Newspace parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(209.608008215\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 3) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
2844.00 | 59049.0 | 5.99118e6 | 0 | 1.67935e8 | −3.63304e8 | 1.10746e10 | 3.48678e9 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(5\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 75.22.a.c | 1 | |
5.b | even | 2 | 1 | 3.22.a.a | ✓ | 1 | |
5.c | odd | 4 | 2 | 75.22.b.a | 2 | ||
15.d | odd | 2 | 1 | 9.22.a.d | 1 | ||
20.d | odd | 2 | 1 | 48.22.a.e | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3.22.a.a | ✓ | 1 | 5.b | even | 2 | 1 | |
9.22.a.d | 1 | 15.d | odd | 2 | 1 | ||
48.22.a.e | 1 | 20.d | odd | 2 | 1 | ||
75.22.a.c | 1 | 1.a | even | 1 | 1 | trivial | |
75.22.b.a | 2 | 5.c | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} - 2844 \)
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(75))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T - 2844 \)
$3$
\( T - 59049 \)
$5$
\( T \)
$7$
\( T + 363303920 \)
$11$
\( T - 14581833156 \)
$13$
\( T + 113350790702 \)
$17$
\( T - 8589389597982 \)
$19$
\( T + 29202939273796 \)
$23$
\( T - 155899214954280 \)
$29$
\( T - 2400788707090758 \)
$31$
\( T - 2239820676947000 \)
$37$
\( T - 30\!\cdots\!90 \)
$41$
\( T + 10\!\cdots\!30 \)
$43$
\( T - 16\!\cdots\!24 \)
$47$
\( T - 66\!\cdots\!08 \)
$53$
\( T + 43\!\cdots\!30 \)
$59$
\( T - 55\!\cdots\!16 \)
$61$
\( T + 71\!\cdots\!02 \)
$67$
\( T - 15\!\cdots\!12 \)
$71$
\( T - 26\!\cdots\!32 \)
$73$
\( T + 13\!\cdots\!50 \)
$79$
\( T + 16\!\cdots\!40 \)
$83$
\( T - 17\!\cdots\!72 \)
$89$
\( T + 31\!\cdots\!86 \)
$97$
\( T + 94\!\cdots\!18 \)
show more
show less