Properties

Label 75.14.b.e.49.4
Level $75$
Weight $14$
Character 75.49
Analytic conductor $80.423$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,14,Mod(49,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.49"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-12482] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(80.4231967139\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{3121})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1561x^{2} + 608400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.4
Root \(27.4330i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.14.b.e.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+149.299i q^{2} -729.000i q^{3} -14098.2 q^{4} +108839. q^{6} +384225. i q^{7} -881782. i q^{8} -531441. q^{9} +6.10216e6 q^{11} +1.02776e7i q^{12} -1.13332e6i q^{13} -5.73644e7 q^{14} +1.61570e7 q^{16} -2.69912e7i q^{17} -7.93435e7i q^{18} +3.29943e8 q^{19} +2.80100e8 q^{21} +9.11046e8i q^{22} -4.70204e8i q^{23} -6.42819e8 q^{24} +1.69203e8 q^{26} +3.87420e8i q^{27} -5.41687e9i q^{28} +4.24890e9 q^{29} +7.67054e9 q^{31} -4.81134e9i q^{32} -4.44848e9i q^{33} +4.02976e9 q^{34} +7.49234e9 q^{36} -2.83184e10i q^{37} +4.92601e10i q^{38} -8.26190e8 q^{39} -2.11336e10 q^{41} +4.18187e10i q^{42} +6.93928e10i q^{43} -8.60292e10 q^{44} +7.02010e10 q^{46} +1.01233e11i q^{47} -1.17784e10i q^{48} -5.07401e10 q^{49} -1.96766e10 q^{51} +1.59777e10i q^{52} +1.81846e11i q^{53} -5.78414e10 q^{54} +3.38803e11 q^{56} -2.40528e11i q^{57} +6.34357e11i q^{58} -3.10938e11 q^{59} +1.76596e11 q^{61} +1.14520e12i q^{62} -2.04193e11i q^{63} +8.50686e11 q^{64} +6.64152e11 q^{66} +6.25757e10i q^{67} +3.80526e11i q^{68} -3.42779e11 q^{69} +1.13419e12 q^{71} +4.68615e11i q^{72} +1.17191e11i q^{73} +4.22790e12 q^{74} -4.65158e12 q^{76} +2.34461e12i q^{77} -1.23349e11i q^{78} -3.99281e12 q^{79} +2.82430e11 q^{81} -3.15523e12i q^{82} -8.58275e11i q^{83} -3.94890e12 q^{84} -1.03603e13 q^{86} -3.09745e12i q^{87} -5.38077e12i q^{88} +9.67991e11 q^{89} +4.35450e11 q^{91} +6.62901e12i q^{92} -5.59183e12i q^{93} -1.51139e13 q^{94} -3.50747e12 q^{96} +2.50052e12i q^{97} -7.57544e12i q^{98} -3.24294e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12482 q^{4} + 190998 q^{6} - 2125764 q^{9} + 12491776 q^{11} - 110628168 q^{14} + 150297410 q^{16} - 76950688 q^{19} + 723564576 q^{21} - 1713825054 q^{24} + 315428908 q^{26} - 2252949416 q^{29} + 12200208624 q^{31}+ \cdots - 6638641929216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 149.299i 1.64954i 0.565472 + 0.824768i \(0.308694\pi\)
−0.565472 + 0.824768i \(0.691306\pi\)
\(3\) − 729.000i − 0.577350i
\(4\) −14098.2 −1.72097
\(5\) 0 0
\(6\) 108839. 0.952359
\(7\) 384225.i 1.23438i 0.786814 + 0.617190i \(0.211729\pi\)
−0.786814 + 0.617190i \(0.788271\pi\)
\(8\) − 881782.i − 1.18926i
\(9\) −531441. −0.333333
\(10\) 0 0
\(11\) 6.10216e6 1.03856 0.519280 0.854604i \(-0.326200\pi\)
0.519280 + 0.854604i \(0.326200\pi\)
\(12\) 1.02776e7i 0.993600i
\(13\) − 1.13332e6i − 0.0651209i −0.999470 0.0325605i \(-0.989634\pi\)
0.999470 0.0325605i \(-0.0103661\pi\)
\(14\) −5.73644e7 −2.03615
\(15\) 0 0
\(16\) 1.61570e7 0.240757
\(17\) − 2.69912e7i − 0.271209i −0.990763 0.135605i \(-0.956702\pi\)
0.990763 0.135605i \(-0.0432977\pi\)
\(18\) − 7.93435e7i − 0.549845i
\(19\) 3.29943e8 1.60894 0.804471 0.593992i \(-0.202449\pi\)
0.804471 + 0.593992i \(0.202449\pi\)
\(20\) 0 0
\(21\) 2.80100e8 0.712669
\(22\) 9.11046e8i 1.71314i
\(23\) − 4.70204e8i − 0.662301i −0.943578 0.331151i \(-0.892563\pi\)
0.943578 0.331151i \(-0.107437\pi\)
\(24\) −6.42819e8 −0.686619
\(25\) 0 0
\(26\) 1.69203e8 0.107419
\(27\) 3.87420e8i 0.192450i
\(28\) − 5.41687e9i − 2.12433i
\(29\) 4.24890e9 1.32645 0.663224 0.748421i \(-0.269188\pi\)
0.663224 + 0.748421i \(0.269188\pi\)
\(30\) 0 0
