[N,k,chi] = [75,22,Mod(1,75)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(75, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("75.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(5\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} + 702T_{2}^{2} - 5521440T_{2} + 810456064 \)
T2^3 + 702*T2^2 - 5521440*T2 + 810456064
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(75))\).
$p$
$F_p(T)$
$2$
\( T^{3} + 702 T^{2} + \cdots + 810456064 \)
T^3 + 702*T^2 - 5521440*T + 810456064
$3$
\( (T - 59049)^{3} \)
(T - 59049)^3
$5$
\( T^{3} \)
T^3
$7$
\( T^{3} - 2072418204 T^{2} + \cdots + 66\!\cdots\!20 \)
T^3 - 2072418204*T^2 + 907430864429268144*T + 66944917633437034150921920
$11$
\( T^{3} + 8467600440 T^{2} + \cdots + 28\!\cdots\!16 \)
T^3 + 8467600440*T^2 - 10690021770891843408192*T + 285927639308980155716675558959616
$13$
\( T^{3} - 469447548570 T^{2} + \cdots + 86\!\cdots\!92 \)
T^3 - 469447548570*T^2 - 225219695829453132466548*T + 865367038422568376535857098073992
$17$
\( T^{3} - 6865096035486 T^{2} + \cdots + 18\!\cdots\!72 \)
T^3 - 6865096035486*T^2 - 69054430715646863496998868*T + 182193549869554613804130192827389339672
$19$
\( T^{3} - 33215593555044 T^{2} + \cdots - 27\!\cdots\!00 \)
T^3 - 33215593555044*T^2 - 730048037266117668353647440*T - 2757181795174774487854652290535077201600
$23$
\( T^{3} + 48760125154728 T^{2} + \cdots - 19\!\cdots\!20 \)
T^3 + 48760125154728*T^2 - 7878859193432918978765227584*T - 199612046908356308993520986965106482321920
$29$
\( T^{3} + \cdots + 10\!\cdots\!00 \)
T^3 - 2622046450702398*T^2 - 65561173578835205973399515220*T + 100893147190281347258668681595675354780719000
$31$
\( T^{3} + \cdots - 64\!\cdots\!00 \)
T^3 - 6533642328115464*T^2 + 11858856683569906812524502335424*T - 6425018024744933986826235974646456547721510400
$37$
\( T^{3} + \cdots - 91\!\cdots\!60 \)
T^3 - 21354228159481914*T^2 - 1159218133430881243307939000490996*T - 9135968445246138296767566243805929525896675866360
$41$
\( T^{3} + \cdots - 42\!\cdots\!00 \)
T^3 + 63794855315977266*T^2 - 6572050066219467645022339409276436*T - 424571900484825712628233429133521330047203909561000
$43$
\( T^{3} + \cdots + 79\!\cdots\!76 \)
T^3 - 332824264211549796*T^2 + 22759945427623483855304521097037744*T + 795457116656455157818354928904249397630217009018176
$47$
\( T^{3} + \cdots - 26\!\cdots\!32 \)
T^3 - 1028504160073809912*T^2 + 315196583220601232463381600466739136*T - 26234138532752531781282550123130573550907523582853632
$53$
\( T^{3} + \cdots + 18\!\cdots\!40 \)
T^3 + 811321254325423998*T^2 + 213667406284491400551954147927717036*T + 18073845517286885273765349816610955233796597493499240
$59$
\( T^{3} + \cdots - 13\!\cdots\!00 \)
T^3 + 526619402549960904*T^2 - 14442256375339069339665773881130230080*T - 13824360640810535166838125638944251449261940189585779200
$61$
\( T^{3} + \cdots - 20\!\cdots\!12 \)
T^3 - 826732383760533522*T^2 - 73899032129431145357886951366712077204*T - 205639032294681979545459332519017053743769449236411242712
$67$
\( T^{3} + \cdots + 97\!\cdots\!12 \)
T^3 - 9384022533389399076*T^2 - 103597973680384326635690605732266761808*T + 970710491935352500561675026414548890824883435597993326912
$71$
\( T^{3} + \cdots + 11\!\cdots\!32 \)
T^3 - 60019641798452716896*T^2 + 530791190476106918965210693231527939072*T + 11786555806457266000691498997815551338632099420405936914432
$73$
\( T^{3} + \cdots + 11\!\cdots\!80 \)
T^3 - 17009842434251898522*T^2 - 4163090999470883568347529602235708103284*T + 110569093202320469470399671254479477193035335181740374771080
$79$
\( T^{3} + \cdots - 20\!\cdots\!00 \)
T^3 - 192112433593115883000*T^2 + 11217877062674848904446836655072610750400*T - 200437210509931012978213283930158830529438487897477463360000
$83$
\( T^{3} + \cdots + 14\!\cdots\!88 \)
T^3 + 284198623110184688316*T^2 + 12248007606118177184872642893820441913520*T + 141208672232313325582791975879447822905627347099008815892288
$89$
\( T^{3} + \cdots + 71\!\cdots\!00 \)
T^3 - 132940763694174535254*T^2 - 132423935829663616857394481878487573241780*T + 7108797726711008182261262222876759345350269686896074674211000
$97$
\( T^{3} + \cdots + 62\!\cdots\!12 \)
T^3 - 985976190327562940826*T^2 - 615800944924343619339147111999841899592308*T + 623084146035348373024633805130181868219510895816156314792939912
show more
show less