Properties

Label 75.18.b.b.49.1
Level $75$
Weight $18$
Character 75.49
Analytic conductor $137.417$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,18,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(137.416565508\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{849})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 425x^{2} + 44944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-15.0688i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.18.b.b.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-702.477i q^{2} -6561.00i q^{3} -362402. q^{4} -4.60895e6 q^{6} -2.67481e6i q^{7} +1.62504e8i q^{8} -4.30467e7 q^{9} -9.86334e8 q^{11} +2.37772e9i q^{12} -2.81488e9i q^{13} -1.87899e9 q^{14} +6.66544e10 q^{16} +1.28501e10i q^{17} +3.02393e10i q^{18} +1.22560e11 q^{19} -1.75494e10 q^{21} +6.92877e11i q^{22} -1.14646e11i q^{23} +1.06619e12 q^{24} -1.97739e12 q^{26} +2.82430e11i q^{27} +9.69355e11i q^{28} +4.90027e12 q^{29} +7.64406e12 q^{31} -2.55235e13i q^{32} +6.47134e12i q^{33} +9.02688e12 q^{34} +1.56002e13 q^{36} +3.18983e12i q^{37} -8.60956e13i q^{38} -1.84684e13 q^{39} -5.53137e12 q^{41} +1.23281e13i q^{42} -2.42435e13i q^{43} +3.57449e14 q^{44} -8.05365e13 q^{46} -5.82161e13i q^{47} -4.37320e14i q^{48} +2.25476e14 q^{49} +8.43094e13 q^{51} +1.02012e15i q^{52} +6.45746e14i q^{53} +1.98400e14 q^{54} +4.34667e14 q^{56} -8.04117e14i q^{57} -3.44233e15i q^{58} +1.04433e12 q^{59} -1.56088e15 q^{61} -5.36978e15i q^{62} +1.15142e14i q^{63} -9.19314e15 q^{64} +4.54597e15 q^{66} +1.31151e15i q^{67} -4.65689e15i q^{68} -7.52195e14 q^{69} -7.09230e15 q^{71} -6.99526e15i q^{72} +1.17619e16i q^{73} +2.24078e15 q^{74} -4.44160e16 q^{76} +2.63826e15i q^{77} +1.29737e16i q^{78} +7.14674e15 q^{79} +1.85302e15 q^{81} +3.88566e15i q^{82} -9.04707e15i q^{83} +6.35994e15 q^{84} -1.70305e16 q^{86} -3.21507e16i q^{87} -1.60283e17i q^{88} +1.16786e16 q^{89} -7.52927e15 q^{91} +4.15481e16i q^{92} -5.01527e16i q^{93} -4.08955e16 q^{94} -1.67460e17 q^{96} -8.32538e16i q^{97} -1.58392e17i q^{98} +4.24585e16 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 702752 q^{4} - 4671432 q^{6} - 172186884 q^{9} - 2263259824 q^{11} + 8770444032 q^{14} + 102082634240 q^{16} + 388752254432 q^{19} - 272341231344 q^{21} + 2778418267776 q^{24} - 6214885009072 q^{26}+ \cdots + 97\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 702.477i − 1.94034i −0.242432 0.970168i \(-0.577945\pi\)
0.242432 0.970168i \(-0.422055\pi\)
\(3\) − 6561.00i − 0.577350i
\(4\) −362402. −2.76491
\(5\) 0 0
\(6\) −4.60895e6 −1.12025
\(7\) − 2.67481e6i − 0.175372i −0.996148 0.0876858i \(-0.972053\pi\)
0.996148 0.0876858i \(-0.0279472\pi\)
\(8\) 1.62504e8i 3.42451i
\(9\) −4.30467e7 −0.333333
\(10\) 0 0
\(11\) −9.86334e8 −1.38735 −0.693675 0.720288i \(-0.744010\pi\)
−0.693675 + 0.720288i \(0.744010\pi\)
\(12\) 2.37772e9i 1.59632i
\(13\) − 2.81488e9i − 0.957065i −0.878070 0.478533i \(-0.841169\pi\)
0.878070 0.478533i \(-0.158831\pi\)
\(14\) −1.87899e9 −0.340280
\(15\) 0 0
\(16\) 6.66544e10 3.87980
\(17\) 1.28501e10i 0.446776i 0.974730 + 0.223388i \(0.0717117\pi\)
−0.974730 + 0.223388i \(0.928288\pi\)
\(18\) 3.02393e10i 0.646779i
\(19\) 1.22560e11 1.65555 0.827777 0.561057i \(-0.189605\pi\)
0.827777 + 0.561057i \(0.189605\pi\)
\(20\) 0 0
\(21\) −1.75494e10 −0.101251
\(22\) 6.92877e11i 2.69193i
\(23\) − 1.14646e11i − 0.305263i −0.988283 0.152631i \(-0.951225\pi\)
0.988283 0.152631i \(-0.0487747\pi\)
\(24\) 1.06619e12 1.97714
\(25\) 0 0
\(26\) −1.97739e12 −1.85703
\(27\) 2.82430e11i 0.192450i
\(28\) 9.69355e11i 0.484886i
\(29\) 4.90027e12 1.81902 0.909510 0.415682i \(-0.136457\pi\)
0.909510 + 0.415682i \(0.136457\pi\)
\(30\) 0 0
\(31\) 7.64406e12 1.60972 0.804859 0.593466i \(-0.202241\pi\)
0.804859 + 0.593466i \(0.202241\pi\)
\(32\) − 2.55235e13i − 4.10361i
\(33\) 6.47134e12i 0.800987i
\(34\) 9.02688e12 0.866896
\(35\) 0 0
\(36\) 1.56002e13 0.921635
\(37\) 3.18983e12i 0.149298i 0.997210 + 0.0746488i \(0.0237836\pi\)
−0.997210 + 0.0746488i \(0.976216\pi\)
\(38\) − 8.60956e13i − 3.21233i
\(39\) −1.84684e13 −0.552562
\(40\) 0 0
\(41\) −5.53137e12 −0.108186 −0.0540928 0.998536i \(-0.517227\pi\)
−0.0540928 + 0.998536i \(0.517227\pi\)
\(42\) 1.23281e13i 0.196461i
\(43\) − 2.42435e13i − 0.316311i −0.987414 0.158155i \(-0.949445\pi\)
0.987414 0.158155i \(-0.0505547\pi\)
\(44\) 3.57449e14 3.83589
\(45\) 0 0
\(46\) −8.05365e13 −0.592313
\(47\) − 5.82161e13i − 0.356625i −0.983974 0.178312i \(-0.942936\pi\)
0.983974 0.178312i \(-0.0570638\pi\)
\(48\) − 4.37320e14i − 2.24000i
\(49\) 2.25476e14 0.969245
\(50\) 0 0
\(51\) 8.43094e13 0.257946
\(52\) 1.02012e15i 2.64620i
\(53\) 6.45746e14i 1.42468i 0.701835 + 0.712339i \(0.252364\pi\)
−0.701835 + 0.712339i \(0.747636\pi\)
\(54\) 1.98400e14 0.373418
\(55\) 0 0
\(56\) 4.34667e14 0.600562
\(57\) − 8.04117e14i − 0.955835i
\(58\) − 3.44233e15i − 3.52951i
\(59\) 1.04433e12 0.000925970 0 0.000462985 1.00000i \(-0.499853\pi\)
0.000462985 1.00000i \(0.499853\pi\)
\(60\) 0 0
\(61\) −1.56088e15 −1.04247 −0.521237 0.853412i \(-0.674529\pi\)
−0.521237 + 0.853412i \(0.674529\pi\)
\(62\) − 5.36978e15i − 3.12340i
\(63\) 1.15142e14i 0.0584572i
\(64\) −9.19314e15 −4.08258
\(65\) 0 0
\(66\) 4.54597e15 1.55419