\(31\) 7.67054e9 1.55230 0.776149 0.630550i \(-0.217170\pi\)
0.776149 + 0.630550i \(0.217170\pi\)
\(32\) − 4.81134e9i − 0.792121i
\(33\) − 4.44848e9i − 0.599612i
\(34\) 4.02976e9 0.447369
\(35\) 0 0
\(36\) 7.49234e9 0.573655
\(37\) − 2.83184e10i − 1.81450i −0.420590 0.907251i \(-0.638177\pi\)
0.420590 0.907251i \(-0.361823\pi\)
\(38\) 4.92601e10i 2.65401i
\(39\) −8.26190e8 −0.0375976
\(40\) 0 0
\(41\) −2.11336e10 −0.694831 −0.347415 0.937711i \(-0.612941\pi\)
−0.347415 + 0.937711i \(0.612941\pi\)
\(42\) 4.18187e10i 1.17557i
\(43\) 6.93928e10i 1.67405i 0.547162 + 0.837026i \(0.315708\pi\)
−0.547162 + 0.837026i \(0.684292\pi\)
\(44\) −8.60292e10 −1.78732
\(45\) 0 0
\(46\) 7.02010e10 1.09249
\(47\) 1.01233e11i 1.36989i 0.728597 + 0.684943i \(0.240173\pi\)
−0.728597 + 0.684943i \(0.759827\pi\)
\(48\) − 1.17784e10i − 0.139001i
\(49\) −5.07401e10 −0.523693
\(50\) 0 0
\(51\) −1.96766e10 −0.156583
\(52\) 1.59777e10i 0.112071i
\(53\) 1.81846e11i 1.12697i 0.826127 + 0.563484i \(0.190539\pi\)
−0.826127 + 0.563484i \(0.809461\pi\)
\(54\) −5.78414e10 −0.317453
\(55\) 0 0
\(56\) 3.38803e11 1.46800
\(57\) − 2.40528e11i − 0.928923i
\(58\) 6.34357e11i 2.18802i
\(59\) −3.10938e11 −0.959701 −0.479850 0.877350i \(-0.659309\pi\)
−0.479850 + 0.877350i \(0.659309\pi\)
\(60\) 0 0
\(61\) 1.76596e11 0.438870 0.219435 0.975627i \(-0.429579\pi\)
0.219435 + 0.975627i \(0.429579\pi\)
\(62\) 1.14520e12i 2.56057i
\(63\) − 2.04193e11i − 0.411460i
\(64\) 8.50686e11 1.54739
\(65\) 0 0
\(66\) 6.64152e11 0.989082
\(67\) 6.25757e10i 0.0845123i 0.999107 + 0.0422561i \(0.0134546\pi\)
−0.999107 + 0.0422561i \(0.986545\pi\)
\(68\) 3.80526e11i 0.466742i
\(69\) −3.42779e11 −0.382380
\(70\) 0 0
\(71\) 1.13419e12 1.05076 0.525382 0.850867i \(-0.323923\pi\)
0.525382 + 0.850867i \(0.323923\pi\)
\(72\) 4.68615e11i 0.396419i
\(73\) 1.17191e11i 0.0906350i 0.998973 + 0.0453175i \(0.0144299\pi\)
−0.998973 + 0.0453175i \(0.985570\pi\)
\(74\) 4.22790e12 2.99308
\(75\) 0 0
\(76\) −4.65158e12 −2.76893
\(77\) 2.34461e12i 1.28198i
\(78\) − 1.23349e11i − 0.0620185i
\(79\) −3.99281e12 −1.84800 −0.924002 0.382387i \(-0.875102\pi\)
−0.924002 + 0.382387i \(0.875102\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) − 3.15523e12i − 1.14615i
\(83\) − 8.58275e11i − 0.288150i −0.989567 0.144075i \(-0.953979\pi\)
0.989567 0.144075i \(-0.0460207\pi\)
\(84\) −3.94890e12 −1.22648
\(85\) 0 0
\(86\) −1.03603e13 −2.76141
\(87\) − 3.09745e12i − 0.765825i
\(88\) − 5.38077e12i − 1.23512i
\(89\) 9.67991e11 0.206460 0.103230 0.994657i \(-0.467082\pi\)
0.103230 + 0.994657i \(0.467082\pi\)
\(90\) 0 0
\(91\) 4.35450e11 0.0803839
\(92\) 6.62901e12i 1.13980i
\(93\) − 5.59183e12i − 0.896220i
\(94\) −1.51139e13 −2.25967
\(95\) 0 0
\(96\) −3.50747e12 −0.457331
\(97\) 2.50052e12i 0.304799i 0.988319 + 0.152400i \(0.0487000\pi\)
−0.988319 + 0.152400i \(0.951300\pi\)
\(98\) − 7.57544e12i − 0.863850i
\(99\) −3.24294e12 −0.346186
\(100\) 0 0
\(101\) −3.51016e12 −0.329032 −0.164516 0.986374i \(-0.552606\pi\)
−0.164516 + 0.986374i \(0.552606\pi\)
\(102\) − 2.93769e12i − 0.258289i
\(103\) 1.08186e13i 0.892747i 0.894847 + 0.446373i \(0.147285\pi\)
−0.894847 + 0.446373i \(0.852715\pi\)
\(104\) −9.99340e11 −0.0774456
\(105\) 0 0
\(106\) −2.71495e13 −1.85897
\(107\) 1.49010e13i 0.959892i 0.877298 + 0.479946i \(0.159344\pi\)
−0.877298 + 0.479946i \(0.840656\pi\)
\(108\) − 5.46191e12i − 0.331200i
\(109\) 2.01251e13 1.14939 0.574694 0.818369i \(-0.305121\pi\)
0.574694 + 0.818369i \(0.305121\pi\)
\(110\) 0 0
\(111\) −2.06441e13 −1.04760
\(112\) 6.20791e12i 0.297186i
\(113\) − 2.87905e13i − 1.30088i −0.759556 0.650442i \(-0.774583\pi\)
0.759556 0.650442i \(-0.225417\pi\)
\(114\) 3.59106e13 1.53229
\(115\) 0 0
\(116\) −5.99017e13 −2.28277
\(117\) 6.02292e11i 0.0217070i
\(118\) − 4.64227e13i − 1.58306i
\(119\) 1.03707e13 0.334775
