Properties

Label 75.14.b.g.49.7
Level $75$
Weight $14$
Character 75.49
Analytic conductor $80.423$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,14,Mod(49,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.49"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-41504] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(80.4231967139\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3303x^{6} + 3427971x^{4} + 1167506350x^{2} + 119802515625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.7
Root \(38.8667i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.14.b.g.49.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+143.467i q^{2} +729.000i q^{3} -12390.7 q^{4} -104587. q^{6} +115746. i q^{7} -602380. i q^{8} -531441. q^{9} -1.68912e6 q^{11} -9.03285e6i q^{12} +8.38266e6i q^{13} -1.66058e7 q^{14} -1.50834e7 q^{16} -1.18185e8i q^{17} -7.62442e7i q^{18} -2.93887e6 q^{19} -8.43791e7 q^{21} -2.42333e8i q^{22} -1.14328e9i q^{23} +4.39135e8 q^{24} -1.20263e9 q^{26} -3.87420e8i q^{27} -1.43418e9i q^{28} +2.58117e9 q^{29} -5.28510e9 q^{31} -7.09866e9i q^{32} -1.23137e9i q^{33} +1.69556e10 q^{34} +6.58495e9 q^{36} -2.25904e9i q^{37} -4.21631e8i q^{38} -6.11096e9 q^{39} +3.08318e10 q^{41} -1.21056e10i q^{42} +1.84280e10i q^{43} +2.09294e10 q^{44} +1.64023e11 q^{46} -8.91497e10i q^{47} -1.09958e10i q^{48} +8.34918e10 q^{49} +8.61570e10 q^{51} -1.03867e11i q^{52} +2.29652e11i q^{53} +5.55820e10 q^{54} +6.97232e10 q^{56} -2.14244e9i q^{57} +3.70312e11i q^{58} +1.48583e11 q^{59} -8.88553e10 q^{61} -7.58237e11i q^{62} -6.15124e10i q^{63} +8.94860e11 q^{64} +1.76661e11 q^{66} -1.15668e12i q^{67} +1.46440e12i q^{68} +8.33451e11 q^{69} -1.39371e12 q^{71} +3.20129e11i q^{72} -2.23868e12i q^{73} +3.24097e11 q^{74} +3.64148e10 q^{76} -1.95509e11i q^{77} -8.76720e11i q^{78} -4.29509e11 q^{79} +2.82430e11 q^{81} +4.42335e12i q^{82} +4.77368e12i q^{83} +1.04552e12 q^{84} -2.64380e12 q^{86} +1.88167e12i q^{87} +1.01749e12i q^{88} -4.52557e12 q^{89} -9.70262e11 q^{91} +1.41661e13i q^{92} -3.85284e12i q^{93} +1.27900e13 q^{94} +5.17493e12 q^{96} +1.54548e13i q^{97} +1.19783e13i q^{98} +8.97667e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 41504 q^{4} + 75816 q^{6} - 4251528 q^{9} - 11748208 q^{11} + 128644584 q^{14} + 12392960 q^{16} + 407861624 q^{19} - 435936168 q^{21} - 618098688 q^{24} - 7083351544 q^{26} + 17010752528 q^{29} - 4110176552 q^{31}+ \cdots + 6243479407728 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 143.467i 1.58510i 0.609807 + 0.792550i \(0.291247\pi\)
−0.609807 + 0.792550i \(0.708753\pi\)
\(3\) 729.000i 0.577350i
\(4\) −12390.7 −1.51254
\(5\) 0 0
\(6\) −104587. −0.915158
\(7\) 115746.i 0.371852i 0.982564 + 0.185926i \(0.0595285\pi\)
−0.982564 + 0.185926i \(0.940472\pi\)
\(8\) − 602380.i − 0.812429i
\(9\) −531441. −0.333333
\(10\) 0 0
\(11\) −1.68912e6 −0.287480 −0.143740 0.989615i \(-0.545913\pi\)
−0.143740 + 0.989615i \(0.545913\pi\)
\(12\) − 9.03285e6i − 0.873266i
\(13\) 8.38266e6i 0.481670i 0.970566 + 0.240835i \(0.0774213\pi\)
−0.970566 + 0.240835i \(0.922579\pi\)
\(14\) −1.66058e7 −0.589422
\(15\) 0 0
\(16\) −1.50834e7 −0.224760
\(17\) − 1.18185e8i − 1.18753i −0.804638 0.593765i \(-0.797641\pi\)
0.804638 0.593765i \(-0.202359\pi\)
\(18\) − 7.62442e7i − 0.528367i
\(19\) −2.93887e6 −0.0143312 −0.00716560 0.999974i \(-0.502281\pi\)
−0.00716560 + 0.999974i \(0.502281\pi\)
\(20\) 0 0
\(21\) −8.43791e7 −0.214689
\(22\) − 2.42333e8i − 0.455685i
\(23\) − 1.14328e9i − 1.61036i −0.593033 0.805178i \(-0.702070\pi\)
0.593033 0.805178i \(-0.297930\pi\)
\(24\) 4.39135e8 0.469056
\(25\) 0 0
\(26\) −1.20263e9 −0.763496
\(27\) − 3.87420e8i − 0.192450i
\(28\) − 1.43418e9i − 0.562441i
\(29\) 2.58117e9 0.805804 0.402902 0.915243i \(-0.368002\pi\)
0.402902 + 0.915243i \(0.368002\pi\)
\(30\) 0 0
\(31\) −5.28510e9 −1.06955 −0.534776 0.844994i \(-0.679604\pi\)
−0.534776 + 0.844994i \(0.679604\pi\)
\(32\) − 7.09866e9i − 1.16870i
\(33\) − 1.23137e9i − 0.165977i
\(34\) 1.69556e10 1.88235
\(35\) 0 0
\(36\) 6.58495e9 0.504180
\(37\) − 2.25904e9i − 0.144748i −0.997378 0.0723740i \(-0.976942\pi\)
0.997378 0.0723740i \(-0.0230575\pi\)
\(38\) − 4.21631e8i − 0.0227164i
\(39\) −6.11096e9 −0.278093
\(40\) 0 0
\(41\) 3.08318e10 1.01369 0.506844 0.862038i \(-0.330812\pi\)
0.506844 + 0.862038i \(0.330812\pi\)
\(42\) − 1.21056e10i − 0.340303i
\(43\) 1.84280e10i 0.444562i 0.974983 + 0.222281i \(0.0713503\pi\)
−0.974983 + 0.222281i \(0.928650\pi\)
\(44\) 2.09294e10 0.434826
\(45\) 0 0
\(46\) 1.64023e11 2.55257
\(47\) − 8.91497e10i − 1.20638i −0.797598 0.603190i \(-0.793896\pi\)
0.797598 0.603190i \(-0.206104\pi\)
\(48\) − 1.09958e10i − 0.129765i
\(49\) 8.34918e10 0.861726
\(50\) 0 0
\(51\) 8.61570e10 0.685621
\(52\) − 1.03867e11i − 0.728546i
\(53\) 2.29652e11i 1.42324i 0.702567 + 0.711618i \(0.252037\pi\)
−0.702567 + 0.711618i \(0.747963\pi\)
\(54\) 5.55820e10 0.305053
\(55\) 0 0
\(56\) 6.97232e10 0.302103
\(57\) − 2.14244e9i − 0.00827412i
\(58\) 3.70312e11i 1.27728i
\(59\) 1.48583e11 0.458596 0.229298 0.973356i \(-0.426357\pi\)
0.229298 + 0.973356i \(0.426357\pi\)
\(60\) 0 0
\(61\) −8.88553e10 −0.220821 −0.110410 0.993886i \(-0.535216\pi\)
−0.110410 + 0.993886i \(0.535216\pi\)
\(62\) − 7.58237e11i − 1.69535i
