4 - 37253672904265201432*T^3 - 34326670508947858402927007441557140264*T^2 + 12178398494082618130220355106486656860561566991319385743520*T - 99224270188047384046262956583035411054218726917645555817471227781947804162800
$79$
\( T^{4} + \cdots - 12\!\cdots\!00 \)
T^4 + 109751291042259570400*T^3 - 7989976050687852877434024218805467769600*T^2 - 979320490199289162418845200807165522419367125829420083200000*T - 12491659494476605469195544050095629894496474702724019536037320574822150144000000
$83$
\( T^{4} + \cdots - 79\!\cdots\!56 \)
T^4 - 149023592088638482896*T^3 - 30149560645279164228205996073477325581472*T^2 + 3510562983549102883166340450603451397844516592423171290594048*T - 79906271600397952499194113081421659552297186737552301904332541122481503618445056
$89$
\( T^{4} + \cdots + 85\!\cdots\!00 \)
T^4 - 558502237151273959848*T^3 + 88379878473011091764935528702921534539096*T^2 - 4988745067107050271415050446682710227600024951734344794507680*T + 85928687855151514423903558307575585638097404912023250992369418199007126089866000
$97$
\( T^{4} + \cdots - 16\!\cdots\!24 \)
T^4 - 236244923748673777528*T^3 - 800778384912282913045222904652702838836456*T^2 - 236981001326529697888318286476571490238100529544085777828411872*T - 16986617770411665031361304084824596665919882978220925885493241279225356388816010224
show more
show less