\(120\) 0 0
\(121\) 2.71366e12 0.0786051
\(122\) 2.63655e13i 0.723932i
\(123\) 1.54064e13i 0.401161i
\(124\) −1.08140e14 −2.67145
\(125\) 0 0
\(126\) 3.04858e13 0.678718
\(127\) 7.01983e13i 1.48458i 0.670081 + 0.742288i \(0.266259\pi\)
−0.670081 + 0.742288i \(0.733741\pi\)
\(128\) 8.75919e13i 1.76035i
\(129\) 5.05873e13 0.966515
\(130\) 0 0
\(131\) 9.26965e13 1.60251 0.801254 0.598325i \(-0.204167\pi\)
0.801254 + 0.598325i \(0.204167\pi\)
\(132\) 6.27153e13i 1.03191i
\(133\) 1.26772e14i 1.98604i
\(134\) −9.34249e12 −0.139406
\(135\) 0 0
\(136\) −2.38004e13 −0.322538
\(137\) − 4.89202e13i − 0.632127i −0.948738 0.316064i \(-0.897639\pi\)
0.948738 0.316064i \(-0.102361\pi\)
\(138\) − 5.11765e13i − 0.630749i
\(139\) −4.48733e13 −0.527706 −0.263853 0.964563i \(-0.584993\pi\)
−0.263853 + 0.964563i \(0.584993\pi\)
\(140\) 0 0
\(141\) 7.37986e13 0.790904
\(142\) 1.69333e14i 1.73327i
\(143\) − 6.91570e12i − 0.0676319i
\(144\) −8.58647e12 −0.0802525
\(145\) 0 0
\(146\) −1.74965e13 −0.149506
\(147\) 3.69895e13i 0.302354i
\(148\) 3.99237e14i 3.12270i
\(149\) −1.30203e14 −0.974789 −0.487395 0.873182i \(-0.662053\pi\)
−0.487395 + 0.873182i \(0.662053\pi\)
\(150\) 0 0
\(151\) −1.94653e14 −1.33632 −0.668160 0.744018i \(-0.732918\pi\)
−0.668160 + 0.744018i \(0.732918\pi\)
\(152\) − 2.90938e14i − 1.91345i
\(153\) 1.43442e13i 0.0904031i
\(154\) −3.50047e14 −2.11466
\(155\) 0 0
\(156\) 1.16477e13 0.0647041
\(157\) − 7.93587e13i − 0.422909i −0.977388 0.211454i \(-0.932180\pi\)
0.977388 0.211454i \(-0.0678200\pi\)
\(158\) − 5.96123e14i − 3.04835i
\(159\) 1.32566e14 0.650655
\(160\) 0 0
\(161\) 1.80664e14 0.817531
\(162\) 4.21664e13i 0.183282i
\(163\) 1.62086e14i 0.676904i 0.940984 + 0.338452i \(0.109903\pi\)
−0.940984 + 0.338452i \(0.890097\pi\)
\(164\) 2.97945e14 1.19578
\(165\) 0 0
\(166\) 1.28139e14 0.475314
\(167\) 2.62269e14i 0.935600i 0.883834 + 0.467800i \(0.154953\pi\)
−0.883834 + 0.467800i \(0.845047\pi\)
\(168\) − 2.46987e14i − 0.847548i
\(169\) 3.01591e14 0.995759
\(170\) 0 0
\(171\) −1.75345e14 −0.536314
\(172\) − 9.78310e14i − 2.88099i
\(173\) − 7.87595e13i − 0.223359i −0.993744 0.111679i \(-0.964377\pi\)
0.993744 0.111679i \(-0.0356230\pi\)
\(174\) 4.62446e14 1.26325
\(175\) 0 0
\(176\) 9.85923e13 0.250041
\(177\) 2.26674e14i 0.554083i
\(178\) 1.44520e14i 0.340563i
\(179\) 7.53329e14 1.71175 0.855874 0.517184i \(-0.173020\pi\)
0.855874 + 0.517184i \(0.173020\pi\)
\(180\) 0 0
\(181\) −4.79674e14 −1.01399 −0.506997 0.861948i \(-0.669245\pi\)
−0.506997 + 0.861948i \(0.669245\pi\)
\(182\) 6.50122e13i 0.132596i
\(183\) − 1.28738e14i − 0.253382i
\(184\) −4.14618e14 −0.787647
\(185\) 0 0
\(186\) 8.34853e14 1.47835
\(187\) − 1.64705e14i − 0.281667i
\(188\) − 1.42719e15i − 2.35753i
\(189\) −1.48857e14 −0.237556
\(190\) 0 0
\(191\) 4.70960e14 0.701888 0.350944 0.936397i \(-0.385861\pi\)
0.350944 + 0.936397i \(0.385861\pi\)
\(192\) − 6.20150e14i − 0.893385i
\(193\) 1.24350e14i 0.173191i 0.996244 + 0.0865954i \(0.0275987\pi\)
−0.996244 + 0.0865954i \(0.972401\pi\)
\(194\) −3.73324e14 −0.502777
\(195\) 0 0
\(196\) 7.15342e14 0.901258
\(197\) − 4.20205e12i − 0.00512190i −0.999997 0.00256095i \(-0.999185\pi\)
0.999997 0.00256095i \(-0.000815177\pi\)
\(198\) − 4.84167e14i − 0.571047i
\(199\) −1.09925e15 −1.25474 −0.627370 0.778722i \(-0.715868\pi\)
−0.627370 + 0.778722i \(0.715868\pi\)
\(200\) 0 0
\(201\) 4.56177e13 0.0487932
\(202\) − 5.24063e14i − 0.542749i
\(203\) 1.63254e15i 1.63734i
\(204\) 2.77404e14 0.269474
\(205\) 0 0
\(206\) −1.61520e15 −1.47262
\(207\) 2.49886e14i 0.220767i
\(208\) − 1.83110e13i − 0.0156783i
\(209\) 2.01336e15 1.67098
\(210\) 0 0
\(211\) −4.43736e14 −0.346170 −0.173085 0.984907i \(-0.555373\pi\)
−0.173085 + 0.984907i \(0.555373\pi\)
\(212\) − 2.56370e15i − 1.93947i
\(213\) − 8.26822e14i − 0.606659i
\(214\) −2.22471e15 −1.58337