\(63\) − 6.15124e10i − 0.123951i
\(64\) 8.94860e11 1.62774
\(65\) 0 0
\(66\) 1.76661e11 0.263090
\(67\) − 1.15668e12i − 1.56217i −0.624425 0.781085i \(-0.714667\pi\)
0.624425 0.781085i \(-0.285333\pi\)
\(68\) 1.46440e12i 1.79619i
\(69\) 8.33451e11 0.929739
\(70\) 0 0
\(71\) −1.39371e12 −1.29120 −0.645601 0.763675i \(-0.723393\pi\)
−0.645601 + 0.763675i \(0.723393\pi\)
\(72\) 3.20129e11i 0.270810i
\(73\) − 2.23868e12i − 1.73138i −0.500578 0.865691i \(-0.666879\pi\)
0.500578 0.865691i \(-0.333121\pi\)
\(74\) 3.24097e11 0.229440
\(75\) 0 0
\(76\) 3.64148e10 0.0216765
\(77\) − 1.95509e11i − 0.106900i
\(78\) − 8.76720e11i − 0.440804i
\(79\) −4.29509e11 −0.198791 −0.0993953 0.995048i \(-0.531691\pi\)
−0.0993953 + 0.995048i \(0.531691\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) 4.42335e12i 1.60680i
\(83\) 4.77368e12i 1.60267i 0.598213 + 0.801337i \(0.295878\pi\)
−0.598213 + 0.801337i \(0.704122\pi\)
\(84\) 1.04552e12 0.324726
\(85\) 0 0
\(86\) −2.64380e12 −0.704676
\(87\) 1.88167e12i 0.465231i
\(88\) 1.01749e12i 0.233557i
\(89\) −4.52557e12 −0.965246 −0.482623 0.875828i \(-0.660316\pi\)
−0.482623 + 0.875828i \(0.660316\pi\)
\(90\) 0 0
\(91\) −9.70262e11 −0.179110
\(92\) 1.41661e13i 2.43573i
\(93\) − 3.85284e12i − 0.617507i
\(94\) 1.27900e13 1.91223
\(95\) 0 0
\(96\) 5.17493e12 0.674747
\(97\) 1.54548e13i 1.88385i 0.335822 + 0.941925i \(0.390986\pi\)
−0.335822 + 0.941925i \(0.609014\pi\)
\(98\) 1.19783e13i 1.36592i
\(99\) 8.97667e11 0.0958267
\(100\) 0 0
\(101\) −4.38671e12 −0.411197 −0.205599 0.978636i \(-0.565914\pi\)
−0.205599 + 0.978636i \(0.565914\pi\)
\(102\) 1.23607e13i 1.08678i
\(103\) − 9.72298e12i − 0.802338i −0.916004 0.401169i \(-0.868604\pi\)
0.916004 0.401169i \(-0.131396\pi\)
\(104\) 5.04954e12 0.391323
\(105\) 0 0
\(106\) −3.29474e13 −2.25597
\(107\) 7.70349e12i 0.496241i 0.968729 + 0.248121i \(0.0798129\pi\)
−0.968729 + 0.248121i \(0.920187\pi\)
\(108\) 4.80043e12i 0.291089i
\(109\) 1.04685e13 0.597877 0.298938 0.954272i \(-0.403367\pi\)
0.298938 + 0.954272i \(0.403367\pi\)
\(110\) 0 0
\(111\) 1.64684e12 0.0835703
\(112\) − 1.74585e12i − 0.0835776i
\(113\) − 5.48831e12i − 0.247987i −0.992283 0.123993i \(-0.960430\pi\)
0.992283 0.123993i \(-0.0395702\pi\)
\(114\) 3.07369e11 0.0131153
\(115\) 0 0
\(116\) −3.19826e13 −1.21881
\(117\) − 4.45489e12i − 0.160557i
\(118\) 2.13167e13i 0.726920i
\(119\) 1.36795e13 0.441586
\(120\) 0 0
\(121\) −3.16696e13 −0.917355
\(122\) − 1.27478e13i − 0.350023i
\(123\) 2.24764e13i 0.585253i
\(124\) 6.54863e13 1.61774
\(125\) 0 0
\(126\) 8.82498e12 0.196474
\(127\) − 3.76054e13i − 0.795291i −0.917539 0.397645i \(-0.869827\pi\)
0.917539 0.397645i \(-0.130173\pi\)
\(128\) 7.02304e13i 1.41143i
\(129\) −1.34340e13 −0.256668
\(130\) 0 0
\(131\) 9.13894e13 1.57991 0.789955 0.613165i \(-0.210104\pi\)
0.789955 + 0.613165i \(0.210104\pi\)
\(132\) 1.52576e13i 0.251047i
\(133\) − 3.40164e11i − 0.00532909i
\(134\) 1.65946e14 2.47620
\(135\) 0 0
\(136\) −7.11923e13 −0.964784
\(137\) 8.99178e13i 1.16188i 0.813946 + 0.580941i \(0.197315\pi\)
−0.813946 + 0.580941i \(0.802685\pi\)
\(138\) 1.19573e14i 1.47373i
\(139\) 3.27383e13 0.384999 0.192499 0.981297i \(-0.438341\pi\)
0.192499 + 0.981297i \(0.438341\pi\)
\(140\) 0 0
\(141\) 6.49901e13 0.696503
\(142\) − 1.99952e14i − 2.04668i
\(143\) − 1.41593e13i − 0.138471i
\(144\) 8.01595e12 0.0749201
\(145\) 0 0
\(146\) 3.21176e14 2.74441
\(147\) 6.08655e13i 0.497518i
\(148\) 2.79912e13i 0.218937i
\(149\) 5.86656e13 0.439211 0.219605 0.975589i \(-0.429523\pi\)
0.219605 + 0.975589i \(0.429523\pi\)
\(150\) 0 0
\(151\) −9.17724e13 −0.630031 −0.315015 0.949087i \(-0.602010\pi\)
−0.315015 + 0.949087i \(0.602010\pi\)
\(152\) 1.77032e12i 0.0116431i
\(153\) 6.28084e13i 0.395844i
\(154\) 2.80491e13 0.169447
\(155\) 0 0
\(156\) 7.57193e13 0.420626
\(157\) − 9.62156e13i − 0.512741i −0.966579 0.256370i \(-0.917473\pi\)
0.966579 0.256370i \(-0.0825267\pi\)
\(158\) − 6.16202e13i − 0.315103i
\(159\) −1.67416e14 −0.821705
\(160\) 0 0
\(161\) 1.32331e14 0.598814
\(162\) 4.05193e13i 0.176122i
\(163\) − 3.61390e14i − 1.50923i −0.656166 0.754617i \(-0.727823\pi\)
0.656166 0.754617i \(-0.272177\pi\)
\(164\) −3.82029e14 −1.53324
\(165\) 0 0
\(166\) −6.84864e14 −2.54040
\(167\) 1.39666e14i 0.498234i 0.968473 + 0.249117i \(0.0801404\pi\)
−0.968473 + 0.249117i \(0.919860\pi\)
\(168\) 5.08282e13i 0.174419i
\(169\) 2.32606e14 0.767994
\(170\) 0 0
\(171\) 1.56184e12 0.00477707
\(172\) − 2.28336e14i − 0.672419i
\(173\) − 4.50349e14i − 1.27717i −0.769551 0.638586i \(-0.779520\pi\)
0.769551 0.638586i \(-0.220480\pi\)
\(174\) −2.69958e14 −0.737438
\(175\) 0 0
\(176\) 2.54777e13 0.0646142
\(177\) 1.08317e14i 0.264770i
\(178\) − 6.49269e14i − 1.53001i
\(179\) 4.63543e13 0.105328 0.0526642 0.998612i \(-0.483229\pi\)
0.0526642 + 0.998612i \(0.483229\pi\)
\(180\) 0 0
\(181\) −5.73683e14 −1.21272 −0.606361 0.795189i \(-0.707371\pi\)
−0.606361 + 0.795189i \(0.707371\pi\)
\(182\) − 1.39200e14i − 0.283907i
\(183\) − 6.47755e13i − 0.127491i
\(184\) −6.88689e14 −1.30830
\(185\) 0 0
\(186\) 5.52755e14 0.978810
\(187\) 1.99629e14i 0.341392i
\(188\) 1.10463e15i 1.82470i
\(189\) 4.48425e13 0.0715629
\(190\) 0 0
\(191\) −2.45056e14 −0.365214 −0.182607 0.983186i \(-0.558454\pi\)
