Newspace parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.g (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.598878015160\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{5})\) |
Coefficient field: | 8.0.26265625.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 3x^{7} + 2x^{6} + x^{4} + 8x^{2} - 24x + 16 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 5 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 3x^{7} + 2x^{6} + x^{4} + 8x^{2} - 24x + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{7} - \nu^{6} + \nu^{3} + 2\nu^{2} + 4\nu - 8 ) / 8 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{7} - \nu^{6} + \nu^{3} - 2\nu^{2} + 12\nu - 12 ) / 4 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -7\nu^{7} + 9\nu^{6} + 2\nu^{5} + 4\nu^{4} + \nu^{3} - 4\nu^{2} - 60\nu + 64 ) / 8 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 11\nu^{7} - 15\nu^{6} - 4\nu^{5} - 8\nu^{4} + 3\nu^{3} + 2\nu^{2} + 92\nu - 96 ) / 8 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 11\nu^{7} - 13\nu^{6} - 6\nu^{5} - 8\nu^{4} + 3\nu^{3} + 4\nu^{2} + 96\nu - 88 ) / 8 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 13\nu^{7} - 21\nu^{6} - 4\nu^{5} - 4\nu^{4} + 5\nu^{3} + 10\nu^{2} + 120\nu - 144 ) / 8 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 19\nu^{7} - 31\nu^{6} - 4\nu^{5} - 8\nu^{4} + 11\nu^{3} + 18\nu^{2} + 180\nu - 224 ) / 8 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{7} - \beta_{6} + \beta_{5} - 2\beta_{4} - \beta_{3} + \beta_{2} - 4\beta _1 + 4 ) / 5 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{7} - 2\beta_{6} + 2\beta_{5} - 4\beta_{4} - 2\beta_{3} - 3\beta_{2} + 2\beta _1 + 3 ) / 5 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 2\beta_{7} - 2\beta_{6} + 2\beta_{5} + \beta_{4} + 8\beta_{3} + 2\beta_{2} + 7\beta _1 + 3 ) / 5 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{7} + 2\beta_{6} - \beta_{4} + \beta_{2} + 2\beta _1 + 1 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 6\beta_{7} - 11\beta_{6} - 9\beta_{5} + 3\beta_{4} - 11\beta_{3} + 6\beta_{2} + 6\beta _1 + 19 ) / 5 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 2\beta_{7} - 7\beta_{6} + 7\beta_{5} - 9\beta_{4} - 7\beta_{3} + 7\beta_{2} + 12\beta _1 - 12 ) / 5 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -8\beta_{7} + 3\beta_{6} - 3\beta_{5} + 6\beta_{4} - 7\beta_{3} + 7\beta_{2} + 57\beta _1 + 3 ) / 5 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).
\(n\) | \(26\) | \(52\) |
\(\chi(n)\) | \(1\) | \(-1 + \beta_{1} + \beta_{3} + \beta_{6}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 |
|
−2.18949 | − | 1.59076i | 0.309017 | + | 0.951057i | 1.64533 | + | 5.06380i | 0.336312 | + | 2.21063i | 0.836312 | − | 2.57390i | 0.470294 | 2.78023 | − | 8.55667i | −0.809017 | + | 0.587785i | 2.78023 | − | 5.37515i | ||||||||||||||||||||||||||
16.2 | 1.38048 | + | 1.00297i | 0.309017 | + | 0.951057i | 0.281722 | + | 0.867051i | −1.02729 | − | 1.98612i | −0.527295 | + | 1.62285i | −3.94243 | 0.573870 | − | 1.76619i | −0.809017 | + | 0.587785i | 0.573870 | − | 3.77214i | |||||||||||||||||||||||||||
31.1 | −0.346820 | − | 1.06740i | −0.809017 | + | 0.587785i | 0.598970 | − | 0.435177i | 0.407987 | − | 2.19853i | 0.907987 | + | 0.659691i | 1.11373 | −2.48822 | − | 1.80780i | 0.309017 | − | 0.951057i | −2.48822 | + | 0.327009i | |||||||||||||||||||||||||||
31.2 | 0.655837 | + | 2.01846i | −0.809017 | + | 0.587785i | −2.02602 | + | 1.47199i | −2.21700 | − | 0.291365i | −1.71700 | − | 1.24748i | 4.35840 | −0.865884 | − | 0.629102i | 0.309017 | − | 0.951057i | −0.865884 | − | 4.66602i | |||||||||||||||||||||||||||