\(215\) 0 0
\(216\) 3.41620e14 0.228873
\(217\) 2.94722e15i 1.91613i
\(218\) 3.00466e15i 1.89595i
\(219\) 8.54323e13 0.0523281
\(220\) 0 0
\(221\) −3.05897e13 −0.0176614
\(222\) − 3.08214e15i − 1.72806i
\(223\) 2.15493e15i 1.17342i 0.809799 + 0.586708i \(0.199576\pi\)
−0.809799 + 0.586708i \(0.800424\pi\)
\(224\) 1.84864e15 0.977777
\(225\) 0 0
\(226\) 4.29838e15 2.14586
\(227\) 3.86902e15i 1.87686i 0.345466 + 0.938431i \(0.387721\pi\)
−0.345466 + 0.938431i \(0.612279\pi\)
\(228\) 3.39100e15i 1.59864i
\(229\) 1.09844e15 0.503324 0.251662 0.967815i \(-0.419023\pi\)
0.251662 + 0.967815i \(0.419023\pi\)
\(230\) 0 0
\(231\) 1.70922e15 0.740149
\(232\) − 3.74661e15i − 1.57749i
\(233\) − 4.34127e15i − 1.77747i −0.458417 0.888737i \(-0.651583\pi\)
0.458417 0.888737i \(-0.348417\pi\)
\(234\) −8.99216e13 −0.0358064
\(235\) 0 0
\(236\) 4.38365e15 1.65161
\(237\) 2.91076e15i 1.06695i
\(238\) 1.54834e15i 0.552224i
\(239\) 1.70803e15 0.592801 0.296400 0.955064i \(-0.404214\pi\)
0.296400 + 0.955064i \(0.404214\pi\)
\(240\) 0 0
\(241\) 2.87167e15 0.944114 0.472057 0.881568i \(-0.343512\pi\)
0.472057 + 0.881568i \(0.343512\pi\)
\(242\) 4.05146e14i 0.129662i
\(243\) − 2.05891e14i − 0.0641500i
\(244\) −2.48967e15 −0.755281
\(245\) 0 0
\(246\) −2.30016e15 −0.661729
\(247\) − 3.73931e14i − 0.104776i
\(248\) − 6.76374e15i − 1.84608i
\(249\) −6.25683e14 −0.166364
\(250\) 0 0
\(251\) −9.41402e14 −0.237627 −0.118813 0.992917i \(-0.537909\pi\)
−0.118813 + 0.992917i \(0.537909\pi\)
\(252\) 2.87875e15i 0.708108i
\(253\) − 2.86926e15i − 0.687839i
\(254\) −1.04805e16 −2.44886
\(255\) 0 0
\(256\) −6.10855e15 −1.35637
\(257\) − 3.31316e15i − 0.717260i −0.933480 0.358630i \(-0.883244\pi\)
0.933480 0.358630i \(-0.116756\pi\)
\(258\) 7.55263e15i 1.59430i
\(259\) 1.08806e16 2.23978
\(260\) 0 0
\(261\) −2.25804e15 −0.442149
\(262\) 1.38395e16i 2.64339i
\(263\) 3.12580e15i 0.582437i 0.956657 + 0.291219i \(0.0940607\pi\)
−0.956657 + 0.291219i \(0.905939\pi\)
\(264\) −3.92258e15 −0.713094
\(265\) 0 0
\(266\) −1.89270e16 −3.27605
\(267\) − 7.05666e14i − 0.119200i
\(268\) − 8.82202e14i − 0.145443i
\(269\) −2.51897e15 −0.405352 −0.202676 0.979246i \(-0.564964\pi\)
−0.202676 + 0.979246i \(0.564964\pi\)
\(270\) 0 0
\(271\) −9.26522e14 −0.142087 −0.0710436 0.997473i \(-0.522633\pi\)
−0.0710436 + 0.997473i \(0.522633\pi\)
\(272\) − 4.36096e14i − 0.0652957i
\(273\) − 3.17443e14i − 0.0464097i
\(274\) 7.30373e15 1.04272
\(275\) 0 0
\(276\) 4.83255e15 0.658063
\(277\) − 4.03418e14i − 0.0536583i −0.999640 0.0268292i \(-0.991459\pi\)
0.999640 0.0268292i \(-0.00854101\pi\)
\(278\) − 6.69953e15i − 0.870469i
\(279\) −4.07644e15 −0.517433
\(280\) 0 0
\(281\) −8.56272e15 −1.03758 −0.518789 0.854903i \(-0.673617\pi\)
−0.518789 + 0.854903i \(0.673617\pi\)
\(282\) 1.10180e16i 1.30462i
\(283\) 3.74874e15i 0.433784i 0.976196 + 0.216892i \(0.0695919\pi\)
−0.976196 + 0.216892i \(0.930408\pi\)
\(284\) −1.59899e16 −1.80833
\(285\) 0 0
\(286\) 1.03251e15 0.111561
\(287\) − 8.12008e15i − 0.857685i
\(288\) 2.55694e15i 0.264040i
\(289\) 9.17605e15 0.926445
\(290\) 0 0
\(291\) 1.82288e15 0.175976
\(292\) − 1.65218e15i − 0.155980i
\(293\) − 2.47408e15i − 0.228441i −0.993455 0.114221i \(-0.963563\pi\)
0.993455 0.114221i \(-0.0364371\pi\)
\(294\) −5.52250e15 −0.498744
\(295\) 0 0
\(296\) −2.49706e16 −2.15791
\(297\) 2.36410e15i 0.199871i
\(298\) − 1.94392e16i − 1.60795i
\(299\) −5.32892e14 −0.0431297
\(300\) 0 0
\(301\) −2.66625e16 −2.06642
\(302\) − 2.90614e16i − 2.20431i
\(303\) 2.55891e15i 0.189967i
\(304\) 5.33087e15 0.387365
\(305\) 0 0
\(306\) −2.14158e15 −0.149123
\(307\) 3.12228e15i 0.212849i 0.994321 + 0.106425i \(0.0339403\pi\)
−0.994321 + 0.106425i \(0.966060\pi\)
\(308\) − 3.30546e16i − 2.20624i
\(309\) 7.88675e15 0.515428
\(310\) 0 0
\(311\) 8.71900e15 0.546417 0.273209 0.961955i \(-0.411915\pi\)