−0.182607 + 0.983186i \(0.558454\pi\)
\(192\) 6.52353e14i 0.939776i
\(193\) − 1.07891e15i − 1.50267i −0.659921 0.751335i \(-0.729410\pi\)
0.659921 0.751335i \(-0.270590\pi\)
\(194\) −2.21725e15 −2.98609
\(195\) 0 0
\(196\) −1.03452e15 −1.30340
\(197\) 5.37451e14i 0.655101i 0.944834 + 0.327550i \(0.106223\pi\)
−0.944834 + 0.327550i \(0.893777\pi\)
\(198\) 1.28786e14i 0.151895i
\(199\) −4.43570e14 −0.506310 −0.253155 0.967426i \(-0.581468\pi\)
−0.253155 + 0.967426i \(0.581468\pi\)
\(200\) 0 0
\(201\) 8.43222e14 0.901919
\(202\) − 6.29348e14i − 0.651789i
\(203\) 2.98761e14i 0.299640i
\(204\) −1.06755e15 −1.03703
\(205\) 0 0
\(206\) 1.39492e15 1.27179
\(207\) 6.07586e14i 0.536785i
\(208\) − 1.26439e14i − 0.108260i
\(209\) 4.96411e12 0.00411994
\(210\) 0 0
\(211\) 1.83905e15 1.43469 0.717345 0.696718i \(-0.245357\pi\)
0.717345 + 0.696718i \(0.245357\pi\)
\(212\) − 2.84555e15i − 2.15270i
\(213\) − 1.01602e15i − 0.745475i
\(214\) −1.10519e15 −0.786592
\(215\) 0 0
\(216\) −2.33374e14 −0.156352
\(217\) − 6.11731e14i − 0.397715i
\(218\) 1.50188e15i 0.947695i
\(219\) 1.63200e15 0.999614
\(220\) 0 0
\(221\) 9.90706e14 0.571999
\(222\) 2.36267e14i 0.132467i
\(223\) − 2.71677e15i − 1.47935i −0.672963 0.739676i \(-0.734979\pi\)
0.672963 0.739676i \(-0.265021\pi\)
\(224\) 8.21644e14 0.434582
\(225\) 0 0
\(226\) 7.87390e14 0.393084
\(227\) − 1.47916e15i − 0.717542i −0.933426 0.358771i \(-0.883196\pi\)
0.933426 0.358771i \(-0.116804\pi\)
\(228\) 2.65464e13i 0.0125150i
\(229\) 3.13274e15 1.43547 0.717735 0.696316i \(-0.245179\pi\)
0.717735 + 0.696316i \(0.245179\pi\)
\(230\) 0 0
\(231\) 1.42526e14 0.0617188
\(232\) − 1.55484e15i − 0.654658i
\(233\) − 2.51709e14i − 0.103059i −0.998671 0.0515294i \(-0.983590\pi\)
0.998671 0.0515294i \(-0.0164096\pi\)
\(234\) 6.39129e14 0.254499
\(235\) 0 0
\(236\) −1.84105e15 −0.693645
\(237\) − 3.13112e14i − 0.114772i
\(238\) 1.96255e15i 0.699957i
\(239\) 4.54846e15 1.57862 0.789311 0.613993i \(-0.210438\pi\)
0.789311 + 0.613993i \(0.210438\pi\)
\(240\) 0 0
\(241\) −9.11615e14 −0.299710 −0.149855 0.988708i \(-0.547881\pi\)
−0.149855 + 0.988708i \(0.547881\pi\)
\(242\) − 4.54354e15i − 1.45410i
\(243\) 2.05891e14i 0.0641500i
\(244\) 1.10098e15 0.334000
\(245\) 0 0
\(246\) −3.22462e15 −0.927685
\(247\) − 2.46356e13i − 0.00690292i
\(248\) 3.18364e15i 0.868936i
\(249\) −3.48001e15 −0.925305
\(250\) 0 0
\(251\) 5.57048e15 1.40609 0.703046 0.711145i \(-0.251823\pi\)
0.703046 + 0.711145i \(0.251823\pi\)
\(252\) 7.62183e14i 0.187480i
\(253\) 1.93114e15i 0.462945i
\(254\) 5.39513e15 1.26062
\(255\) 0 0
\(256\) −2.74505e15 −0.609523
\(257\) − 4.51207e14i − 0.0976811i −0.998807 0.0488405i \(-0.984447\pi\)
0.998807 0.0488405i \(-0.0155526\pi\)
\(258\) − 1.92733e15i − 0.406845i
\(259\) 2.61475e14 0.0538248
\(260\) 0 0
\(261\) −1.37174e15 −0.268601
\(262\) 1.31113e16i 2.50431i
\(263\) − 7.11310e15i − 1.32540i −0.748885 0.662700i \(-0.769411\pi\)
0.748885 0.662700i \(-0.230589\pi\)
\(264\) −7.41751e14 −0.134844
\(265\) 0 0
\(266\) 4.88023e13 0.00844713
\(267\) − 3.29914e15i − 0.557285i
\(268\) 1.43322e16i 2.36285i
\(269\) 1.34023e15 0.215671 0.107835 0.994169i \(-0.465608\pi\)
0.107835 + 0.994169i \(0.465608\pi\)
\(270\) 0 0
\(271\) 6.00564e15 0.920998 0.460499 0.887660i \(-0.347670\pi\)
0.460499 + 0.887660i \(0.347670\pi\)
\(272\) 1.78264e15i 0.266910i
\(273\) − 7.07321e14i − 0.103409i
\(274\) −1.29002e16 −1.84170
\(275\) 0 0
\(276\) −1.03271e16 −1.40627
\(277\) 1.09407e16i 1.45521i 0.685994 + 0.727607i \(0.259368\pi\)
−0.685994 + 0.727607i \(0.740632\pi\)
\(278\) 4.69686e15i 0.610262i
\(279\) 2.80872e15 0.356518
\(280\) 0 0
\(281\) −2.82786e15 −0.342662 −0.171331 0.985213i \(-0.554807\pi\)
−0.171331 + 0.985213i \(0.554807\pi\)
\(282\) 9.32393e15i 1.10403i
\(283\) 5.47390e15i 0.633410i 0.948524 + 0.316705i \(0.102576\pi\)
−0.948524 + 0.316705i \(0.897424\pi\)
\(284\) 1.72691e16 1.95300
\(285\) 0 0
\(286\) 2.03139e15 0.219490
\(287\) 3.56867e15i 0.376942i
\(288\) 3.77252e15i 0.389566i
\(289\) −4.06315e15 −0.410229
\(290\) 0 0
\(291\) −1.12665e16 −1.08764
\(292\) 2.77389e16i 2.61879i
\(293\) − 1.00494e16i − 0.927897i −0.885862 0.463948i \(-0.846432\pi\)
0.885862 0.463948i \(-0.153568\pi\)
\(294\) −8.73218e15 −0.788615
\(295\) 0 0
\(296\) −1.36080e15 −0.117597
\(297\) 6.54400e14i 0.0553256i
\(298\) 8.41657e15i 0.696193i
\(299\) 9.58373e15 0.775661
\(300\) 0 0
\(301\) −2.13297e15 −0.165311
\(302\) − 1.31663e16i − 0.998662i
\(303\) − 3.19791e15i − 0.237405i
\(304\) 4.43283e13 0.00322109
\(305\) 0 0
\(306\) −9.01093e15 −0.627452
\(307\) − 4.72392e15i − 0.322035i −0.986952 0.161018i \(-0.948522\pi\)
0.986952 0.161018i \(-0.0514776\pi\)
\(308\) 2.42251e15i 0.161691i
\(309\) 7.08805e15 0.463230
\(310\) 0 0
\(311\) −3.07381e16 −1.92635 −0.963174 0.268878i \(-0.913347\pi\)
−0.963174 + 0.268878i \(0.913347\pi\)
\(312\) 3.68112e15i 0.225930i
\(313\) − 1.74281e16i − 1.04764i −0.851829 0.523819i \(-0.824507\pi\)
0.851829 0.523819i \(-0.175493\pi\)
\(314\) 1.38038e16 0.812745
\(315\) 0 0
\(316\) 5.32193e15 0.300679
\(317\) − 2.05312e16i − 1.13639i −0.822892 0.568197i \(-0.807641\pi\)
0.822892 0.568197i \(-0.192359\pi\)
\(318\) − 2.40187e16i − 1.30248i
\(319\) −4.35990e15 −0.231653
\(320\) 0 0
\(321\) −5.61584e15 −0.286505