\(67\) 1.31151e15i 0.394581i 0.980345 + 0.197290i \(0.0632142\pi\)
−0.980345 + 0.197290i \(0.936786\pi\)
\(68\) − 4.65689e15i − 1.23529i
\(69\) −7.52195e14 −0.176244
\(70\) 0 0
\(71\) −7.09230e15 −1.30344 −0.651720 0.758459i \(-0.725952\pi\)
−0.651720 + 0.758459i \(0.725952\pi\)
\(72\) − 6.99526e15i − 1.14150i
\(73\) 1.17619e16i 1.70700i 0.521091 + 0.853501i \(0.325525\pi\)
−0.521091 + 0.853501i \(0.674475\pi\)
\(74\) 2.24078e15 0.289688
\(75\) 0 0
\(76\) −4.44160e16 −4.57745
\(77\) 2.63826e15i 0.243302i
\(78\) 1.29737e16i 1.07216i
\(79\) 7.14674e15 0.530003 0.265001 0.964248i \(-0.414628\pi\)
0.265001 + 0.964248i \(0.414628\pi\)
\(80\) 0 0
\(81\) 1.85302e15 0.111111
\(82\) 3.88566e15i 0.209917i
\(83\) − 9.04707e15i − 0.440904i −0.975398 0.220452i \(-0.929247\pi\)
0.975398 0.220452i \(-0.0707532\pi\)
\(84\) 6.35994e15 0.279949
\(85\) 0 0
\(86\) −1.70305e16 −0.613749
\(87\) − 3.21507e16i − 1.05021i
\(88\) − 1.60283e17i − 4.75100i
\(89\) 1.16786e16 0.314467 0.157233 0.987561i \(-0.449743\pi\)
0.157233 + 0.987561i \(0.449743\pi\)
\(90\) 0 0
\(91\) −7.52927e15 −0.167842
\(92\) 4.15481e16i 0.844023i
\(93\) − 5.01527e16i − 0.929371i
\(94\) −4.08955e16 −0.691972
\(95\) 0 0
\(96\) −1.67460e17 −2.36922
\(97\) − 8.32538e16i − 1.07856i −0.842126 0.539280i \(-0.818696\pi\)
0.842126 0.539280i \(-0.181304\pi\)
\(98\) − 1.58392e17i − 1.88066i
\(99\) 4.24585e16 0.462450
\(100\) 0 0
\(101\) −1.36210e16 −0.125164 −0.0625818 0.998040i \(-0.519933\pi\)
−0.0625818 + 0.998040i \(0.519933\pi\)
\(102\) − 5.92254e16i − 0.500503i
\(103\) − 1.19030e17i − 0.925847i −0.886398 0.462923i \(-0.846801\pi\)
0.886398 0.462923i \(-0.153199\pi\)
\(104\) 4.57429e17 3.27748
\(105\) 0 0
\(106\) 4.53622e17 2.76436
\(107\) 3.05375e17i 1.71819i 0.511814 + 0.859096i \(0.328974\pi\)
−0.511814 + 0.859096i \(0.671026\pi\)
\(108\) − 1.02353e17i − 0.532106i
\(109\) 2.94297e17 1.41469 0.707344 0.706869i \(-0.249893\pi\)
0.707344 + 0.706869i \(0.249893\pi\)
\(110\) 0 0
\(111\) 2.09285e16 0.0861970
\(112\) − 1.78288e17i − 0.680407i
\(113\) 7.25034e16i 0.256562i 0.991738 + 0.128281i \(0.0409459\pi\)
−0.991738 + 0.128281i \(0.959054\pi\)
\(114\) −5.64873e17 −1.85464
\(115\) 0 0
\(116\) −1.77587e18 −5.02942
\(117\) 1.21171e17i 0.319022i
\(118\) − 7.33620e14i − 0.00179669i
\(119\) 3.43715e16 0.0783519
\(120\) 0 0
\(121\) 4.67408e17 0.924742
\(122\) 1.09648e18i 2.02275i
\(123\) 3.62913e16i 0.0624610i
\(124\) −2.77022e18 −4.45072
\(125\) 0 0
\(126\) 8.08844e16 0.113427
\(127\) − 1.00107e18i − 1.31261i −0.754497 0.656304i \(-0.772119\pi\)
0.754497 0.656304i \(-0.227881\pi\)
\(128\) 3.11255e18i 3.81797i
\(129\) −1.59062e17 −0.182622
\(130\) 0 0
\(131\) 6.36150e17 0.640846 0.320423 0.947275i \(-0.396175\pi\)
0.320423 + 0.947275i \(0.396175\pi\)
\(132\) − 2.34522e18i − 2.21465i
\(133\) − 3.27825e17i − 0.290337i
\(134\) 9.21306e17 0.765620
\(135\) 0 0
\(136\) −2.08819e18 −1.52999
\(137\) 2.75383e17i 0.189588i 0.995497 + 0.0947942i \(0.0302193\pi\)
−0.995497 + 0.0947942i \(0.969781\pi\)
\(138\) 5.28400e17i 0.341972i
\(139\) −3.61048e17 −0.219755 −0.109878 0.993945i \(-0.535046\pi\)
−0.109878 + 0.993945i \(0.535046\pi\)
\(140\) 0 0
\(141\) −3.81956e17 −0.205897
\(142\) 4.98218e18i 2.52911i
\(143\) 2.77641e18i 1.32779i
\(144\) −2.86926e18 −1.29327
\(145\) 0 0
\(146\) 8.26248e18 3.31216
\(147\) − 1.47935e18i − 0.559594i
\(148\) − 1.15600e18i − 0.412794i
\(149\) 4.02824e18 1.35841 0.679207 0.733947i \(-0.262324\pi\)
0.679207 + 0.733947i \(0.262324\pi\)
\(150\) 0 0
\(151\) −3.02464e18 −0.910689 −0.455345 0.890315i \(-0.650484\pi\)
−0.455345 + 0.890315i \(0.650484\pi\)
\(152\) 1.99165e19i 5.66947i
\(153\) − 5.53154e17i − 0.148925i
\(154\) 1.85331e18 0.472088
\(155\) 0 0
\(156\) 6.69300e18 1.52778
\(157\) − 3.80909e18i − 0.823520i −0.911292 0.411760i \(-0.864914\pi\)
0.911292 0.411760i \(-0.135086\pi\)
\(158\) − 5.02042e18i − 1.02838i
\(159\) 4.23674e18 0.822539
\(160\) 0 0
\(161\) −3.06657e17 −0.0535345
\(162\) − 1.30170e18i − 0.215593i
\(163\) 7.01276e18i 1.10229i 0.834411 + 0.551143i \(0.185808\pi\)
−0.834411 + 0.551143i \(0.814192\pi\)
\(164\) 2.00458e18 0.299123
\(165\) 0 0
\(166\) −6.35535e18 −0.855502
\(167\) − 5.20936e18i − 0.666337i −0.942867 0.333169i \(-0.891882\pi\)
0.942867 0.333169i \(-0.108118\pi\)
\(168\) − 2.85185e18i − 0.346735i
\(169\) 7.26857e17 0.0840256
\(170\) 0 0
\(171\) −5.27581e18 −0.551851
\(172\) 8.78590e18i 0.874570i
\(173\) − 4.55714e18i − 0.431818i −0.976413 0.215909i \(-0.930729\pi\)
0.976413 0.215909i \(-0.0692715\pi\)
\(174\) −2.25851e19 −2.03776
\(175\) 0 0
\(176\) −6.57436e19 −5.38264
\(177\) − 6.85187e15i 0 0.000534609i
\(178\) − 8.20393e18i − 0.610171i
\(179\) −1.27111e19 −0.901428 −0.450714 0.892668i \(-0.648831\pi\)
−0.450714 + 0.892668i \(0.648831\pi\)
\(180\) 0 0
\(181\) 1.67839e19 1.08299 0.541494 0.840704i \(-0.317859\pi\)
0.541494 + 0.840704i \(0.317859\pi\)
\(182\) 5.28914e18i 0.325670i
\(183\) 1.02409e19i 0.601872i
\(184\) 1.86305e19 1.04538
\(185\) 0 0
\(186\) −3.52311e19 −1.80329
\(187\) − 1.26745e19i − 0.619835i
\(188\) 2.10976e19i 0.986034i
\(189\) 7.55445e17 0.0337503
\(190\) 0 0
\(191\) 1.93607e19 0.790930 0.395465 0.918481i \(-0.370583\pi\)
0.395465 + 0.918481i \(0.370583\pi\)
\(192\) 6.03162e19i 2.35708i