0.273209 + 0.961955i \(0.411915\pi\)
\(312\) 7.28519e14i 0.0447132i
\(313\) − 1.94308e16i − 1.16803i −0.811744 0.584013i \(-0.801482\pi\)
0.811744 0.584013i \(-0.198518\pi\)
\(314\) 1.18482e16 0.697603
\(315\) 0 0
\(316\) 5.62913e16 3.18035
\(317\) 2.73728e16i 1.51508i 0.652791 + 0.757538i \(0.273598\pi\)
−0.652791 + 0.757538i \(0.726402\pi\)
\(318\) 1.97920e16i 1.07328i
\(319\) 2.59275e16 1.37759
\(320\) 0 0
\(321\) 1.08629e16 0.554194
\(322\) 2.69730e16i 1.34855i
\(323\) − 8.90556e15i − 0.436360i
\(324\) −3.98173e15 −0.191218
\(325\) 0 0
\(326\) −2.41993e16 −1.11658
\(327\) − 1.46712e16i − 0.663599i
\(328\) 1.86352e16i 0.826333i
\(329\) −3.88961e16 −1.69096
\(330\) 0 0
\(331\) 1.48805e16 0.621923 0.310961 0.950423i \(-0.399349\pi\)
0.310961 + 0.950423i \(0.399349\pi\)
\(332\) 1.21001e16i 0.495897i
\(333\) 1.50496e16i 0.604834i
\(334\) −3.91565e16 −1.54330
\(335\) 0 0
\(336\) 4.52557e15 0.171580
\(337\) − 9.51124e15i − 0.353706i −0.984237 0.176853i \(-0.943408\pi\)
0.984237 0.176853i \(-0.0565917\pi\)
\(338\) 4.50271e16i 1.64254i
\(339\) −2.09883e16 −0.751066
\(340\) 0 0
\(341\) 4.68069e16 1.61215
\(342\) − 2.61788e16i − 0.884668i
\(343\) 1.77316e16i 0.587943i
\(344\) 6.11893e16 1.99088
\(345\) 0 0
\(346\) 1.17587e16 0.368438
\(347\) 2.02295e16i 0.622076i 0.950398 + 0.311038i \(0.100677\pi\)
−0.950398 + 0.311038i \(0.899323\pi\)
\(348\) 4.36683e16i 1.31796i
\(349\) −8.80222e15 −0.260751 −0.130376 0.991465i \(-0.541618\pi\)
−0.130376 + 0.991465i \(0.541618\pi\)
\(350\) 0 0
\(351\) 4.39071e14 0.0125325
\(352\) − 2.93596e16i − 0.822664i
\(353\) − 1.67276e16i − 0.460148i −0.973173 0.230074i \(-0.926103\pi\)
0.973173 0.230074i \(-0.0738968\pi\)
\(354\) −3.38421e16 −0.913980
\(355\) 0 0
\(356\) −1.36469e16 −0.355311
\(357\) − 7.56025e15i − 0.193283i
\(358\) 1.12471e17i 2.82359i
\(359\) 7.94820e16 1.95954 0.979772 0.200119i \(-0.0641328\pi\)
0.979772 + 0.200119i \(0.0641328\pi\)
\(360\) 0 0
\(361\) 6.68093e16 1.58869
\(362\) − 7.16148e16i − 1.67262i
\(363\) − 1.97826e15i − 0.0453827i
\(364\) −6.13904e15 −0.138338
\(365\) 0 0
\(366\) 1.92205e16 0.417962
\(367\) − 6.97003e16i − 1.48904i −0.667602 0.744518i \(-0.732679\pi\)
0.667602 0.744518i \(-0.267321\pi\)
\(368\) − 7.59707e15i − 0.159454i
\(369\) 1.12313e16 0.231610
\(370\) 0 0
\(371\) −6.98700e16 −1.39111
\(372\) 7.88344e16i 1.54236i
\(373\) − 2.07893e16i − 0.399698i −0.979827 0.199849i \(-0.935955\pi\)
0.979827 0.199849i \(-0.0640452\pi\)
\(374\) 2.45902e16 0.464619
\(375\) 0 0
\(376\) 8.92650e16 1.62915
\(377\) − 4.81537e15i − 0.0863795i
\(378\) − 2.22241e16i − 0.391858i
\(379\) −7.77269e16 −1.34715 −0.673576 0.739118i \(-0.735243\pi\)
−0.673576 + 0.739118i \(0.735243\pi\)
\(380\) 0 0
\(381\) 5.11746e16 0.857120
\(382\) 7.03139e16i 1.15779i
\(383\) − 6.62740e16i − 1.07288i −0.843938 0.536440i \(-0.819769\pi\)
0.843938 0.536440i \(-0.180231\pi\)
\(384\) 6.38545e16 1.01634
\(385\) 0 0
\(386\) −1.85654e16 −0.285684
\(387\) − 3.68782e16i − 0.558018i
\(388\) − 3.52527e16i − 0.524549i
\(389\) 3.03230e15 0.0443711 0.0221855 0.999754i \(-0.492938\pi\)
0.0221855 + 0.999754i \(0.492938\pi\)
\(390\) 0 0
\(391\) −1.26914e16 −0.179622
\(392\) 4.47417e16i 0.622806i
\(393\) − 6.75758e16i − 0.925208i
\(394\) 6.27362e14 0.00844876
\(395\) 0 0
\(396\) 4.57194e16 0.595775
\(397\) 3.47691e16i 0.445712i 0.974851 + 0.222856i \(0.0715380\pi\)
−0.974851 + 0.222856i \(0.928462\pi\)
\(398\) − 1.64118e17i − 2.06974i
\(399\) 9.24171e16 1.14664
\(400\) 0 0
\(401\) 4.47291e16 0.537220 0.268610 0.963249i \(-0.413436\pi\)
0.268610 + 0.963249i \(0.413436\pi\)
\(402\) 6.81067e15i 0.0804861i
\(403\) − 8.69317e15i − 0.101087i
\(404\) 4.94867e16 0.566252
\(405\) 0 0
\(406\) −2.43736e17 −2.70085
\(407\) − 1.72803e17i − 1.88447i
\(408\) 1.73505e16i 0.186217i