\(322\) 1.89850e16i 0.949180i
\(323\) 3.47331e14i 0.0170187i
\(324\) −3.49951e15 −0.168060
\(325\) 0 0
\(326\) 5.18475e16 2.39229
\(327\) 7.63153e15i 0.345184i
\(328\) − 1.85725e16i − 0.823549i
\(329\) 1.03188e16 0.448594
\(330\) 0 0
\(331\) 1.08020e16 0.451463 0.225731 0.974190i \(-0.427523\pi\)
0.225731 + 0.974190i \(0.427523\pi\)
\(332\) − 5.91494e16i − 2.42411i
\(333\) 1.20055e15i 0.0482493i
\(334\) −2.00374e16 −0.789750
\(335\) 0 0
\(336\) 1.27272e15 0.0482535
\(337\) − 2.49305e16i − 0.927120i −0.886065 0.463560i \(-0.846572\pi\)
0.886065 0.463560i \(-0.153428\pi\)
\(338\) 3.33713e16i 1.21735i
\(339\) 4.00098e15 0.143175
\(340\) 0 0
\(341\) 8.92717e15 0.307475
\(342\) 2.24072e14i 0.00757213i
\(343\) 2.08784e16i 0.692286i
\(344\) 1.11006e16 0.361175
\(345\) 0 0
\(346\) 6.46101e16 2.02444
\(347\) − 4.84184e16i − 1.48891i −0.667672 0.744455i \(-0.732709\pi\)
0.667672 0.744455i \(-0.267291\pi\)
\(348\) − 2.33153e16i − 0.703681i
\(349\) −3.58064e15 −0.106071 −0.0530353 0.998593i \(-0.516890\pi\)
−0.0530353 + 0.998593i \(0.516890\pi\)
\(350\) 0 0
\(351\) 3.24761e15 0.0926975
\(352\) 1.19905e16i 0.335977i
\(353\) 6.71086e16i 1.84605i 0.384744 + 0.923023i \(0.374290\pi\)
−0.384744 + 0.923023i \(0.625710\pi\)
\(354\) −1.55399e16 −0.419687
\(355\) 0 0
\(356\) 5.60751e16 1.45997
\(357\) 9.97235e15i 0.254950i
\(358\) 6.65031e15i 0.166956i
\(359\) −6.13471e16 −1.51245 −0.756224 0.654313i \(-0.772958\pi\)
−0.756224 + 0.654313i \(0.772958\pi\)
\(360\) 0 0
\(361\) −4.20443e16 −0.999795
\(362\) − 8.23045e16i − 1.92229i
\(363\) − 2.30871e16i − 0.529635i
\(364\) 1.20223e16 0.270911
\(365\) 0 0
\(366\) 9.29314e15 0.202086
\(367\) 1.34842e16i 0.288067i 0.989573 + 0.144034i \(0.0460074\pi\)
−0.989573 + 0.144034i \(0.953993\pi\)
\(368\) 1.72446e16i 0.361944i
\(369\) −1.63853e16 −0.337896
\(370\) 0 0
\(371\) −2.65814e16 −0.529233
\(372\) 4.77395e16i 0.934004i
\(373\) − 3.69623e16i − 0.710643i −0.934744 0.355322i \(-0.884371\pi\)
0.934744 0.355322i \(-0.115629\pi\)
\(374\) −2.86401e16 −0.541140
\(375\) 0 0
\(376\) −5.37020e16 −0.980097
\(377\) 2.16371e16i 0.388132i
\(378\) 6.43341e15i 0.113434i
\(379\) 6.08164e14 0.0105406 0.00527031 0.999986i \(-0.498322\pi\)
0.00527031 + 0.999986i \(0.498322\pi\)
\(380\) 0 0
\(381\) 2.74143e16 0.459161
\(382\) − 3.51573e16i − 0.578901i
\(383\) − 2.22248e16i − 0.359788i −0.983686 0.179894i \(-0.942425\pi\)
0.983686 0.179894i \(-0.0575754\pi\)
\(384\) −5.11980e16 −0.814892
\(385\) 0 0
\(386\) 1.54788e17 2.38188
\(387\) − 9.79338e15i − 0.148187i
\(388\) − 1.91496e17i − 2.84940i
\(389\) 1.28354e15 0.0187818 0.00939088 0.999956i \(-0.497011\pi\)
0.00939088 + 0.999956i \(0.497011\pi\)
\(390\) 0 0
\(391\) −1.35119e17 −1.91235
\(392\) − 5.02938e16i − 0.700091i
\(393\) 6.66228e16i 0.912161i
\(394\) −7.71064e16 −1.03840
\(395\) 0 0
\(396\) −1.11228e16 −0.144942
\(397\) − 9.82778e16i − 1.25985i −0.776658 0.629923i \(-0.783087\pi\)
0.776658 0.629923i \(-0.216913\pi\)
\(398\) − 6.36375e16i − 0.802552i
\(399\) 2.47980e14 0.00307675
\(400\) 0 0
\(401\) −1.22578e17 −1.47222 −0.736110 0.676862i \(-0.763339\pi\)
−0.736110 + 0.676862i \(0.763339\pi\)
\(402\) 1.20974e17i 1.42963i
\(403\) − 4.43032e16i − 0.515172i
\(404\) 5.43546e16 0.621953
\(405\) 0 0
\(406\) −4.28623e16 −0.474959
\(407\) 3.81579e15i 0.0416122i
\(408\) − 5.18992e16i − 0.557018i
\(409\) −1.53819e17 −1.62483 −0.812417 0.583077i \(-0.801849\pi\)
−0.812417 + 0.583077i \(0.801849\pi\)
\(410\) 0 0
\(411\) −6.55501e16 −0.670813
\(412\) 1.20475e17i 1.21357i
\(413\) 1.71979e16i 0.170530i
\(414\) −8.71685e16 −0.850858
\(415\) 0 0
\(416\) 5.95057e16 0.562927
\(417\) 2.38662e16i 0.222279i
\(418\) 7.12185e14i 0.00653051i
\(419\) 6.70532e16 0.605381 0.302690 0.953089i \(-0.402115\pi\)
0.302690 + 0.953089i \(0.402115\pi\)
\(420\) 0 0
\(421\) −1.75428e17 −1.53555 −0.767776 0.640719i \(-0.778636\pi\)
−0.767776 + 0.640719i \(0.778636\pi\)
\(422\) 2.63843e17i 2.27413i
\(423\) 4.73778e16i 0.402126i
\(424\) 1.38338e17 1.15628
\(425\) 0 0
\(426\) 1.45765e17 1.18165
\(427\) − 1.02847e16i − 0.0821125i
\(428\) − 9.54519e16i − 0.750585i
\(429\) 1.03221e16 0.0799461
\(430\) 0 0
\(431\) 1.32859e17 0.998360 0.499180 0.866498i \(-0.333635\pi\)
0.499180 + 0.866498i \(0.333635\pi\)
\(432\) 5.84362e15i 0.0432552i
\(433\) 7.83879e16i 0.571581i 0.958292 + 0.285790i \(0.0922561\pi\)
−0.958292 + 0.285790i \(0.907744\pi\)
\(434\) 8.77631e16 0.630418
\(435\) 0 0
\(436\) −1.29712e17 −0.904314
\(437\) 3.35996e15i 0.0230783i
\(438\) 2.34137e17i 1.58449i
\(439\) 5.39578e16 0.359778 0.179889 0.983687i \(-0.442426\pi\)
0.179889 + 0.983687i \(0.442426\pi\)
\(440\) 0 0
\(441\) −4.43710e16 −0.287242
\(442\) 1.42133e17i 0.906675i
\(443\) − 3.24769e16i − 0.204150i −0.994777 0.102075i \(-0.967452\pi\)
0.994777 0.102075i \(-0.0325482\pi\)
\(444\) −2.04056e16 −0.126403
\(445\) 0 0
\(446\) 3.89767e17 2.34492
\(447\) 4.27672e16i 0.253578i
\(448\) 1.03577e17i 0.605278i
\(449\) 1.12233e17 0.646424 0.323212 0.946327i \(-0.395237\pi\)
0.323212 + 0.946327i \(0.395237\pi\)
\(450\) 0 0
\(451\) −5.20787e16 −0.291415
\(452\) 6.80042e16i 0.375090i
\(453\) − 6.69021e16i − 0.363748i
\(454\) 2.12211e17 1.13738
\(455\) 0 0
\(456\) −1.29056e15 −0.00672214
\(457\) − 2.41097e17i − 1.23805i −0.785372 0.619024i \(-0.787529\pi\)
