Properties

Label 75.2.i
Level $75$
Weight $2$
Character orbit 75.i
Rep. character $\chi_{75}(4,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $16$
Newform subspaces $1$
Sturm bound $20$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 75.i (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(20\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(75, [\chi])\).

Total New Old
Modular forms 48 16 32
Cusp forms 32 16 16
Eisenstein series 16 0 16

Trace form

\( 16 q + 2 q^{4} + 2 q^{6} - 30 q^{8} + 4 q^{9} + O(q^{10}) \) \( 16 q + 2 q^{4} + 2 q^{6} - 30 q^{8} + 4 q^{9} - 6 q^{11} - 12 q^{14} - 10 q^{16} + 10 q^{17} - 2 q^{19} + 20 q^{20} + 4 q^{21} - 30 q^{22} - 20 q^{23} + 24 q^{24} - 10 q^{25} + 12 q^{26} + 30 q^{28} + 16 q^{29} - 20 q^{30} + 6 q^{31} + 10 q^{33} - 36 q^{34} + 10 q^{35} - 2 q^{36} - 10 q^{37} + 30 q^{38} - 8 q^{39} + 10 q^{40} - 14 q^{41} - 10 q^{42} + 26 q^{44} + 16 q^{46} + 40 q^{47} + 20 q^{50} - 32 q^{51} + 40 q^{52} + 10 q^{53} - 2 q^{54} + 10 q^{55} + 10 q^{58} + 12 q^{59} - 30 q^{60} - 10 q^{62} - 10 q^{63} + 8 q^{64} - 70 q^{65} + 16 q^{66} - 40 q^{67} - 12 q^{69} + 30 q^{70} - 8 q^{71} - 30 q^{72} - 20 q^{73} - 52 q^{74} - 32 q^{76} - 40 q^{77} - 20 q^{79} - 4 q^{81} + 10 q^{83} + 12 q^{84} - 20 q^{85} - 36 q^{86} + 40 q^{87} - 40 q^{88} + 18 q^{89} + 30 q^{90} + 26 q^{91} + 10 q^{92} - 38 q^{94} - 40 q^{95} - 26 q^{96} + 40 q^{97} + 60 q^{98} - 4 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(75, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
75.2.i.a 75.i 25.e $16$ $0.599$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 75.2.i.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-1-\beta _{2}-\beta _{4}+\beta _{6}-\beta _{7}-\beta _{8}+\cdots)q^{2}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(75, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)