\(409\) −4.58740e16 −0.484579 −0.242290 0.970204i \(-0.577898\pi\)
−0.242290 + 0.970204i \(0.577898\pi\)
\(410\) 0 0
\(411\) −3.56628e16 −0.364959
\(412\) − 1.52522e17i − 1.53639i
\(413\) − 1.19470e17i − 1.18463i
\(414\) −3.73077e16 −0.364163
\(415\) 0 0
\(416\) −5.45279e15 −0.0515836
\(417\) 3.27126e16i 0.304671i
\(418\) 3.00593e17i 2.75634i
\(419\) −7.04588e16 −0.636128 −0.318064 0.948069i \(-0.603033\pi\)
−0.318064 + 0.948069i \(0.603033\pi\)
\(420\) 0 0
\(421\) −2.11625e16 −0.185239 −0.0926196 0.995702i \(-0.529524\pi\)
−0.0926196 + 0.995702i \(0.529524\pi\)
\(422\) − 6.62493e16i − 0.571019i
\(423\) − 5.37991e16i − 0.456628i
\(424\) 1.60349e17 1.34026
\(425\) 0 0
\(426\) 1.23444e17 1.00070
\(427\) 6.78526e16i 0.541733i
\(428\) − 2.10077e17i − 1.65194i
\(429\) −5.04154e15 −0.0390473
\(430\) 0 0
\(431\) 4.09241e16 0.307523 0.153761 0.988108i \(-0.450861\pi\)
0.153761 + 0.988108i \(0.450861\pi\)
\(432\) 6.25954e15i 0.0463338i
\(433\) − 8.57212e16i − 0.625053i −0.949909 0.312527i \(-0.898825\pi\)
0.949909 0.312527i \(-0.101175\pi\)
\(434\) −4.40016e17 −3.16072
\(435\) 0 0
\(436\) −2.83727e17 −1.97806
\(437\) − 1.55141e17i − 1.06560i
\(438\) 1.27549e16i 0.0863171i
\(439\) −3.70635e16 −0.247131 −0.123565 0.992336i \(-0.539433\pi\)
−0.123565 + 0.992336i \(0.539433\pi\)
\(440\) 0 0
\(441\) 2.69654e16 0.174564
\(442\) − 4.56700e15i − 0.0291331i
\(443\) 1.55015e16i 0.0974431i 0.998812 + 0.0487215i \(0.0155147\pi\)
−0.998812 + 0.0487215i \(0.984485\pi\)
\(444\) 2.91044e17 1.80289
\(445\) 0 0
\(446\) −3.21729e17 −1.93559
\(447\) 9.49181e16i 0.562795i
\(448\) 3.26855e17i 1.91006i
\(449\) 2.75973e17 1.58952 0.794759 0.606925i \(-0.207597\pi\)
0.794759 + 0.606925i \(0.207597\pi\)
\(450\) 0 0
\(451\) −1.28961e17 −0.721623
\(452\) 4.05892e17i 2.23878i
\(453\) 1.41902e17i 0.771524i
\(454\) −5.77640e17 −3.09595
\(455\) 0 0
\(456\) −2.12093e17 −1.10473
\(457\) 2.05141e17i 1.05341i 0.850049 + 0.526703i \(0.176572\pi\)
−0.850049 + 0.526703i \(0.823428\pi\)
\(458\) 1.63997e17i 0.830250i
\(459\) 1.04570e16 0.0521943
\(460\) 0 0
\(461\) 2.29523e17 1.11370 0.556852 0.830612i \(-0.312009\pi\)
0.556852 + 0.830612i \(0.312009\pi\)
\(462\) 2.55184e17i 1.22090i
\(463\) − 1.90465e17i − 0.898544i −0.893395 0.449272i \(-0.851683\pi\)
0.893395 0.449272i \(-0.148317\pi\)
\(464\) 6.86493e16 0.319352
\(465\) 0 0
\(466\) 6.48147e17 2.93201
\(467\) − 1.67739e17i − 0.748297i −0.927369 0.374148i \(-0.877935\pi\)
0.927369 0.374148i \(-0.122065\pi\)
\(468\) − 8.49121e15i − 0.0373570i
\(469\) −2.40432e16 −0.104320
\(470\) 0 0
\(471\) −5.78525e16 −0.244166
\(472\) 2.74179e17i 1.14133i
\(473\) 4.23446e17i 1.73860i
\(474\) −4.34573e17 −1.75996
\(475\) 0 0
\(476\) −1.46208e17 −0.576137
\(477\) − 9.66406e16i − 0.375656i
\(478\) 2.55007e17i 0.977845i
\(479\) 3.71727e17 1.40619 0.703095 0.711096i \(-0.251801\pi\)
0.703095 + 0.711096i \(0.251801\pi\)
\(480\) 0 0
\(481\) −3.20938e16 −0.118162
\(482\) 4.28738e17i 1.55735i
\(483\) − 1.31704e17i − 0.472002i
\(484\) −3.82576e16 −0.135277
\(485\) 0 0
\(486\) 3.07393e16 0.105818
\(487\) 4.87760e16i 0.165679i 0.996563 + 0.0828397i \(0.0263989\pi\)
−0.996563 + 0.0828397i \(0.973601\pi\)
\(488\) − 1.55719e17i − 0.521930i
\(489\) 1.18161e17 0.390810
\(490\) 0 0
\(491\) −6.19444e16 −0.199513 −0.0997567 0.995012i \(-0.531806\pi\)
−0.0997567 + 0.995012i \(0.531806\pi\)
\(492\) − 2.17202e17i − 0.690384i
\(493\) − 1.14683e17i − 0.359745i
\(494\) 5.58274e16 0.172831
\(495\) 0 0
\(496\) 1.23933e17 0.373727
\(497\) 4.35783e17i 1.29704i
\(498\) − 9.34137e16i − 0.274423i
\(499\) 2.79726e17 0.811108 0.405554 0.914071i \(-0.367079\pi\)
0.405554 + 0.914071i \(0.367079\pi\)
\(500\) 0 0
\(501\) 1.91194e17 0.540169
\(502\) − 1.40550e17i − 0.391974i
\(503\) − 3.38759e17i − 0.932609i −0.884624 0.466304i \(-0.845585\pi\)
0.884624 0.466304i \(-0.154415\pi\)