0.785372 0.619024i \(-0.212471\pi\)
\(458\) 4.49445e17i 2.27536i
\(459\) −4.57873e16 −0.228540
\(460\) 0 0
\(461\) −9.87829e16 −0.479320 −0.239660 0.970857i \(-0.577036\pi\)
−0.239660 + 0.970857i \(0.577036\pi\)
\(462\) 2.04478e16i 0.0978304i
\(463\) − 2.02766e17i − 0.956576i −0.878203 0.478288i \(-0.841258\pi\)
0.878203 0.478288i \(-0.158742\pi\)
\(464\) −3.89328e16 −0.181113
\(465\) 0 0
\(466\) 3.61119e16 0.163358
\(467\) − 1.35876e17i − 0.606152i −0.952966 0.303076i \(-0.901986\pi\)
0.952966 0.303076i \(-0.0980136\pi\)
\(468\) 5.51994e16i 0.242849i
\(469\) 1.33882e17 0.580896
\(470\) 0 0
\(471\) 7.01412e16 0.296031
\(472\) − 8.95032e16i − 0.372576i
\(473\) − 3.11271e16i − 0.127803i
\(474\) 4.49212e16 0.181925
\(475\) 0 0
\(476\) −1.69499e17 −0.667916
\(477\) − 1.22046e17i − 0.474412i
\(478\) 6.52554e17i 2.50227i
\(479\) 1.81495e17 0.686568 0.343284 0.939232i \(-0.388461\pi\)
0.343284 + 0.939232i \(0.388461\pi\)
\(480\) 0 0
\(481\) 1.89368e16 0.0697208
\(482\) − 1.30787e17i − 0.475070i
\(483\) 9.64689e16i 0.345725i
\(484\) 3.92410e17 1.38754
\(485\) 0 0
\(486\) −2.95386e16 −0.101684
\(487\) − 5.39647e17i − 1.83304i −0.399992 0.916518i \(-0.630987\pi\)
0.399992 0.916518i \(-0.369013\pi\)
\(488\) 5.35246e16i 0.179401i
\(489\) 2.63453e17 0.871356
\(490\) 0 0
\(491\) −3.53623e17 −1.13897 −0.569483 0.822003i \(-0.692857\pi\)
−0.569483 + 0.822003i \(0.692857\pi\)
\(492\) − 2.78499e17i − 0.885219i
\(493\) − 3.05056e17i − 0.956917i
\(494\) 3.53439e15 0.0109418
\(495\) 0 0
\(496\) 7.97174e16 0.240393
\(497\) − 1.61317e17i − 0.480136i
\(498\) − 4.99266e17i − 1.46670i
\(499\) 1.25995e17 0.365344 0.182672 0.983174i \(-0.441525\pi\)
0.182672 + 0.983174i \(0.441525\pi\)
\(500\) 0 0
\(501\) −1.01816e17 −0.287655
\(502\) 7.99179e17i 2.22879i
\(503\) − 1.25319e16i − 0.0345006i −0.999851 0.0172503i \(-0.994509\pi\)
0.999851 0.0172503i \(-0.00549121\pi\)
\(504\) −3.70538e16 −0.100701
\(505\) 0 0
\(506\) −2.77054e17 −0.733815
\(507\) 1.69570e17i 0.443401i
\(508\) 4.65959e17i 1.20291i
\(509\) 3.72187e17 0.948628 0.474314 0.880356i \(-0.342696\pi\)
0.474314 + 0.880356i \(0.342696\pi\)
\(510\) 0 0
\(511\) 2.59119e17 0.643818
\(512\) 1.81504e17i 0.445279i
\(513\) 1.13858e15i 0.00275804i
\(514\) 6.47332e16 0.154834
\(515\) 0 0
\(516\) 1.66457e17 0.388221
\(517\) 1.50585e17i 0.346810i
\(518\) 3.75131e16i 0.0853177i
\(519\) 3.28304e17 0.737375
\(520\) 0 0
\(521\) −4.42287e17 −0.968855 −0.484428 0.874831i \(-0.660972\pi\)
−0.484428 + 0.874831i \(0.660972\pi\)
\(522\) − 1.96799e17i − 0.425760i
\(523\) − 7.13084e17i − 1.52363i −0.647794 0.761816i \(-0.724308\pi\)
0.647794 0.761816i \(-0.275692\pi\)
\(524\) −1.13238e18 −2.38968
\(525\) 0 0
\(526\) 1.02049e18 2.10089
\(527\) 6.24620e17i 1.27013i
\(528\) 1.85732e16i 0.0373050i
\(529\) −8.03054e17 −1.59325
\(530\) 0 0
\(531\) −7.89629e16 −0.152865
\(532\) 4.21488e15i 0.00806046i
\(533\) 2.58453e17i 0.488264i
\(534\) 4.73317e17 0.883352
\(535\) 0 0
\(536\) −6.96762e17 −1.26915
\(537\) 3.37923e16i 0.0608114i
\(538\) 1.92279e17i 0.341859i
\(539\) −1.41028e17 −0.247729
\(540\) 0 0
\(541\) 1.13125e18 1.93988 0.969941 0.243342i \(-0.0782437\pi\)
0.969941 + 0.243342i \(0.0782437\pi\)
\(542\) 8.61610e17i 1.45987i
\(543\) − 4.18215e17i − 0.700166i
\(544\) −8.38957e17 −1.38786
\(545\) 0 0
\(546\) 1.01477e17 0.163914
\(547\) 7.05433e17i 1.12600i 0.826457 + 0.563000i \(0.190353\pi\)
−0.826457 + 0.563000i \(0.809647\pi\)
\(548\) − 1.11415e18i − 1.75739i
\(549\) 4.72214e16 0.0736069
\(550\) 0 0
\(551\) −7.58573e15 −0.0115481
\(552\) − 5.02054e17i − 0.755347i
\(553\) − 4.97140e16i − 0.0739206i
\(554\) −1.56963e18 −2.30666
\(555\) 0 0
\(556\) −4.05651e17 −0.582327
\(557\) − 6.45619e17i − 0.916047i −0.888940 0.458023i \(-0.848558\pi\)
0.888940 0.458023i \(-0.151442\pi\)
\(558\) 4.02958e17i 0.565116i
\(559\) −1.54475e17 −0.214133
\(560\) 0 0
\(561\) −1.45529e17 −0.197103
\(562\) − 4.05704e17i − 0.543154i
\(563\) − 7.17316e17i − 0.949306i −0.880173 0.474653i \(-0.842574\pi\)
0.880173 0.474653i \(-0.157426\pi\)
\(564\) −8.05276e17 −1.05349
\(565\) 0 0
\(566\) −7.85323e17 −1.00402
\(567\) 3.26902e16i 0.0413169i
\(568\) 8.39544e17i 1.04901i
\(569\) 1.04468e17 0.129048 0.0645241 0.997916i \(-0.479447\pi\)
0.0645241 + 0.997916i \(0.479447\pi\)
\(570\) 0 0
\(571\) 5.56964e17 0.672500 0.336250 0.941773i \(-0.390841\pi\)
0.336250 + 0.941773i \(0.390841\pi\)
\(572\) 1.75444e17i 0.209443i
\(573\) − 1.78645e17i − 0.210856i
\(574\) −5.11986e17 −0.597490
\(575\) 0 0
\(576\) −4.75565e17 −0.542580
\(577\) 3.32481e17i 0.375080i 0.982257 + 0.187540i \(0.0600514\pi\)
−0.982257 + 0.187540i \(0.939949\pi\)
\(578\) − 5.82927e17i − 0.650254i
\(579\) 7.86527e17 0.867566
\(580\) 0 0
\(581\) −5.52536e17 −0.595958
\(582\) − 1.61637e18i − 1.72402i
\(583\) − 3.87909e17i − 0.409152i
\(584\) −1.34853e18 −1.40663
\(585\) 0 0
\(586\) 1.44175e18 1.47081
\(587\) 8.00524e17i 0.807657i 0.914835 + 0.403828i \(0.132321\pi\)
−0.914835 + 0.403828i \(0.867679\pi\)
\(588\) − 7.54169e17i − 0.752516i
\(589\) 1.55322e16 0.0153280
\(590\) 0 0
\(591\) −3.91802e17 −0.378223
\(592\) 3.40740e16i 0.0325336i
\(593\) − 1.73961e18i − 1.64284i −0.570322 0.821421i \(-0.693182\pi\)
0.570322 0.821421i \(-0.306818\pi\)