\(193\) − 5.41103e18i − 0.202322i −0.994870 0.101161i \(-0.967744\pi\)
0.994870 0.101161i \(-0.0322557\pi\)
\(194\) −5.84839e19 −2.09277
\(195\) 0 0
\(196\) −8.17129e19 −2.67987
\(197\) 1.69857e19i 0.533483i 0.963768 + 0.266741i \(0.0859469\pi\)
−0.963768 + 0.266741i \(0.914053\pi\)
\(198\) − 2.98261e19i − 0.897309i
\(199\) 8.38703e18 0.241745 0.120872 0.992668i \(-0.461431\pi\)
0.120872 + 0.992668i \(0.461431\pi\)
\(200\) 0 0
\(201\) 8.60482e18 0.227811
\(202\) 9.56845e18i 0.242860i
\(203\) − 1.31073e19i − 0.319004i
\(204\) −3.05539e19 −0.713197
\(205\) 0 0
\(206\) −8.36156e19 −1.79645
\(207\) 4.93515e18i 0.101754i
\(208\) − 1.87624e20i − 3.71322i
\(209\) −1.20885e20 −2.29683
\(210\) 0 0
\(211\) 2.60946e19 0.457245 0.228623 0.973515i \(-0.426578\pi\)
0.228623 + 0.973515i \(0.426578\pi\)
\(212\) − 2.34020e20i − 3.93910i
\(213\) 4.65326e19i 0.752542i
\(214\) 2.14519e20 3.33387
\(215\) 0 0
\(216\) −4.58959e19 −0.659048
\(217\) − 2.04464e19i − 0.282299i
\(218\) − 2.06737e20i − 2.74497i
\(219\) 7.71700e19 0.985539
\(220\) 0 0
\(221\) 3.61715e19 0.427594
\(222\) − 1.47018e19i − 0.167251i
\(223\) − 1.19753e19i − 0.131128i −0.997848 0.0655641i \(-0.979115\pi\)
0.997848 0.0655641i \(-0.0208847\pi\)
\(224\) −6.82705e19 −0.719656
\(225\) 0 0
\(226\) 5.09320e19 0.497816
\(227\) 1.24200e20i 1.16924i 0.811308 + 0.584619i \(0.198756\pi\)
−0.811308 + 0.584619i \(0.801244\pi\)
\(228\) 2.91413e20i 2.64279i
\(229\) −1.03099e20 −0.900853 −0.450426 0.892814i \(-0.648728\pi\)
−0.450426 + 0.892814i \(0.648728\pi\)
\(230\) 0 0
\(231\) 1.73096e19 0.140470
\(232\) 7.96313e20i 6.22925i
\(233\) − 1.13357e20i − 0.854919i −0.904035 0.427459i \(-0.859409\pi\)
0.904035 0.427459i \(-0.140591\pi\)
\(234\) 8.51201e19 0.619010
\(235\) 0 0
\(236\) −3.78468e17 −0.00256022
\(237\) − 4.68898e19i − 0.305997i
\(238\) − 2.41452e19i − 0.152029i
\(239\) 8.29065e19 0.503740 0.251870 0.967761i \(-0.418954\pi\)
0.251870 + 0.967761i \(0.418954\pi\)
\(240\) 0 0
\(241\) −1.62688e20 −0.920896 −0.460448 0.887687i \(-0.652311\pi\)
−0.460448 + 0.887687i \(0.652311\pi\)
\(242\) − 3.28343e20i − 1.79431i
\(243\) − 1.21577e19i − 0.0641500i
\(244\) 5.65664e20 2.88234
\(245\) 0 0
\(246\) 2.54938e19 0.121195
\(247\) − 3.44992e20i − 1.58447i
\(248\) 1.24219e21i 5.51250i
\(249\) −5.93578e19 −0.254556
\(250\) 0 0
\(251\) 4.10409e20 1.64433 0.822167 0.569247i \(-0.192765\pi\)
0.822167 + 0.569247i \(0.192765\pi\)
\(252\) − 4.17276e19i − 0.161629i
\(253\) 1.13080e20i 0.423507i
\(254\) −7.03232e20 −2.54690
\(255\) 0 0
\(256\) 9.81533e20 3.32556
\(257\) − 1.69582e20i − 0.555839i −0.960604 0.277920i \(-0.910355\pi\)
0.960604 0.277920i \(-0.0896449\pi\)
\(258\) 1.11737e20i 0.354348i
\(259\) 8.53218e18 0.0261826
\(260\) 0 0
\(261\) −2.10941e20 −0.606340
\(262\) − 4.46881e20i − 1.24346i
\(263\) 3.50624e20i 0.944534i 0.881456 + 0.472267i \(0.156564\pi\)
−0.881456 + 0.472267i \(0.843436\pi\)
\(264\) −1.05162e21 −2.74299
\(265\) 0 0
\(266\) −2.30289e20 −0.563352
\(267\) − 7.66231e19i − 0.181557i
\(268\) − 4.75294e20i − 1.09098i
\(269\) −2.92843e20 −0.651240 −0.325620 0.945501i \(-0.605573\pi\)
−0.325620 + 0.945501i \(0.605573\pi\)
\(270\) 0 0
\(271\) 5.64043e20 1.17780 0.588902 0.808204i \(-0.299560\pi\)
0.588902 + 0.808204i \(0.299560\pi\)
\(272\) 8.56515e20i 1.73340i
\(273\) 4.93995e19i 0.0969037i
\(274\) 1.93450e20 0.367865
\(275\) 0 0
\(276\) 2.72597e20 0.487297
\(277\) 7.92843e20i 1.37439i 0.726474 + 0.687194i \(0.241158\pi\)
−0.726474 + 0.687194i \(0.758842\pi\)
\(278\) 2.53628e20i 0.426399i
\(279\) −3.29052e20 −0.536573
\(280\) 0 0
\(281\) −4.07531e20 −0.625399 −0.312700 0.949852i \(-0.601233\pi\)
−0.312700 + 0.949852i \(0.601233\pi\)
\(282\) 2.68315e20i 0.399510i
\(283\) − 9.05800e20i − 1.30872i −0.756182 0.654362i \(-0.772937\pi\)
0.756182 0.654362i \(-0.227063\pi\)
\(284\) 2.57026e21 3.60389
\(285\) 0 0
\(286\) 1.95037e21 2.57635
\(287\) 1.47953e19i 0.0189727i
\(288\) 1.09870e21i 1.36787i
\(289\) 6.62116e20 0.800391
\(290\) 0 0
\(291\) −5.46228e20 −0.622707
\(292\) − 4.26254e21i − 4.71970i
\(293\) − 1.22920e21i − 1.32205i −0.750364 0.661025i \(-0.770122\pi\)
0.750364 0.661025i \(-0.229878\pi\)
\(294\) −1.03921e21 −1.08580
\(295\) 0 0
\(296\) −5.18359e20 −0.511271
\(297\) − 2.78570e20i − 0.266996i
\(298\) − 2.82974e21i − 2.63578i
\(299\) −3.22716e20 −0.292157
\(300\) 0 0
\(301\) −6.48468e19 −0.0554719
\(302\) 2.12474e21i 1.76704i
\(303\) 8.93675e19i 0.0722632i
\(304\) 8.16918e21 6.42322
\(305\) 0 0
\(306\) −3.88578e20 −0.288965
\(307\) − 1.33769e21i − 0.967565i −0.875188 0.483783i \(-0.839262\pi\)
0.875188 0.483783i \(-0.160738\pi\)
\(308\) − 9.56108e20i − 0.672707i
\(309\) −7.80954e20 −0.534538
\(310\) 0 0
\(311\) −8.26556e19 −0.0535561 −0.0267781 0.999641i \(-0.508525\pi\)
−0.0267781 + 0.999641i \(0.508525\pi\)
\(312\) − 3.00119e21i − 1.89226i
\(313\) 2.88314e20i 0.176905i 0.996080 + 0.0884523i \(0.0281921\pi\)
−0.996080 + 0.0884523i \(0.971808\pi\)
\(314\) −2.67580e21 −1.59791
\(315\) 0 0
\(316\) −2.58999e21 −1.46541
\(317\) − 3.17162e21i − 1.74694i −0.486882 0.873468i \(-0.661866\pi\)
0.486882 0.873468i \(-0.338134\pi\)
\(318\) − 2.97621e21i − 1.59600i
\(319\) −4.83331e21 −2.52362
\(320\) 0 0
\(321\) 2.00357e21 0.991999
\(322\) 2.15420e20i 0.103875i
\(323\) 1.57491e21i 0.739662i