\(504\) −1.80054e17 −0.489332
\(505\) 0 0
\(506\) 4.28378e17 1.13461
\(507\) − 2.19860e17i − 0.574902i
\(508\) − 9.89666e17i − 2.55490i
\(509\) 3.81496e17 0.972354 0.486177 0.873860i \(-0.338391\pi\)
0.486177 + 0.873860i \(0.338391\pi\)
\(510\) 0 0
\(511\) −4.50278e16 −0.111878
\(512\) − 1.94447e17i − 0.477032i
\(513\) 1.27827e17i 0.309641i
\(514\) 4.94651e17 1.18315
\(515\) 0 0
\(516\) −7.13188e17 −1.66334
\(517\) 6.17738e17i 1.42271i
\(518\) 1.62447e18i 3.69460i
\(519\) −5.74157e16 −0.128956
\(520\) 0 0
\(521\) −3.97604e17 −0.870975 −0.435487 0.900195i \(-0.643424\pi\)
−0.435487 + 0.900195i \(0.643424\pi\)
\(522\) − 3.37123e17i − 0.729340i
\(523\) − 6.78177e16i − 0.144905i −0.997372 0.0724523i \(-0.976918\pi\)
0.997372 0.0724523i \(-0.0230825\pi\)
\(524\) −1.30685e18 −2.75786
\(525\) 0 0
\(526\) −4.66679e17 −0.960750
\(527\) − 2.07037e17i − 0.420998i
\(528\) − 7.18738e16i − 0.144361i
\(529\) 2.82944e17 0.561357
\(530\) 0 0
\(531\) 1.65245e17 0.319900
\(532\) − 1.78726e18i − 3.41792i
\(533\) 2.39511e16i 0.0452480i
\(534\) 1.05355e17 0.196624
\(535\) 0 0
\(536\) 5.51781e16 0.100507
\(537\) − 5.49177e17i − 0.988278i
\(538\) − 3.76079e17i − 0.668643i
\(539\) −3.09624e17 −0.543886
\(540\) 0 0
\(541\) −9.53886e17 −1.63574 −0.817870 0.575403i \(-0.804845\pi\)
−0.817870 + 0.575403i \(0.804845\pi\)
\(542\) − 1.38329e17i − 0.234378i
\(543\) 3.49683e17i 0.585430i
\(544\) −1.29864e17 −0.214830
\(545\) 0 0
\(546\) 4.73939e16 0.0765544
\(547\) 5.54825e17i 0.885601i 0.896620 + 0.442800i \(0.146015\pi\)
−0.896620 + 0.442800i \(0.853985\pi\)
\(548\) 6.89684e17i 1.08787i
\(549\) −9.38502e16 −0.146290
\(550\) 0 0
\(551\) 1.40190e18 2.13418
\(552\) 3.02256e17i 0.454748i
\(553\) − 1.53414e18i − 2.28114i
\(554\) 6.02299e16 0.0885113
\(555\) 0 0
\(556\) 6.32630e17 0.908163
\(557\) 8.83747e17i 1.25392i 0.779052 + 0.626959i \(0.215701\pi\)
−0.779052 + 0.626959i \(0.784299\pi\)
\(558\) − 6.08608e17i − 0.853523i
\(559\) 7.86442e16 0.109016
\(560\) 0 0
\(561\) −1.20070e17 −0.162620
\(562\) − 1.27840e18i − 1.71152i
\(563\) − 1.34034e18i − 1.77383i −0.461937 0.886913i \(-0.652846\pi\)
0.461937 0.886913i \(-0.347154\pi\)
\(564\) −1.04042e18 −1.36112
\(565\) 0 0
\(566\) −5.59682e17 −0.715541
\(567\) 1.08517e17i 0.137153i
\(568\) − 1.00010e18i − 1.24963i
\(569\) 2.62408e16 0.0324151 0.0162075 0.999869i \(-0.494841\pi\)
0.0162075 + 0.999869i \(0.494841\pi\)
\(570\) 0 0
\(571\) 6.67128e17 0.805517 0.402758 0.915306i \(-0.368051\pi\)
0.402758 + 0.915306i \(0.368051\pi\)
\(572\) 9.74986e16i 0.116392i
\(573\) − 3.43330e17i − 0.405235i
\(574\) 1.21232e18 1.41478
\(575\) 0 0
\(576\) −4.52089e17 −0.515796
\(577\) − 1.37034e17i − 0.154591i −0.997008 0.0772955i \(-0.975372\pi\)
0.997008 0.0772955i \(-0.0246285\pi\)
\(578\) 1.36997e18i 1.52820i
\(579\) 9.06515e16 0.0999918
\(580\) 0 0
\(581\) 3.29771e17 0.355687
\(582\) 2.72153e17i 0.290278i
\(583\) 1.10966e18i 1.17042i
\(584\) 1.03337e17 0.107788
\(585\) 0 0
\(586\) 3.69378e17 0.376822
\(587\) 1.19496e17i 0.120561i 0.998181 + 0.0602805i \(0.0191995\pi\)
−0.998181 + 0.0602805i \(0.980800\pi\)
\(588\) − 5.21484e17i − 0.520342i
\(589\) 2.53084e18 2.49756
\(590\) 0 0
\(591\) −3.06330e15 −0.00295713
\(592\) − 4.57539e17i − 0.436855i
\(593\) 1.87526e18i 1.77095i 0.464687 + 0.885475i \(0.346167\pi\)
−0.464687 + 0.885475i \(0.653833\pi\)
\(594\) −3.52958e17 −0.329694
\(595\) 0 0
\(596\) 1.83562e18 1.67758
\(597\) 8.01357e17i 0.724424i
\(598\) − 7.95601e16i − 0.0711439i
\(599\) 5.19643e17 0.459654 0.229827 0.973231i \(-0.426184\pi\)
0.229827 + 0.973231i \(0.426184\pi\)
\(600\) 0 0
\(601\) 5.26704e17 0.455913 0.227957 0.973671i \(-0.426796\pi\)
0.227957 + 0.973671i \(0.426796\pi\)
\(602\) − 3.98067e18i − 3.40863i
\(603\) − 3.32553e16i − 0.0281708i
\(604\) 2.74424e18 2.29976
\(605\) 0 0
\(606\) −3.82042e17 −0.313356