\(594\) −9.38846e16 −0.0876966
\(595\) 0 0
\(596\) −7.26910e17 −0.664324
\(597\) − 3.23362e17i − 0.292318i
\(598\) 1.37495e18i 1.22950i
\(599\) 1.43596e18 1.27019 0.635095 0.772434i \(-0.280961\pi\)
0.635095 + 0.772434i \(0.280961\pi\)
\(600\) 0 0
\(601\) −1.23937e18 −1.07279 −0.536396 0.843966i \(-0.680215\pi\)
−0.536396 + 0.843966i \(0.680215\pi\)
\(602\) − 3.06011e17i − 0.262035i
\(603\) 6.14709e17i 0.520723i
\(604\) 1.13713e18 0.952948
\(605\) 0 0
\(606\) 4.58795e17 0.376310
\(607\) − 2.40600e18i − 1.95240i −0.216875 0.976199i \(-0.569586\pi\)
0.216875 0.976199i \(-0.430414\pi\)
\(608\) 2.08621e16i 0.0167488i
\(609\) −2.17797e17 −0.172997
\(610\) 0 0
\(611\) 7.47312e17 0.581077
\(612\) − 7.78243e17i − 0.598730i
\(613\) 7.71007e17i 0.586902i 0.955974 + 0.293451i \(0.0948037\pi\)
−0.955974 + 0.293451i \(0.905196\pi\)
\(614\) 6.77726e17 0.510458
\(615\) 0 0
\(616\) −1.17771e17 −0.0868487
\(617\) 6.35119e17i 0.463449i 0.972781 + 0.231724i \(0.0744367\pi\)
−0.972781 + 0.231724i \(0.925563\pi\)
\(618\) 1.01690e18i 0.734266i
\(619\) −1.75343e18 −1.25285 −0.626426 0.779481i \(-0.715483\pi\)
−0.626426 + 0.779481i \(0.715483\pi\)
\(620\) 0 0
\(621\) −4.42930e17 −0.309913
\(622\) − 4.40990e18i − 3.05345i
\(623\) − 5.23818e17i − 0.358928i
\(624\) 9.21741e16 0.0625042
\(625\) 0 0
\(626\) 2.50035e18 1.66061
\(627\) 3.61884e15i 0.00237865i
\(628\) 1.19218e18i 0.775541i
\(629\) −2.66985e17 −0.171893
\(630\) 0 0
\(631\) 1.21896e18 0.768775 0.384387 0.923172i \(-0.374413\pi\)
0.384387 + 0.923172i \(0.374413\pi\)
\(632\) 2.58727e17i 0.161503i
\(633\) 1.34067e18i 0.828318i
\(634\) 2.94555e18 1.80130
\(635\) 0 0
\(636\) 2.07441e18 1.24286
\(637\) 6.99883e17i 0.415068i
\(638\) − 6.25501e17i − 0.367193i
\(639\) 7.40676e17 0.430400
\(640\) 0 0
\(641\) 1.09626e18 0.624216 0.312108 0.950047i \(-0.398965\pi\)
0.312108 + 0.950047i \(0.398965\pi\)
\(642\) − 8.05687e17i − 0.454139i
\(643\) − 2.51721e18i − 1.40459i −0.711888 0.702293i \(-0.752160\pi\)
0.711888 0.702293i \(-0.247840\pi\)
\(644\) −1.63967e18 −0.905731
\(645\) 0 0
\(646\) −4.98305e16 −0.0269764
\(647\) 6.31684e17i 0.338549i 0.985569 + 0.169275i \(0.0541425\pi\)
−0.985569 + 0.169275i \(0.945858\pi\)
\(648\) − 1.70130e17i − 0.0902699i
\(649\) −2.50974e17 −0.131837
\(650\) 0 0
\(651\) 4.45952e17 0.229621
\(652\) 4.47789e18i 2.28278i
\(653\) 2.66002e18i 1.34261i 0.741183 + 0.671303i \(0.234265\pi\)
−0.741183 + 0.671303i \(0.765735\pi\)
\(654\) −1.09487e18 −0.547152
\(655\) 0 0
\(656\) −4.65049e17 −0.227837
\(657\) 1.18973e18i 0.577128i
\(658\) 1.48040e18i 0.711067i
\(659\) 1.04314e18 0.496121 0.248061 0.968745i \(-0.420207\pi\)
0.248061 + 0.968745i \(0.420207\pi\)
\(660\) 0 0
\(661\) 8.68858e17 0.405172 0.202586 0.979264i \(-0.435065\pi\)
0.202586 + 0.979264i \(0.435065\pi\)
\(662\) 1.54973e18i 0.715613i
\(663\) 7.22224e17i 0.330243i
\(664\) 2.87557e18 1.30206
\(665\) 0 0
\(666\) −1.72239e17 −0.0764800
\(667\) − 2.95100e18i − 1.29763i
\(668\) − 1.73056e18i − 0.753599i
\(669\) 1.98053e18 0.854105
\(670\) 0 0
\(671\) 1.50087e17 0.0634815
\(672\) 5.98979e17i 0.250906i
\(673\) − 2.71903e18i − 1.12802i −0.825769 0.564009i \(-0.809258\pi\)
0.825769 0.564009i \(-0.190742\pi\)
\(674\) 3.57670e18 1.46958
\(675\) 0 0
\(676\) −2.88216e18 −1.16162
\(677\) 2.17548e18i 0.868418i 0.900812 + 0.434209i \(0.142972\pi\)
−0.900812 + 0.434209i \(0.857028\pi\)
\(678\) 5.74007e17i 0.226947i
\(679\) −1.78883e18 −0.700514
\(680\) 0 0
\(681\) 1.07831e18 0.414273
\(682\) 1.28075e18i 0.487379i
\(683\) 4.67971e18i 1.76394i 0.471305 + 0.881970i \(0.343783\pi\)
−0.471305 + 0.881970i \(0.656217\pi\)
\(684\) −1.93523e16 −0.00722551
\(685\) 0 0
\(686\) −2.99536e18 −1.09734
\(687\) 2.28377e18i 0.828769i
\(688\) − 2.77957e17i − 0.0999200i
\(689\) −1.92509e18 −0.685530
\(690\) 0 0
\(691\) −3.58472e18 −1.25270 −0.626352 0.779541i \(-0.715453\pi\)
−0.626352 + 0.779541i \(0.715453\pi\)
\(692\) 5.58015e18i 1.93177i
\(693\) 1.03902e17i 0.0356334i
\(694\) 6.94643e18 2.36007
\(695\) 0 0
\(696\) 1.13348e18 0.377967
\(697\) − 3.64386e18i − 1.20379i
\(698\) − 5.13703e17i − 0.168132i
\(699\) 1.83496e17 0.0595010
\(700\) 0 0
\(701\) −5.81898e18 −1.85217 −0.926083 0.377321i \(-0.876845\pi\)
−0.926083 + 0.377321i \(0.876845\pi\)
\(702\) 4.65925e17i 0.146935i
\(703\) 6.63903e15i 0.00207441i
\(704\) −1.51152e18 −0.467943
\(705\) 0 0
\(706\) −9.62786e18 −2.92617
\(707\) − 5.07746e17i − 0.152905i
\(708\) − 1.34212e18i − 0.400476i
\(709\) −6.35434e18 −1.87876 −0.939378 0.342884i \(-0.888596\pi\)
−0.939378 + 0.342884i \(0.888596\pi\)
\(710\) 0 0
\(711\) 2.28258e17 0.0662635
\(712\) 2.72611e18i 0.784193i
\(713\) 6.04235e18i 1.72236i
\(714\) −1.43070e18 −0.404120
\(715\) 0 0
\(716\) −5.74364e17 −0.159313
\(717\) 3.31583e18i 0.911418i
\(718\) − 8.80128e18i − 2.39738i
\(719\) −2.59269e18 −0.699863 −0.349932 0.936775i \(-0.613795\pi\)
−0.349932 + 0.936775i \(0.613795\pi\)
\(720\) 0 0
\(721\) 1.12540e18 0.298351
\(722\) − 6.03197e18i − 1.58477i
\(723\) − 6.64568e17i − 0.173038i
\(724\) 7.10836e18 1.83429
\(725\) 0 0
\(726\) 3.31224e18 0.839525
\(727\) 7.34447e18i 1.84496i 0.386046 + 0.922479i \(0.373840\pi\)
−0.386046 + 0.922479i \(0.626160\pi\)
\(728\) 5.84466e17i 0.145514i
\(729\) −1.50095e17 −0.0370370
\(730\) 0 0
\(731\) 2.17791e18 0.527932