\(324\) −6.71538e20 −0.307212
\(325\) 0 0
\(326\) 4.92630e21 2.13881
\(327\) − 1.93088e21i − 0.816771i
\(328\) − 8.98868e20i − 0.370483i
\(329\) −1.55717e20 −0.0625419
\(330\) 0 0
\(331\) −1.58984e21 −0.606478 −0.303239 0.952915i \(-0.598068\pi\)
−0.303239 + 0.952915i \(0.598068\pi\)
\(332\) 3.27867e21i 1.21906i
\(333\) − 1.37312e20i − 0.0497659i
\(334\) −3.65945e21 −1.29292
\(335\) 0 0
\(336\) −1.16975e21 −0.392833
\(337\) − 3.01551e20i − 0.0987432i −0.998780 0.0493716i \(-0.984278\pi\)
0.998780 0.0493716i \(-0.0157219\pi\)
\(338\) − 5.10600e20i − 0.163038i
\(339\) 4.75695e20 0.148126
\(340\) 0 0
\(341\) −7.53960e21 −2.23324
\(342\) 3.70613e21i 1.07078i
\(343\) − 1.22535e21i − 0.345350i
\(344\) 3.93967e21 1.08321
\(345\) 0 0
\(346\) −3.20129e21 −0.837873
\(347\) − 3.81902e21i − 0.975331i −0.873031 0.487665i \(-0.837849\pi\)
0.873031 0.487665i \(-0.162151\pi\)
\(348\) 1.16515e22i 2.90374i
\(349\) 3.13624e20 0.0762769 0.0381384 0.999272i \(-0.487857\pi\)
0.0381384 + 0.999272i \(0.487857\pi\)
\(350\) 0 0
\(351\) 7.95006e20 0.184187
\(352\) 2.51747e22i 5.69314i
\(353\) 4.65586e21i 1.02781i 0.857846 + 0.513907i \(0.171802\pi\)
−0.857846 + 0.513907i \(0.828198\pi\)
\(354\) −4.81328e18 −0.00103732
\(355\) 0 0
\(356\) −4.23234e21 −0.869471
\(357\) − 2.25511e20i − 0.0452365i
\(358\) 8.92923e21i 1.74907i
\(359\) −3.57780e21 −0.684405 −0.342203 0.939626i \(-0.611173\pi\)
−0.342203 + 0.939626i \(0.611173\pi\)
\(360\) 0 0
\(361\) 9.54059e21 1.74086
\(362\) − 1.17903e22i − 2.10136i
\(363\) − 3.06667e21i − 0.533900i
\(364\) 2.72862e21 0.464068
\(365\) 0 0
\(366\) 7.19400e21 1.16783
\(367\) − 5.72348e21i − 0.907818i −0.891048 0.453909i \(-0.850029\pi\)
0.891048 0.453909i \(-0.149971\pi\)
\(368\) − 7.64170e21i − 1.18436i
\(369\) 2.38107e20 0.0360619
\(370\) 0 0
\(371\) 1.72725e21 0.249848
\(372\) 1.81754e22i 2.56962i
\(373\) − 7.79326e21i − 1.07695i −0.842643 0.538473i \(-0.819001\pi\)
0.842643 0.538473i \(-0.180999\pi\)
\(374\) −8.90352e21 −1.20269
\(375\) 0 0
\(376\) 9.46034e21 1.22127
\(377\) − 1.37937e22i − 1.74092i
\(378\) − 5.30683e20i − 0.0654869i
\(379\) −4.41273e21 −0.532444 −0.266222 0.963912i \(-0.585775\pi\)
−0.266222 + 0.963912i \(0.585775\pi\)
\(380\) 0 0
\(381\) −6.56805e21 −0.757834
\(382\) − 1.36005e22i − 1.53467i
\(383\) − 7.42094e21i − 0.818973i −0.912316 0.409486i \(-0.865708\pi\)
0.912316 0.409486i \(-0.134292\pi\)
\(384\) 2.04215e22 2.20430
\(385\) 0 0
\(386\) −3.80112e21 −0.392572
\(387\) 1.04360e21i 0.105437i
\(388\) 3.01713e22i 2.98212i
\(389\) −4.44977e21 −0.430295 −0.215147 0.976582i \(-0.569023\pi\)
−0.215147 + 0.976582i \(0.569023\pi\)
\(390\) 0 0
\(391\) 1.47322e21 0.136384
\(392\) 3.66407e22i 3.31919i
\(393\) − 4.17378e21i − 0.369993i
\(394\) 1.19321e22 1.03514
\(395\) 0 0
\(396\) −1.53870e22 −1.27863
\(397\) − 4.94222e20i − 0.0401979i −0.999798 0.0200989i \(-0.993602\pi\)
0.999798 0.0200989i \(-0.00639812\pi\)
\(398\) − 5.89170e21i − 0.469066i
\(399\) −2.15086e21 −0.167626
\(400\) 0 0
\(401\) 2.49341e22 1.86237 0.931187 0.364542i \(-0.118775\pi\)
0.931187 + 0.364542i \(0.118775\pi\)
\(402\) − 6.04469e21i − 0.442031i
\(403\) − 2.15171e22i − 1.54061i
\(404\) 4.93628e21 0.346066
\(405\) 0 0
\(406\) −9.20757e21 −0.618976
\(407\) − 3.14624e21i − 0.207128i
\(408\) 1.37006e22i 0.883340i
\(409\) −7.82942e21 −0.494404 −0.247202 0.968964i \(-0.579511\pi\)
−0.247202 + 0.968964i \(0.579511\pi\)
\(410\) 0 0
\(411\) 1.80679e21 0.109459
\(412\) 4.31366e22i 2.55988i
\(413\) − 2.79339e18i 0 0.000162389i
\(414\) 3.46683e21 0.197438
\(415\) 0 0
\(416\) −7.18457e22 −3.92742
\(417\) 2.36884e21i 0.126876i
\(418\) 8.49191e22i 4.45663i
\(419\) 1.37314e20 0.00706150 0.00353075 0.999994i \(-0.498876\pi\)
0.00353075 + 0.999994i \(0.498876\pi\)
\(420\) 0 0
\(421\) −1.84158e21 −0.0909481 −0.0454740 0.998966i \(-0.514480\pi\)
−0.0454740 + 0.998966i \(0.514480\pi\)
\(422\) − 1.83308e22i − 0.887209i
\(423\) 2.50601e21i 0.118875i
\(424\) −1.04936e23 −4.87883
\(425\) 0 0
\(426\) 3.26881e22 1.46018
\(427\) 4.17505e21i 0.182820i
\(428\) − 1.10669e23i − 4.75064i
\(429\) 1.82161e22 0.766597
\(430\) 0 0
\(431\) −3.30639e21 −0.133751 −0.0668756 0.997761i \(-0.521303\pi\)
−0.0668756 + 0.997761i \(0.521303\pi\)
\(432\) 1.88252e22i 0.746668i
\(433\) − 1.49902e22i − 0.582990i −0.956572 0.291495i \(-0.905847\pi\)
0.956572 0.291495i \(-0.0941526\pi\)
\(434\) −1.43631e22 −0.547755
\(435\) 0 0
\(436\) −1.06654e23 −3.91148
\(437\) − 1.40511e22i − 0.505379i
\(438\) − 5.42102e22i − 1.91228i
\(439\) −5.27352e22 −1.82453 −0.912267 0.409597i \(-0.865669\pi\)
−0.912267 + 0.409597i \(0.865669\pi\)
\(440\) 0 0
\(441\) −9.70600e21 −0.323082
\(442\) − 2.54096e22i − 0.829676i
\(443\) − 2.21332e22i − 0.708944i −0.935067 0.354472i \(-0.884661\pi\)
0.935067 0.354472i \(-0.115339\pi\)
\(444\) −7.58452e21 −0.238327
\(445\) 0 0
\(446\) −8.41239e21 −0.254433
\(447\) − 2.64293e22i − 0.784280i
\(448\) 2.45899e22i 0.715968i
\(449\) −1.01171e22 −0.289041 −0.144521 0.989502i \(-0.546164\pi\)
−0.144521 + 0.989502i \(0.546164\pi\)
\(450\) 0 0
\(451\) 5.45578e21 0.150091
\(452\) − 2.62754e22i − 0.709369i
\(453\) 1.98447e22i 0.525787i
\(454\) 8.72479e22 2.26872
\(455\) 0 0
\(456\) 1.30672e23 3.27327
\(457\) − 7.09706e22i − 1.74498i −0.488632 0.872490i \(-0.662504\pi\)