46.1 | −0.346820 | + | 1.06740i | −0.809017 | − | 0.587785i | 0.598970 | + | 0.435177i | 0.407987 | + | 2.19853i | 0.907987 | − | 0.659691i | 1.11373 | −2.48822 | + | 1.80780i | 0.309017 | + | 0.951057i | −2.48822 | − | 0.327009i | |||||||||||||||||||||||||||
46.2 | 0.655837 | − | 2.01846i | −0.809017 | − | 0.587785i | −2.02602 | − | 1.47199i | −2.21700 | + | 0.291365i | −1.71700 | + | 1.24748i | 4.35840 | −0.865884 | + | 0.629102i | 0.309017 | + | 0.951057i | −0.865884 | + | 4.66602i | |||||||||||||||||||||||||||
61.1 | −2.18949 | + | 1.59076i | 0.309017 | − | 0.951057i | 1.64533 | − | 5.06380i | 0.336312 | − | 2.21063i | 0.836312 | + | 2.57390i | 0.470294 | 2.78023 | + | 8.55667i | −0.809017 | − | 0.587785i | 2.78023 | + | 5.37515i | |||||||||||||||||||||||||||
61.2 | 1.38048 | − | 1.00297i | 0.309017 | − | 0.951057i | 0.281722 | − | 0.867051i | −1.02729 | + | 1.98612i | −0.527295 | − | 1.62285i | −3.94243 | 0.573870 | + | 1.76619i | −0.809017 | − | 0.587785i | 0.573870 | + | 3.77214i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 75.2.g.b | ✓ | 8 |
3.b | odd | 2 | 1 | 225.2.h.c | 8 | ||
5.b | even | 2 | 1 | 375.2.g.b | 8 | ||
5.c | odd | 4 | 2 | 375.2.i.b | 16 | ||
25.d | even | 5 | 1 | inner | 75.2.g.b | ✓ | 8 |
25.d | even | 5 | 1 | 1875.2.a.h | 4 | ||
25.e | even | 10 | 1 | 375.2.g.b | 8 | ||
25.e | even | 10 | 1 | 1875.2.a.e | 4 | ||
25.f | odd | 20 | 2 | 375.2.i.b | 16 | ||
25.f | odd | 20 | 2 | 1875.2.b.c | 8 | ||
75.h | odd | 10 | 1 | 5625.2.a.n | 4 | ||
75.j | odd | 10 | 1 | 225.2.h.c | 8 | ||
75.j | odd | 10 | 1 | 5625.2.a.i | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
75.2.g.b | ✓ | 8 | 25.d | even | 5 | 1 | inner |
225.2.h.c | 8 | 3.b | odd | 2 | 1 | ||
225.2.h.c | 8 | 75.j | odd | 10 | 1 | ||
375.2.g.b | 8 | 5.b | even | 2 | 1 | ||
375.2.g.b | 8 | 25.e | even | 10 | 1 | ||
375.2.i.b | 16 | 5.c | odd | 4 | 2 | ||
375.2.i.b | 16 | 25.f | odd | 20 | 2 | ||
1875.2.a.e | 4 | 25.e | even | 10 | 1 | ||
1875.2.a.h | 4 | 25.d | even | 5 | 1 | ||
1875.2.b.c | 8 | 25.f | odd | 20 | 2 | ||
5625.2.a.i | 4 | 75.j | odd | 10 | 1 | ||
5625.2.a.n | 4 | 75.h | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + T_{2}^{7} + 2T_{2}^{6} + 3T_{2}^{5} + 25T_{2}^{4} - 43T_{2}^{3} + 82T_{2}^{2} - 11T_{2} + 121 \)
acting on \(S_{2}^{\mathrm{new}}(75, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + T^{7} + 2 T^{6} + 3 T^{5} + \cdots + 121 \)
$3$
\( (T^{4} + T^{3} + T^{2} + T + 1)^{2} \)
$5$
\( T^{8} + 5 T^{7} + 20 T^{6} + 65 T^{5} + \cdots + 625 \)
$7$
\( (T^{4} - 2 T^{3} - 16 T^{2} + 27 T - 9)^{2} \)
$11$
\( T^{8} - 16 T^{7} + 127 T^{6} + \cdots + 11881 \)
$13$
\( T^{8} + 8 T^{7} + 43 T^{6} + 131 T^{5} + \cdots + 81 \)
$17$
\( T^{8} + T^{7} + 7 T^{6} + 13 T^{5} + \cdots + 121 \)
$19$
\( T^{8} + 5 T^{7} + 5 T^{6} + \cdots + 75625 \)
$23$
\( T^{8} - 7 T^{7} + 58 T^{6} - 169 T^{5} + \cdots + 361 \)
$29$
\( T^{8} - 5 T^{7} + 70 T^{6} + \cdots + 164025 \)
$31$
\( T^{8} + 19 T^{7} + 172 T^{6} + \cdots + 505521 \)
$37$
\( T^{8} + T^{7} + 77 T^{6} + 153 T^{5} + \cdots + 1 \)
$41$
\( (T^{4} + 7 T^{3} + 69 T^{2} + 143 T + 121)^{2} \)
$43$
\( (T^{4} - 16 T^{3} + 61 T^{2} + 24 T - 99)^{2} \)
$47$
\( T^{8} + T^{7} + 32 T^{6} + 63 T^{5} + \cdots + 96721 \)
$53$
\( T^{8} + 3 T^{7} + 43 T^{6} + \cdots + 68121 \)
$59$
\( T^{8} - 30 T^{7} + 495 T^{6} + \cdots + 13286025 \)
$61$
\( T^{8} + 14 T^{7} + 157 T^{6} + \cdots + 81 \)
$67$
\( T^{8} - 4 T^{7} + 37 T^{6} + \cdots + 29241 \)
$71$
\( T^{8} - 21 T^{7} + 447 T^{6} + \cdots + 829921 \)
$73$
\( T^{8} - 2 T^{7} - 17 T^{6} + \cdots + 23707161 \)
$79$
\( T^{8} + 30 T^{7} + 605 T^{6} + \cdots + 96924025 \)
$83$
\( T^{8} - 2 T^{7} + 43 T^{6} + \cdots + 958441 \)
$89$
\( T^{8} + 255 T^{6} + \cdots + 10923025 \)
$97$
\( T^{8} + 6 T^{7} + 7 T^{6} + \cdots + 4414201 \)
show more
show less