\(732\) 8.02617e17i 0.192835i
\(733\) 4.76931e18i 1.13574i 0.823118 + 0.567871i \(0.192233\pi\)
−0.823118 + 0.567871i \(0.807767\pi\)
\(734\) −1.93453e18 −0.456616
\(735\) 0 0
\(736\) −8.11576e18 −1.88202
\(737\) 1.95378e18i 0.449093i
\(738\) − 2.35075e18i − 0.535599i
\(739\) 2.70323e18 0.610513 0.305256 0.952270i \(-0.401258\pi\)
0.305256 + 0.952270i \(0.401258\pi\)
\(740\) 0 0
\(741\) 1.79593e16 0.00398540
\(742\) − 3.81354e18i − 0.838887i
\(743\) 1.89279e18i 0.412738i 0.978474 + 0.206369i \(0.0661647\pi\)
−0.978474 + 0.206369i \(0.933835\pi\)
\(744\) −2.32087e18 −0.501680
\(745\) 0 0
\(746\) 5.30287e18 1.12644
\(747\) − 2.53693e18i − 0.534225i
\(748\) − 2.47355e18i − 0.516369i
\(749\) −8.91650e17 −0.184528
\(750\) 0 0
\(751\) 7.31039e18 1.48690 0.743448 0.668793i \(-0.233189\pi\)
0.743448 + 0.668793i \(0.233189\pi\)
\(752\) 1.34468e18i 0.271146i
\(753\) 4.06088e18i 0.811807i
\(754\) −3.10420e18 −0.615228
\(755\) 0 0
\(756\) −5.55632e17 −0.108242
\(757\) − 7.31767e18i − 1.41335i −0.707539 0.706675i \(-0.750195\pi\)
0.707539 0.706675i \(-0.249805\pi\)
\(758\) 8.72514e16i 0.0167079i
\(759\) −1.40780e18 −0.267282
\(760\) 0 0
\(761\) 4.77770e18 0.891700 0.445850 0.895108i \(-0.352901\pi\)
0.445850 + 0.895108i \(0.352901\pi\)
\(762\) 3.93305e18i 0.727817i
\(763\) 1.21169e18i 0.222322i
\(764\) 3.03642e18 0.552401
\(765\) 0 0
\(766\) 3.18852e18 0.570299
\(767\) 1.24552e18i 0.220892i
\(768\) − 2.00114e18i − 0.351908i
\(769\) −2.59264e18 −0.452086 −0.226043 0.974117i \(-0.572579\pi\)
−0.226043 + 0.974117i \(0.572579\pi\)
\(770\) 0 0
\(771\) 3.28930e17 0.0563962
\(772\) 1.33685e19i 2.27285i
\(773\) 5.76567e18i 0.972038i 0.873948 + 0.486019i \(0.161551\pi\)
−0.873948 + 0.486019i \(0.838449\pi\)
\(774\) 1.40503e18 0.234892
\(775\) 0 0
\(776\) 9.30964e18 1.53049
\(777\) 1.90616e17i 0.0310758i
\(778\) 1.84145e17i 0.0297710i
\(779\) −9.06109e16 −0.0145274
\(780\) 0 0
\(781\) 2.35415e18 0.371195
\(782\) − 1.93851e19i − 3.03126i
\(783\) − 9.99998e17i − 0.155077i
\(784\) −1.25934e18 −0.193682
\(785\) 0 0
\(786\) −9.55817e18 −1.44587
\(787\) − 1.72894e18i − 0.259385i −0.991554 0.129692i \(-0.958601\pi\)
0.991554 0.129692i \(-0.0413990\pi\)
\(788\) − 6.65941e18i − 0.990867i
\(789\) 5.18545e18 0.765220
\(790\) 0 0
\(791\) 6.35251e17 0.0922143
\(792\) − 5.40737e17i − 0.0778524i
\(793\) − 7.44844e17i − 0.106363i
\(794\) 1.40996e19 1.99698
\(795\) 0 0
\(796\) 5.49615e18 0.765815
\(797\) − 1.06264e19i − 1.46861i −0.678820 0.734305i \(-0.737508\pi\)
0.678820 0.734305i \(-0.262492\pi\)
\(798\) 3.55768e16i 0.00487695i
\(799\) −1.05362e19 −1.43261
\(800\) 0 0
\(801\) 2.40507e18 0.321749
\(802\) − 1.75858e19i − 2.33361i
\(803\) 3.78139e18i 0.497738i
\(804\) −1.04481e19 −1.36419
\(805\) 0 0
\(806\) 6.35604e18 0.816599
\(807\) 9.77031e17i 0.124517i
\(808\) 2.64247e18i 0.334069i
\(809\) 8.95164e18 1.12263 0.561316 0.827602i \(-0.310295\pi\)
0.561316 + 0.827602i \(0.310295\pi\)
\(810\) 0 0
\(811\) 5.95858e18 0.735373 0.367686 0.929950i \(-0.380150\pi\)
0.367686 + 0.929950i \(0.380150\pi\)
\(812\) − 3.70187e18i − 0.453217i
\(813\) 4.37811e18i 0.531739i
\(814\) −5.47439e17 −0.0659595
\(815\) 0 0
\(816\) −1.29954e18 −0.154101
\(817\) − 5.41575e16i − 0.00637111i
\(818\) − 2.20680e19i − 2.57552i
\(819\) 5.15637e17 0.0597034
\(820\) 0 0
\(821\) 2.78763e18 0.317691 0.158846 0.987303i \(-0.449223\pi\)
0.158846 + 0.987303i \(0.449223\pi\)
\(822\) − 9.40426e18i − 1.06331i
\(823\) − 3.20816e18i − 0.359880i −0.983678 0.179940i \(-0.942410\pi\)
0.983678 0.179940i \(-0.0575903\pi\)
\(824\) −5.85692e18 −0.651842
\(825\) 0 0
\(826\) −2.46733e18 −0.270307
\(827\) 1.18081e18i 0.128349i 0.997939 + 0.0641747i \(0.0204415\pi\)
−0.997939 + 0.0641747i \(0.979559\pi\)
\(828\) − 7.52844e18i − 0.811910i
\(829\) −3.64568e18 −0.390099 −0.195049 0.980793i \(-0.562487\pi\)
−0.195049 + 0.980793i \(0.562487\pi\)
\(830\) 0 0
\(831\) −7.97578e18 −0.840169
\(832\) 7.50130e18i 0.784034i
\(833\) − 9.86749e18i − 1.02333i
\(834\) −3.42401e18 −0.352335
\(835\) 0 0
\(836\) −6.15090e16 −0.00623157
\(837\) 2.04756e18i 0.205836i
\(838\) 9.61992e18i 0.959589i
\(839\) 6.16574e18 0.610285 0.305142 0.952307i \(-0.401296\pi\)
0.305142 + 0.952307i \(0.401296\pi\)
\(840\) 0 0
\(841\) −3.59820e18 −0.350680
\(842\) − 2.51680e19i − 2.43400i
\(843\) − 2.06151e18i − 0.197836i
\(844\) −2.27872e19 −2.17003
\(845\) 0 0
\(846\) −6.79715e18 −0.637411
\(847\) − 3.66564e18i − 0.341120i
\(848\) − 3.46393e18i − 0.319887i
\(849\) −3.99047e18 −0.365699
\(850\) 0 0
\(851\) −2.58271e18 −0.233096
\(852\) 1.25892e19i 1.12756i
\(853\) − 8.43377e18i − 0.749640i −0.927098 0.374820i \(-0.877704\pi\)
0.927098 0.374820i \(-0.122296\pi\)
\(854\) 1.47551e18 0.130157
\(855\) 0 0
\(856\) 4.64042e18 0.403161
\(857\) 9.57885e18i 0.825920i 0.910749 + 0.412960i \(0.135505\pi\)
−0.910749 + 0.412960i \(0.864495\pi\)
\(858\) 1.48088e18i 0.126723i
\(859\) −1.27645e19 −1.08404 −0.542022 0.840364i \(-0.682341\pi\)
−0.542022 + 0.840364i \(0.682341\pi\)
\(860\) 0 0
\(861\) −2.60156e18 −0.217627
\(862\) 1.90608e19i 1.58250i
\(863\) 6.90133e18i 0.568673i 0.958725 + 0.284337i \(0.0917733\pi\)
−0.958725 + 0.284337i \(0.908227\pi\)
\(864\) −2.75017e18 −0.224916
\(865\) 0 0
\(866\) −1.12461e19 −0.906013