0.488632 0.872490i \(-0.337496\pi\)
\(458\) 7.24248e22i 1.74796i
\(459\) −3.62924e21 −0.0859821
\(460\) 0 0
\(461\) 1.09889e22 0.250899 0.125449 0.992100i \(-0.459963\pi\)
0.125449 + 0.992100i \(0.459963\pi\)
\(462\) − 1.21596e22i − 0.272560i
\(463\) − 1.78028e22i − 0.391787i −0.980625 0.195893i \(-0.937239\pi\)
0.980625 0.195893i \(-0.0627606\pi\)
\(464\) 3.26625e23 7.05743
\(465\) 0 0
\(466\) −7.96310e22 −1.65883
\(467\) 7.82704e22i 1.60105i 0.599301 + 0.800524i \(0.295445\pi\)
−0.599301 + 0.800524i \(0.704555\pi\)
\(468\) − 4.39127e22i − 0.882065i
\(469\) 3.50804e21 0.0691983
\(470\) 0 0
\(471\) −2.49914e22 −0.475459
\(472\) 1.69708e20i 0.00317100i
\(473\) 2.39122e22i 0.438834i
\(474\) −3.29390e22 −0.593737
\(475\) 0 0
\(476\) −1.24563e22 −0.216636
\(477\) − 2.77973e22i − 0.474893i
\(478\) − 5.82399e22i − 0.977425i
\(479\) 1.17366e23 1.93504 0.967522 0.252785i \(-0.0813467\pi\)
0.967522 + 0.252785i \(0.0813467\pi\)
\(480\) 0 0
\(481\) 8.97899e21 0.142888
\(482\) 1.14285e23i 1.78685i
\(483\) 2.01198e21i 0.0309081i
\(484\) −1.69390e23 −2.55683
\(485\) 0 0
\(486\) −8.54048e21 −0.124473
\(487\) 4.40441e22i 0.630800i 0.948959 + 0.315400i \(0.102139\pi\)
−0.948959 + 0.315400i \(0.897861\pi\)
\(488\) − 2.53648e23i − 3.56996i
\(489\) 4.60107e22 0.636405
\(490\) 0 0
\(491\) −9.19512e21 −0.122847 −0.0614235 0.998112i \(-0.519564\pi\)
−0.0614235 + 0.998112i \(0.519564\pi\)
\(492\) − 1.31520e22i − 0.172699i
\(493\) 6.29689e22i 0.812695i
\(494\) −2.42349e23 −3.07441
\(495\) 0 0
\(496\) 5.09511e23 6.24539
\(497\) 1.89705e22i 0.228586i
\(498\) 4.16975e22i 0.493924i
\(499\) 9.12259e22 1.06234 0.531170 0.847265i \(-0.321753\pi\)
0.531170 + 0.847265i \(0.321753\pi\)
\(500\) 0 0
\(501\) −3.41786e22 −0.384710
\(502\) − 2.88303e23i − 3.19056i
\(503\) 4.20493e22i 0.457542i 0.973480 + 0.228771i \(0.0734708\pi\)
−0.973480 + 0.228771i \(0.926529\pi\)
\(504\) −1.87110e22 −0.200187
\(505\) 0 0
\(506\) 7.94359e22 0.821746
\(507\) − 4.76891e21i − 0.0485122i
\(508\) 3.62791e23i 3.62924i
\(509\) −3.12071e22 −0.307010 −0.153505 0.988148i \(-0.549056\pi\)
−0.153505 + 0.988148i \(0.549056\pi\)
\(510\) 0 0
\(511\) 3.14609e22 0.299360
\(512\) − 2.81536e23i − 2.63475i
\(513\) 3.46146e22i 0.318612i
\(514\) −1.19128e23 −1.07852
\(515\) 0 0
\(516\) 5.76443e22 0.504933
\(517\) 5.74206e22i 0.494764i
\(518\) − 5.99366e21i − 0.0508030i
\(519\) −2.98994e22 −0.249310
\(520\) 0 0
\(521\) −1.71736e23 −1.38593 −0.692965 0.720971i \(-0.743696\pi\)
−0.692965 + 0.720971i \(0.743696\pi\)
\(522\) 1.48181e23i 1.17650i
\(523\) 3.54202e22i 0.276686i 0.990384 + 0.138343i \(0.0441776\pi\)
−0.990384 + 0.138343i \(0.955822\pi\)
\(524\) −2.30542e23 −1.77188
\(525\) 0 0
\(526\) 2.46305e23 1.83271
\(527\) 9.82268e22i 0.719184i
\(528\) 4.31344e23i 3.10767i
\(529\) 1.27906e23 0.906815
\(530\) 0 0
\(531\) −4.49551e19 −0.000308657 0
\(532\) 1.18804e23i 0.802755i
\(533\) 1.55701e22i 0.103541i
\(534\) −5.38260e22 −0.352283
\(535\) 0 0
\(536\) −2.13126e23 −1.35125
\(537\) 8.33973e22i 0.520440i
\(538\) 2.05716e23i 1.26363i
\(539\) −2.22395e23 −1.34468
\(540\) 0 0
\(541\) −1.03474e23 −0.606257 −0.303128 0.952950i \(-0.598031\pi\)
−0.303128 + 0.952950i \(0.598031\pi\)
\(542\) − 3.96227e23i − 2.28534i
\(543\) − 1.10119e23i − 0.625264i
\(544\) 3.27979e23 1.83339
\(545\) 0 0
\(546\) 3.47020e22 0.188026
\(547\) 2.96616e23i 1.58235i 0.611589 + 0.791176i \(0.290531\pi\)
−0.611589 + 0.791176i \(0.709469\pi\)
\(548\) − 9.97992e22i − 0.524194i
\(549\) 6.71906e22 0.347491
\(550\) 0 0
\(551\) 6.00578e23 3.01149
\(552\) − 1.22235e23i − 0.603548i
\(553\) − 1.91162e22i − 0.0929474i
\(554\) 5.56954e23 2.66678
\(555\) 0 0
\(556\) 1.30845e23 0.607603
\(557\) − 5.46640e22i − 0.249996i −0.992157 0.124998i \(-0.960108\pi\)
0.992157 0.124998i \(-0.0398924\pi\)
\(558\) 2.31151e23i 1.04113i
\(559\) −6.82427e22 −0.302730
\(560\) 0 0
\(561\) −8.31572e22 −0.357862
\(562\) 2.86281e23i 1.21349i
\(563\) 1.18516e23i 0.494829i 0.968910 + 0.247414i \(0.0795809\pi\)
−0.968910 + 0.247414i \(0.920419\pi\)
\(564\) 1.38422e23 0.569287
\(565\) 0 0
\(566\) −6.36304e23 −2.53936
\(567\) − 4.95647e21i − 0.0194857i
\(568\) − 1.15253e24i − 4.46365i
\(569\) 4.39785e23 1.67798 0.838988 0.544149i \(-0.183147\pi\)
0.838988 + 0.544149i \(0.183147\pi\)
\(570\) 0 0
\(571\) −4.89721e22 −0.181360 −0.0906800 0.995880i \(-0.528904\pi\)
−0.0906800 + 0.995880i \(0.528904\pi\)
\(572\) − 1.00618e24i − 3.67120i
\(573\) − 1.27026e23i − 0.456644i
\(574\) 1.03934e22 0.0368134
\(575\) 0 0
\(576\) 3.95735e23 1.36086
\(577\) 5.15333e23i 1.74620i 0.487543 + 0.873099i \(0.337893\pi\)
−0.487543 + 0.873099i \(0.662107\pi\)
\(578\) − 4.65121e23i − 1.55303i
\(579\) −3.55018e22 −0.116811
\(580\) 0 0
\(581\) −2.41992e22 −0.0773220
\(582\) 3.83713e23i 1.20826i
\(583\) − 6.36922e23i − 1.97653i
\(584\) −1.91136e24 −5.84565
\(585\) 0 0
\(586\) −8.63485e23 −2.56522
\(587\) − 3.59992e22i − 0.105407i −0.998610 0.0527035i \(-0.983216\pi\)
0.998610 0.0527035i \(-0.0167838\pi\)
\(588\) 5.36118e23i 1.54722i
\(589\) 9.36857e23 2.66498
\(590\) 0 0
\(591\) 1.11443e23 0.308006
\(592\) 2.12616e23i 0.579245i
\(593\) 3.67652e23i 0.987351i 0.869646 + 0.493676i \(0.164347\pi\)
−0.869646 + 0.493676i \(0.835653\pi\)
\(594\) −1.95689e23 −0.518062
\(595\) 0 0