\(867\) − 2.96204e18i − 0.236846i
\(868\) 7.57980e18i 0.601561i
\(869\) 7.25491e17 0.0571483
\(870\) 0 0
\(871\) 9.69608e18 0.752451
\(872\) − 6.30601e18i − 0.485733i
\(873\) − 8.21330e18i − 0.627950i
\(874\) −4.82043e17 −0.0365815
\(875\) 0 0
\(876\) −2.02216e19 −1.51196
\(877\) 2.53540e19i 1.88169i 0.338835 + 0.940846i \(0.389967\pi\)
−0.338835 + 0.940846i \(0.610033\pi\)
\(878\) 7.74115e18i 0.570284i
\(879\) 7.32600e18 0.535721
\(880\) 0 0
\(881\) 2.27879e18 0.164195 0.0820976 0.996624i \(-0.473838\pi\)
0.0820976 + 0.996624i \(0.473838\pi\)
\(882\) − 6.36576e18i − 0.455307i
\(883\) 1.55074e19i 1.10102i 0.834830 + 0.550508i \(0.185566\pi\)
−0.834830 + 0.550508i \(0.814434\pi\)
\(884\) −1.22756e19 −0.865171
\(885\) 0 0
\(886\) 4.65936e18 0.323599
\(887\) 5.37007e18i 0.370234i 0.982716 + 0.185117i \(0.0592665\pi\)
−0.982716 + 0.185117i \(0.940734\pi\)
\(888\) − 9.92022e17i − 0.0678949i
\(889\) 4.35269e18 0.295730
\(890\) 0 0
\(891\) −4.77057e17 −0.0319422
\(892\) 3.36628e19i 2.23758i
\(893\) 2.62000e17i 0.0172889i
\(894\) −6.13568e18 −0.401947
\(895\) 0 0
\(896\) −8.12892e18 −0.524844
\(897\) 6.98654e18i 0.447828i
\(898\) 1.61016e19i 1.02465i
\(899\) −1.36417e19 −0.861850
\(900\) 0 0
\(901\) 2.71414e19 1.69014
\(902\) − 7.47156e18i − 0.461922i
\(903\) − 1.55494e18i − 0.0954426i
\(904\) −3.30604e18 −0.201472
\(905\) 0 0
\(906\) 9.59823e18 0.576578
\(907\) 2.21370e19i 1.32029i 0.751136 + 0.660147i \(0.229506\pi\)
−0.751136 + 0.660147i \(0.770494\pi\)
\(908\) 1.83279e19i 1.08531i
\(909\) 2.33128e18 0.137066
\(910\) 0 0
\(911\) −5.15063e18 −0.298532 −0.149266 0.988797i \(-0.547691\pi\)
−0.149266 + 0.988797i \(0.547691\pi\)
\(912\) 3.23153e16i 0.00185970i
\(913\) − 8.06331e18i − 0.460737i
\(914\) 3.45895e19 1.96243
\(915\) 0 0
\(916\) −3.88170e19 −2.17121
\(917\) 1.05780e19i 0.587492i
\(918\) − 6.56897e18i − 0.362259i
\(919\) 1.11627e19 0.611247 0.305624 0.952152i \(-0.401135\pi\)
0.305624 + 0.952152i \(0.401135\pi\)
\(920\) 0 0
\(921\) 3.44374e18 0.185927
\(922\) − 1.41721e19i − 0.759770i
\(923\) − 1.16830e19i − 0.621934i
\(924\) −1.76601e18 −0.0933522
\(925\) 0 0
\(926\) 2.90902e19 1.51627
\(927\) 5.16719e18i 0.267446i
\(928\) − 1.83228e19i − 0.941740i
\(929\) −4.48353e18 −0.228833 −0.114416 0.993433i \(-0.536500\pi\)
−0.114416 + 0.993433i \(0.536500\pi\)
\(930\) 0 0
\(931\) −2.45372e17 −0.0123496
\(932\) 3.11886e18i 0.155881i
\(933\) − 2.24081e19i − 1.11218i
\(934\) 1.94936e19 0.960812
\(935\) 0 0
\(936\) −2.68353e18 −0.130441
\(937\) − 1.27997e19i − 0.617864i −0.951084 0.308932i \(-0.900028\pi\)
0.951084 0.308932i \(-0.0999716\pi\)
\(938\) 1.92076e19i 0.920778i
\(939\) 1.27051e19 0.604855
\(940\) 0 0
\(941\) −2.16104e19 −1.01468 −0.507342 0.861745i \(-0.669372\pi\)
−0.507342 + 0.861745i \(0.669372\pi\)
\(942\) 1.00629e19i 0.469239i
\(943\) − 3.52494e19i − 1.63240i
\(944\) −2.24113e18 −0.103074
\(945\) 0 0
\(946\) 4.46570e18 0.202580
\(947\) − 1.44301e19i − 0.650120i −0.945693 0.325060i \(-0.894616\pi\)
0.945693 0.325060i \(-0.105384\pi\)
\(948\) 3.87969e18i 0.173597i
\(949\) 1.87661e19 0.833956
\(950\) 0 0
\(951\) 1.49672e19 0.656098
\(952\) − 8.24025e18i − 0.358757i
\(953\) 2.49670e19i 1.07960i 0.841794 + 0.539799i \(0.181500\pi\)
−0.841794 + 0.539799i \(0.818500\pi\)
\(954\) 1.75096e19 0.751990
\(955\) 0 0
\(956\) −5.63588e19 −2.38773
\(957\) − 3.17837e18i − 0.133745i
\(958\) 2.60385e19i 1.08828i
\(959\) −1.04077e19 −0.432048
\(960\) 0 0
\(961\) 3.51474e18 0.143943
\(962\) 2.71680e18i 0.110514i
\(963\) − 4.09395e18i − 0.165414i
\(964\) 1.12956e19 0.453323
\(965\) 0 0
\(966\) −1.38401e19 −0.548009
\(967\) − 2.66065e19i − 1.04644i −0.852196 0.523222i \(-0.824730\pi\)
0.852196 0.523222i \(-0.175270\pi\)
\(968\) 1.90771e19i 0.745286i
\(969\) −2.53205e17 −0.00982578
\(970\) 0 0
\(971\) 1.94068e19 0.743069 0.371534 0.928419i \(-0.378832\pi\)
0.371534 + 0.928419i \(0.378832\pi\)
\(972\) − 2.55114e18i − 0.0970296i
\(973\) 3.78934e18i 0.143163i
\(974\) 7.74214e19 2.90555
\(975\) 0 0
\(976\) 1.34024e18 0.0496317
\(977\) − 3.01511e19i − 1.10915i −0.832135 0.554573i \(-0.812882\pi\)
0.832135 0.554573i \(-0.187118\pi\)
\(978\) 3.77968e19i 1.38119i
\(979\) 7.64422e18 0.277489
\(980\) 0 0
\(981\) −5.56339e18 −0.199292
\(982\) − 5.07332e19i − 1.80538i
\(983\) 1.32822e19i 0.469540i 0.972051 + 0.234770i \(0.0754338\pi\)
−0.972051 + 0.234770i \(0.924566\pi\)
\(984\) 1.35393e19 0.475476
\(985\) 0 0
\(986\) 4.37654e19 1.51681
\(987\) 7.52237e18i 0.258996i
\(988\) 3.05253e17i 0.0104409i
\(989\) 2.10683e19 0.715904
\(990\) 0 0
\(991\) −2.75507e19 −0.923960 −0.461980 0.886890i \(-0.652861\pi\)
−0.461980 + 0.886890i \(0.652861\pi\)
\(992\) 3.75172e19i 1.24998i
\(993\) 7.87465e18i 0.260652i
\(994\) 2.31437e19 0.761063
\(995\) 0 0
\(996\) 4.31199e19 1.39956
\(997\) 3.62751e19i 1.16974i 0.811127 + 0.584870i \(0.198855\pi\)
−0.811127 + 0.584870i \(0.801145\pi\)
\(998\) 1.80762e19i 0.579106i
\(999\) −8.75198e17 −0.0278568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.14.b.g.49.7 8
5.2 odd 4 75.14.a.h.1.1 yes 4
5.3 odd 4 75.14.a.g.1.4 4
5.4 even 2 inner 75.14.b.g.49.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.14.a.g.1.4 4 5.3 odd 4
75.14.a.h.1.1 yes 4 5.2 odd 4
75.14.b.g.49.2 8 5.4 even 2 inner
75.14.b.g.49.7 8 1.1 even 1 trivial