\(596\) −1.45984e24 −3.75588
\(597\) − 5.50273e22i − 0.139571i
\(598\) 2.26701e23i 0.566882i
\(599\) 6.97132e23 1.71865 0.859324 0.511432i \(-0.170885\pi\)
0.859324 + 0.511432i \(0.170885\pi\)
\(600\) 0 0
\(601\) 3.44330e23 0.825166 0.412583 0.910920i \(-0.364627\pi\)
0.412583 + 0.910920i \(0.364627\pi\)
\(602\) 4.55534e22i 0.107634i
\(603\) − 5.64562e22i − 0.131527i
\(604\) 1.09614e24 2.51797
\(605\) 0 0
\(606\) 6.27786e22 0.140215
\(607\) − 3.08234e23i − 0.678855i −0.940632 0.339427i \(-0.889767\pi\)
0.940632 0.339427i \(-0.110233\pi\)
\(608\) − 3.12816e24i − 6.79374i
\(609\) −8.59970e22 −0.184177
\(610\) 0 0
\(611\) −1.63872e23 −0.341313
\(612\) 2.00464e23i 0.411765i
\(613\) 4.35176e23i 0.881558i 0.897616 + 0.440779i \(0.145298\pi\)
−0.897616 + 0.440779i \(0.854702\pi\)
\(614\) −9.39699e23 −1.87740
\(615\) 0 0
\(616\) −4.28727e23 −0.833190
\(617\) 6.04231e23i 1.15819i 0.815261 + 0.579094i \(0.196594\pi\)
−0.815261 + 0.579094i \(0.803406\pi\)
\(618\) 5.48602e23i 1.03718i
\(619\) 3.33503e23 0.621913 0.310956 0.950424i \(-0.399351\pi\)
0.310956 + 0.950424i \(0.399351\pi\)
\(620\) 0 0
\(621\) 3.23795e22 0.0587479
\(622\) 5.80637e22i 0.103917i
\(623\) − 3.12379e22i − 0.0551485i
\(624\) −1.23100e24 −2.14383
\(625\) 0 0
\(626\) 2.02534e23 0.343255
\(627\) 7.93128e23i 1.32608i
\(628\) 1.38042e24i 2.27695i
\(629\) −4.09896e22 −0.0667026
\(630\) 0 0
\(631\) 7.67831e23 1.21623 0.608116 0.793848i \(-0.291926\pi\)
0.608116 + 0.793848i \(0.291926\pi\)
\(632\) 1.16137e24i 1.81500i
\(633\) − 1.71206e23i − 0.263991i
\(634\) −2.22799e24 −3.38964
\(635\) 0 0
\(636\) −1.53540e24 −2.27424
\(637\) − 6.34688e23i − 0.927631i
\(638\) 3.39529e24i 4.89667i
\(639\) 3.05300e23 0.434480
\(640\) 0 0
\(641\) −1.34739e24 −1.86724 −0.933620 0.358264i \(-0.883369\pi\)
−0.933620 + 0.358264i \(0.883369\pi\)
\(642\) − 1.40746e24i − 1.92481i
\(643\) − 1.07291e24i − 1.44800i −0.689801 0.723999i \(-0.742302\pi\)
0.689801 0.723999i \(-0.257698\pi\)
\(644\) 1.11133e23 0.148018
\(645\) 0 0
\(646\) 1.10634e24 1.43519
\(647\) 2.56767e23i 0.328740i 0.986399 + 0.164370i \(0.0525591\pi\)
−0.986399 + 0.164370i \(0.947441\pi\)
\(648\) 3.01123e23i 0.380501i
\(649\) −1.03006e21 −0.00128465
\(650\) 0 0
\(651\) −1.34149e23 −0.162985
\(652\) − 2.54144e24i − 3.04772i
\(653\) − 9.55573e23i − 1.13110i −0.824713 0.565551i \(-0.808664\pi\)
0.824713 0.565551i \(-0.191336\pi\)
\(654\) −1.35640e24 −1.58481
\(655\) 0 0
\(656\) −3.68690e23 −0.419739
\(657\) − 5.06312e23i − 0.569001i
\(658\) 1.09388e23i 0.121352i
\(659\) 4.48249e23 0.490901 0.245450 0.969409i \(-0.421064\pi\)
0.245450 + 0.969409i \(0.421064\pi\)
\(660\) 0 0
\(661\) 3.31071e23 0.353353 0.176677 0.984269i \(-0.443465\pi\)
0.176677 + 0.984269i \(0.443465\pi\)
\(662\) 1.11682e24i 1.17677i
\(663\) − 2.37321e23i − 0.246872i
\(664\) 1.47018e24 1.50988
\(665\) 0 0
\(666\) −9.64583e22 −0.0965625
\(667\) − 5.61799e23i − 0.555279i
\(668\) 1.88788e24i 1.84236i
\(669\) −7.85701e22 −0.0757069
\(670\) 0 0
\(671\) 1.53955e24 1.44628
\(672\) 4.47923e23i 0.415494i
\(673\) 9.61434e23i 0.880626i 0.897844 + 0.440313i \(0.145132\pi\)
−0.897844 + 0.440313i \(0.854868\pi\)
\(674\) −2.11833e23 −0.191595
\(675\) 0 0
\(676\) −2.63414e23 −0.232323
\(677\) 1.08092e24i 0.941432i 0.882285 + 0.470716i \(0.156004\pi\)
−0.882285 + 0.470716i \(0.843996\pi\)
\(678\) − 3.34165e23i − 0.287414i
\(679\) −2.22688e23 −0.189149
\(680\) 0 0
\(681\) 8.14879e23 0.675060
\(682\) 5.29640e24i 4.33325i
\(683\) − 4.56949e23i − 0.369226i −0.982811 0.184613i \(-0.940897\pi\)
0.982811 0.184613i \(-0.0591032\pi\)
\(684\) 1.91196e24 1.52582
\(685\) 0 0
\(686\) −8.60778e23 −0.670095
\(687\) 6.76434e23i 0.520107i
\(688\) − 1.61594e24i − 1.22722i
\(689\) 1.81770e24 1.36351
\(690\) 0 0
\(691\) −1.38418e24 −1.01305 −0.506523 0.862226i \(-0.669070\pi\)
−0.506523 + 0.862226i \(0.669070\pi\)
\(692\) 1.65152e24i 1.19394i
\(693\) − 1.13568e23i − 0.0811007i
\(694\) −2.68278e24 −1.89247
\(695\) 0 0
\(696\) 5.22461e24 3.59646
\(697\) − 7.10785e22i − 0.0483348i
\(698\) − 2.20314e23i − 0.148003i
\(699\) −7.43739e23 −0.493588
\(700\) 0 0
\(701\) 9.18978e22 0.0595254 0.0297627 0.999557i \(-0.490525\pi\)
0.0297627 + 0.999557i \(0.490525\pi\)
\(702\) − 5.58473e23i − 0.357385i
\(703\) 3.90946e23i 0.247170i
\(704\) 9.06751e24 5.66396
\(705\) 0 0
\(706\) 3.27063e24 1.99431
\(707\) 3.64336e22i 0.0219501i
\(708\) 2.48313e21i 0.00147814i
\(709\) 1.54021e24 0.905913 0.452956 0.891533i \(-0.350369\pi\)
0.452956 + 0.891533i \(0.350369\pi\)
\(710\) 0 0
\(711\) −3.07644e23 −0.176668
\(712\) 1.89781e24i 1.07690i
\(713\) − 8.76365e23i − 0.491387i
\(714\) −1.58417e23 −0.0877740
\(715\) 0 0
\(716\) 4.60651e24 2.49236
\(717\) − 5.43949e23i − 0.290834i
\(718\) 2.51332e24i 1.32798i
\(719\) −3.23522e24 −1.68931 −0.844654 0.535313i \(-0.820194\pi\)
−0.844654 + 0.535313i \(0.820194\pi\)
\(720\) 0 0
\(721\) −3.18382e23 −0.162367
\(722\) − 6.70204e24i − 3.37786i
\(723\) 1.06740e24i 0.531679i
\(724\) −6.08250e24 −2.99436
\(725\) 0 0
\(726\) −2.15426e24 −1.03595
\(727\) − 2.33512e24i − 1.10986i −0.831898 0.554929i \(-0.812745\pi\)
0.831898 0.554929i \(-0.187255\pi\)
\(728\) − 1.22354e24i − 0.574777i
\(729\) −7.97664e22 −0.0370370
\(730\) 0 0
\(731\) 3.11531e23 0.141320
\(732\) − 3.71132e24i − 1.66412i
\(733\) − 1.81465e24i − 0.804282i −0.915578 0.402141i \(-0.868266\pi\)
0.915578 0.402141i \(-0.131734\pi\)
\(734\) −4.02061e24 −1.76147
\(735\) 0 0
\(736\) −2.92618e24 −1.25268
\(737\) − 1.29359e24i − 0.547422i
\(738\) − 1.67265e23i − 0.0699722i
\(739\) 1.21901e24 0.504114 0.252057 0.967712i \(-0.418893\pi\)
0.252057 + 0.967712i \(0.418893\pi\)
\(740\) 0 0
\(741\) −2.26349e24 −0.914797
\(742\) − 1.21335e24i − 0.484790i
\(743\) − 4.70556e23i − 0.185869i −0.995672 0.0929344i \(-0.970375\pi\)
0.995672 0.0929344i \(-0.0296247\pi\)
\(744\) 8.15001e24 3.18264
\(745\) 0 0
\(746\) −5.47458e24 −2.08964
\(747\) 3.89447e23i 0.146968i
\(748\) 4.59325e24i 1.71379i
\(749\) 8.16820e23 0.301322
\(750\) 0 0
\(751\) −3.20027e24 −1.15411 −0.577056 0.816705i \(-0.695798\pi\)
−0.577056 + 0.816705i \(0.695798\pi\)
\(752\) − 3.88036e24i − 1.38363i
\(753\) − 2.69269e24i − 0.949356i
\(754\) −9.68975e24 −3.37797
\(755\) 0 0
\(756\) −2.73775e23 −0.0933164
\(757\) − 5.33142e24i − 1.79692i −0.439060 0.898458i \(-0.644688\pi\)
0.439060 0.898458i \(-0.355312\pi\)
\(758\) 3.09984e24i 1.03312i
\(759\) 7.41916e23 0.244512
\(760\) 0 0
\(761\) 3.19775e24 1.03057 0.515283 0.857020i \(-0.327687\pi\)
0.515283 + 0.857020i \(0.327687\pi\)
\(762\) 4.61390e24i 1.47045i
\(763\) − 7.87188e23i − 0.248096i
\(764\) −7.01636e24 −2.18685
\(765\) 0 0
\(766\) −5.21304e24 −1.58908
\(767\) − 2.93967e21i 0 0.000886214i
\(768\) − 6.43984e24i − 1.92001i
\(769\) 3.24975e24 0.958245 0.479122 0.877748i \(-0.340955\pi\)
0.479122 + 0.877748i \(0.340955\pi\)
\(770\) 0 0
\(771\) −1.11263e24 −0.320914
\(772\) 1.96097e24i 0.559401i
\(773\) − 4.35391e24i − 1.22844i −0.789135 0.614220i \(-0.789471\pi\)
0.789135 0.614220i \(-0.210529\pi\)
\(774\) 7.33108e23 0.204583
\(775\) 0 0
\(776\) 1.35291e25 3.69354
\(777\) − 5.59797e22i − 0.0151165i
\(778\) 3.12586e24i 0.834917i
\(779\) −6.77925e23 −0.179107
\(780\) 0 0
\(781\) 6.99538e24 1.80833
\(782\) − 1.03490e24i − 0.264631i
\(783\) 1.38398e24i 0.350070i
\(784\) 1.50290e25 3.76048
\(785\) 0 0
\(786\) −2.93199e24 −0.717910
\(787\) 1.67282e24i 0.405194i 0.979262 + 0.202597i \(0.0649381\pi\)
−0.979262 + 0.202597i \(0.935062\pi\)
\(788\) − 6.15565e24i − 1.47503i
\(789\) 2.30044e24 0.545327
\(790\) 0 0
\(791\) 1.93933e23 0.0449936
\(792\) 6.89966e24i 1.58367i
\(793\) 4.39368e24i 0.997715i
\(794\) −3.47180e23 −0.0779974
\(795\) 0 0
\(796\) −3.03948e24 −0.668402
\(797\) 9.07285e23i 0.197400i 0.995117 + 0.0987002i \(0.0314685\pi\)
−0.995117 + 0.0987002i \(0.968532\pi\)
\(798\) 1.51093e24i 0.325251i
\(799\) 7.48082e23 0.159331
\(800\) 0 0
\(801\) −5.02724e23 −0.104822
\(802\) − 1.75156e25i − 3.61363i
\(803\) − 1.16012e25i − 2.36821i
\(804\) −3.11840e24 −0.629877
\(805\) 0 0
\(806\) −1.51153e25 −2.98929
\(807\) 1.92135e24i 0.375994i
\(808\) − 2.21347e24i − 0.428624i
\(809\) 9.92795e23 0.190238 0.0951189 0.995466i \(-0.469677\pi\)
0.0951189 + 0.995466i \(0.469677\pi\)
\(810\) 0 0
\(811\) 5.63576e24 1.05749 0.528744 0.848781i \(-0.322663\pi\)
0.528744 + 0.848781i \(0.322663\pi\)
\(812\) 4.75011e24i 0.882017i
\(813\) − 3.70068e24i − 0.680006i
\(814\) −2.21016e24 −0.401898
\(815\) 0 0
\(816\) 5.61959e24 1.00078
\(817\) − 2.97129e24i − 0.523670i
\(818\) 5.49999e24i 0.959310i
\(819\) 3.24110e23 0.0559474
\(820\) 0 0
\(821\) −9.18781e24 −1.55344 −0.776721 0.629845i \(-0.783118\pi\)
−0.776721 + 0.629845i \(0.783118\pi\)
\(822\) − 1.26923e24i − 0.212387i
\(823\) − 6.83078e24i − 1.13128i −0.824651 0.565642i \(-0.808628\pi\)
0.824651 0.565642i \(-0.191372\pi\)
\(824\) 1.93428e25 3.17057
\(825\) 0 0
\(826\) −1.96229e21 −0.000315089 0
\(827\) − 9.93808e24i − 1.57945i −0.613462 0.789724i \(-0.710224\pi\)
0.613462 0.789724i \(-0.289776\pi\)
\(828\) − 1.78851e24i − 0.281341i
\(829\) −1.00372e25 −1.56278 −0.781391 0.624042i \(-0.785489\pi\)
−0.781391 + 0.624042i \(0.785489\pi\)
\(830\) 0 0
\(831\) 5.20185e24 0.793503
\(832\) 2.58776e25i 3.90729i
\(833\) 2.89738e24i 0.433035i
\(834\) 1.66405e24 0.246182
\(835\) 0 0
\(836\) 4.38090e25 6.35053
\(837\) 2.15891e24i 0.309790i
\(838\) − 9.64602e22i − 0.0137017i
\(839\) −1.16269e25 −1.63489 −0.817446 0.576005i \(-0.804611\pi\)
−0.817446 + 0.576005i \(0.804611\pi\)
\(840\) 0 0
\(841\) 1.67555e25 2.30883
\(842\) 1.29367e24i 0.176470i
\(843\) 2.67381e24i 0.361074i
\(844\) −9.45671e24 −1.26424
\(845\) 0 0
\(846\) 1.76042e24 0.230657
\(847\) − 1.25023e24i − 0.162174i
\(848\) 4.30419e25i 5.52747i
\(849\) −5.94296e24 −0.755592
\(850\) 0 0
\(851\) 3.65703e23 0.0455750
\(852\) − 1.68635e25i − 2.08071i
\(853\) − 1.09678e23i − 0.0133984i −0.999978 0.00669922i \(-0.997868\pi\)
0.999978 0.00669922i \(-0.00213244\pi\)
\(854\) 2.93287e24 0.354733
\(855\) 0 0
\(856\) −4.96246e25 −5.88397
\(857\) 1.52818e25i 1.79406i 0.441970 + 0.897030i \(0.354280\pi\)
−0.441970 + 0.897030i \(0.645720\pi\)
\(858\) − 1.27964e25i − 1.48746i
\(859\) 1.62639e25 1.87190 0.935951 0.352130i \(-0.114543\pi\)
0.935951 + 0.352130i \(0.114543\pi\)
\(860\) 0 0
\(861\) 9.70723e22 0.0109539
\(862\) 2.32266e24i 0.259522i
\(863\) 8.64833e24i 0.956842i 0.878130 + 0.478421i \(0.158791\pi\)
−0.878130 + 0.478421i \(0.841209\pi\)
\(864\) 7.20859e24 0.789739
\(865\) 0 0
\(866\) −1.05303e25 −1.13120
\(867\) − 4.34414e24i − 0.462106i
\(868\) 7.40981e24i 0.780530i
\(869\) −7.04908e24 −0.735299
\(870\) 0 0
\(871\) 3.69175e24 0.377640
\(872\) 4.78244e25i 4.84462i
\(873\) 3.58381e24i 0.359520i
\(874\) −9.87056e24 −0.980606
\(875\) 0 0
\(876\) −2.79665e25 −2.72492
\(877\) 1.02051e25i 0.984740i 0.870386 + 0.492370i \(0.163869\pi\)
−0.870386 + 0.492370i \(0.836131\pi\)
\(878\) 3.70452e25i 3.54021i
\(879\) −8.06479e24 −0.763286
\(880\) 0 0
\(881\) −9.18419e23 −0.0852601 −0.0426301 0.999091i \(-0.513574\pi\)
−0.0426301 + 0.999091i \(0.513574\pi\)
\(882\) 6.81824e24i 0.626887i
\(883\) − 8.44090e24i − 0.768640i −0.923200 0.384320i \(-0.874436\pi\)
0.923200 0.384320i \(-0.125564\pi\)
\(884\) −1.31086e25 −1.18226
\(885\) 0 0
\(886\) −1.55480e25 −1.37559
\(887\) − 1.20407e25i − 1.05512i −0.849519 0.527558i \(-0.823108\pi\)
0.849519 0.527558i \(-0.176892\pi\)
\(888\) 3.40096e24i 0.295183i
\(889\) −2.67768e24 −0.230194
\(890\) 0 0
\(891\) −1.82770e24 −0.154150
\(892\) 4.33988e24i 0.362557i
\(893\) − 7.13498e24i − 0.590412i
\(894\) −1.85660e25 −1.52177
\(895\) 0 0
\(896\) 8.32548e24 0.669563
\(897\) 2.11734e24i 0.168677i
\(898\) 7.10700e24i 0.560838i
\(899\) 3.74580e25 2.92811
\(900\) 0 0
\(901\) −8.29789e24 −0.636512
\(902\) − 3.83256e24i − 0.291228i
\(903\) 4.25460e23i 0.0320267i
\(904\) −1.17821e25 −0.878599
\(905\) 0 0
\(906\) 1.39404e25 1.02020
\(907\) − 2.51467e25i − 1.82314i −0.411150 0.911568i \(-0.634873\pi\)
0.411150 0.911568i \(-0.365127\pi\)
\(908\) − 4.50104e25i − 3.23284i
\(909\) 5.86340e23 0.0417212
\(910\) 0 0
\(911\) −8.57548e24 −0.598897 −0.299448 0.954112i \(-0.596803\pi\)
−0.299448 + 0.954112i \(0.596803\pi\)
\(912\) − 5.35980e25i − 3.70845i
\(913\) 8.92343e24i 0.611688i
\(914\) −4.98552e25 −3.38585
\(915\) 0 0
\(916\) 3.73633e25 2.49077
\(917\) − 1.70158e24i − 0.112386i
\(918\) 2.54946e24i 0.166834i
\(919\) −1.26569e25 −0.820626 −0.410313 0.911945i \(-0.634581\pi\)
−0.410313 + 0.911945i \(0.634581\pi\)
\(920\) 0 0
\(921\) −8.77661e24 −0.558624
\(922\) − 7.71948e24i − 0.486828i
\(923\) 1.99640e25i 1.24748i
\(924\) −6.27303e24 −0.388388
\(925\) 0 0
\(926\) −1.25060e25 −0.760198
\(927\) 5.12384e24i 0.308616i
\(928\) − 1.25072e26i − 7.46454i
\(929\) 1.61298e25 0.953881 0.476941 0.878936i \(-0.341746\pi\)
0.476941 + 0.878936i \(0.341746\pi\)
\(930\) 0 0
\(931\) 2.76343e25 1.60464
\(932\) 4.10810e25i 2.36377i
\(933\) 5.42304e23i 0.0309206i
\(934\) 5.49832e25 3.10657
\(935\) 0 0
\(936\) −1.96908e25 −1.09249
\(937\) 2.27726e24i 0.125206i 0.998038 + 0.0626032i \(0.0199402\pi\)
−0.998038 + 0.0626032i \(0.980060\pi\)
\(938\) − 2.46432e24i − 0.134268i
\(939\) 1.89163e24 0.102136
\(940\) 0 0
\(941\) −1.42919e25 −0.757839 −0.378919 0.925430i \(-0.623704\pi\)
−0.378919 + 0.925430i \(0.623704\pi\)
\(942\) 1.75559e25i 0.922551i
\(943\) 6.34151e23i 0.0330251i
\(944\) 6.96095e22 0.00359258
\(945\) 0 0
\(946\) 1.67978e25 0.851486
\(947\) − 1.82863e24i − 0.0918653i −0.998945 0.0459326i \(-0.985374\pi\)
0.998945 0.0459326i \(-0.0146260\pi\)
\(948\) 1.69929e25i 0.846053i
\(949\) 3.31084e25 1.63371
\(950\) 0 0
\(951\) −2.08090e25 −1.00859
\(952\) 5.58550e24i 0.268317i
\(953\) − 1.66599e25i − 0.793201i −0.917991 0.396601i \(-0.870190\pi\)
0.917991 0.396601i \(-0.129810\pi\)
\(954\) −1.95269e25 −0.921452
\(955\) 0 0
\(956\) −3.00455e25 −1.39279
\(957\) 3.17113e25i 1.45701i
\(958\) − 8.24470e25i − 3.75464i
\(959\) 7.36596e23 0.0332484
\(960\) 0 0
\(961\) 3.58816e25 1.59119
\(962\) − 6.30753e24i − 0.277250i
\(963\) − 1.31454e25i − 0.572731i
\(964\) 5.89584e25 2.54619
\(965\) 0 0
\(966\) 1.41337e24 0.0599722
\(967\) − 3.59794e25i − 1.51331i −0.653812 0.756657i \(-0.726831\pi\)
0.653812 0.756657i \(-0.273169\pi\)
\(968\) 7.59556e25i 3.16679i
\(969\) 1.03330e25 0.427044
\(970\) 0 0
\(971\) −2.68946e25 −1.09220 −0.546099 0.837721i \(-0.683888\pi\)
−0.546099 + 0.837721i \(0.683888\pi\)
\(972\) 4.40596e24i 0.177369i
\(973\) 9.65735e23i 0.0385389i
\(974\) 3.09400e25 1.22396
\(975\) 0 0
\(976\) −1.04039e26 −4.04459
\(977\) 1.26185e25i 0.486301i 0.969989 + 0.243151i \(0.0781809\pi\)
−0.969989 + 0.243151i \(0.921819\pi\)
\(978\) − 3.23215e25i − 1.23484i
\(979\) −1.15190e25 −0.436276
\(980\) 0 0
\(981\) −1.26685e25 −0.471563
\(982\) 6.45936e24i 0.238365i
\(983\) 2.72481e25i 0.996852i 0.866932 + 0.498426i \(0.166088\pi\)
−0.866932 + 0.498426i \(0.833912\pi\)
\(984\) −5.89747e24 −0.213898
\(985\) 0 0
\(986\) 4.42342e25 1.57690
\(987\) 1.02166e24i 0.0361086i
\(988\) 1.25026e26i 4.38092i
\(989\) −2.77944e24 −0.0965580
\(990\) 0 0
\(991\) −2.34443e25 −0.800593 −0.400296 0.916386i \(-0.631093\pi\)
−0.400296 + 0.916386i \(0.631093\pi\)
\(992\) − 1.95103e26i − 6.60565i
\(993\) 1.04309e25i 0.350150i
\(994\) 1.33264e25 0.443535
\(995\) 0 0
\(996\) 2.15114e25 0.703823
\(997\) 5.52750e25i 1.79316i 0.442877 + 0.896582i \(0.353958\pi\)
−0.442877 + 0.896582i \(0.646042\pi\)
\(998\) − 6.40841e25i − 2.06130i
\(999\) −9.00902e23 −0.0287323
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.18.b.b.49.1 4
5.2 odd 4 75.18.a.c.1.2 2
5.3 odd 4 15.18.a.a.1.1 2
5.4 even 2 inner 75.18.b.b.49.4 4
15.8 even 4 45.18.a.b.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.18.a.a.1.1 2 5.3 odd 4
45.18.a.b.1.2 2 15.8 even 4
75.18.a.c.1.2 2 5.2 odd 4
75.18.b.b.49.1 4 1.1 even 1 trivial
75.18.b.b.49.4 4 5.4 even 2 inner