\(607\) 1.87571e18i 1.52209i 0.648701 + 0.761043i \(0.275312\pi\)
−0.648701 + 0.761043i \(0.724688\pi\)
\(608\) − 1.58747e18i − 1.27448i
\(609\) 1.19012e18 0.945318
\(610\) 0 0
\(611\) 1.14729e17 0.0892082
\(612\) − 2.02227e17i − 0.155581i
\(613\) 4.47233e17i 0.340440i 0.985406 + 0.170220i \(0.0544479\pi\)
−0.985406 + 0.170220i \(0.945552\pi\)
\(614\) −4.66152e17 −0.351102
\(615\) 0 0
\(616\) 2.06743e18 1.52460
\(617\) − 8.44420e17i − 0.616176i −0.951358 0.308088i \(-0.900311\pi\)
0.951358 0.308088i \(-0.0996892\pi\)
\(618\) 1.17748e18i 0.850216i
\(619\) −2.36925e18 −1.69286 −0.846430 0.532500i \(-0.821253\pi\)
−0.846430 + 0.532500i \(0.821253\pi\)
\(620\) 0 0
\(621\) 1.82167e17 0.127460
\(622\) 1.30174e18i 0.901334i
\(623\) 3.71927e17i 0.254850i
\(624\) −1.33487e16 −0.00905190
\(625\) 0 0
\(626\) 2.90100e18 1.92670
\(627\) − 1.46774e18i − 0.964741i
\(628\) 1.11881e18i 0.727811i
\(629\) −7.64348e17 −0.492110
\(630\) 0 0
\(631\) −2.91193e18 −1.83649 −0.918247 0.396009i \(-0.870395\pi\)
−0.918247 + 0.396009i \(0.870395\pi\)
\(632\) 3.52079e18i 2.19775i
\(633\) 3.23484e17i 0.199861i
\(634\) −4.08673e18 −2.49917
\(635\) 0 0
\(636\) −1.86894e18 −1.11976
\(637\) 5.75048e16i 0.0341034i
\(638\) 3.87095e18i 2.27239i
\(639\) −6.02753e17 −0.350255
\(640\) 0 0
\(641\) −3.49512e17 −0.199014 −0.0995072 0.995037i \(-0.531727\pi\)
−0.0995072 + 0.995037i \(0.531727\pi\)
\(642\) 1.62181e18i 0.914162i
\(643\) 3.11686e18i 1.73919i 0.493769 + 0.869593i \(0.335619\pi\)
−0.493769 + 0.869593i \(0.664381\pi\)
\(644\) −2.54703e18 −1.40694
\(645\) 0 0
\(646\) 1.32959e18 0.719791
\(647\) 1.99766e18i 1.07064i 0.844649 + 0.535321i \(0.179809\pi\)
−0.844649 + 0.535321i \(0.820191\pi\)
\(648\) − 2.49041e17i − 0.132140i
\(649\) −1.89739e18 −0.996706
\(650\) 0 0
\(651\) 2.14852e18 1.10628
\(652\) − 2.28512e18i − 1.16493i
\(653\) 1.08626e18i 0.548276i 0.961690 + 0.274138i \(0.0883925\pi\)
−0.961690 + 0.274138i \(0.911607\pi\)
\(654\) 2.19040e18 1.09463
\(655\) 0 0
\(656\) −3.41455e17 −0.167286
\(657\) − 6.22801e16i − 0.0302117i
\(658\) − 5.80715e18i − 2.78930i
\(659\) 1.64776e17 0.0783678 0.0391839 0.999232i \(-0.487524\pi\)
0.0391839 + 0.999232i \(0.487524\pi\)
\(660\) 0 0
\(661\) −4.20993e18 −1.96320 −0.981601 0.190942i \(-0.938846\pi\)
−0.981601 + 0.190942i \(0.938846\pi\)
\(662\) 2.22165e18i 1.02588i
\(663\) 2.22999e16i 0.0101968i
\(664\) −7.56811e17 −0.342685
\(665\) 0 0
\(666\) −2.24688e18 −0.997695
\(667\) − 1.99785e18i − 0.878508i
\(668\) − 3.69751e18i − 1.61013i
\(669\) 1.57094e18 0.677472
\(670\) 0 0
\(671\) 1.07762e18 0.455793
\(672\) − 1.34766e18i − 0.564520i
\(673\) 2.30935e18i 0.958057i 0.877799 + 0.479029i \(0.159011\pi\)
−0.877799 + 0.479029i \(0.840989\pi\)
\(674\) 1.42002e18 0.583451
\(675\) 0 0
\(676\) −4.25187e18 −1.71367
\(677\) − 4.16216e18i − 1.66147i −0.556667 0.830736i \(-0.687920\pi\)
0.556667 0.830736i \(-0.312080\pi\)
\(678\) − 3.13352e18i − 1.23891i
\(679\) −9.60762e17 −0.376238
\(680\) 0 0
\(681\) 2.82051e18 1.08361
\(682\) 6.98822e18i 2.65930i
\(683\) 5.67684e17i 0.213979i 0.994260 + 0.106990i \(0.0341212\pi\)
−0.994260 + 0.106990i \(0.965879\pi\)
\(684\) 2.47204e18 0.922978
\(685\) 0 0
\(686\) −2.64730e18 −0.969833
\(687\) − 8.00766e17i − 0.290594i
\(688\) 1.12118e18i 0.403041i
\(689\) 2.06090e17 0.0733892
\(690\) 0 0
\(691\) 1.60571e18 0.561126 0.280563 0.959836i \(-0.409479\pi\)
0.280563 + 0.959836i \(0.409479\pi\)
\(692\) 1.11036e18i 0.384393i
\(693\) − 1.24602e18i − 0.427325i
\(694\) −3.02024e18 −1.02614
\(695\) 0 0
\(696\) −2.73128e18 −0.910763
\(697\) 5.70423e17i 0.188445i
\(698\) − 1.31416e18i − 0.430119i
\(699\) −3.16479e18 −1.02623
\(700\) 0 0
\(701\) −2.88624e18 −0.918681 −0.459341 0.888260i \(-0.651914\pi\)
−0.459341 + 0.888260i \(0.651914\pi\)
\(702\) 6.55528e16i 0.0206728i
\(703\) − 9.34345e18i − 2.91943i
\(704\) 5.19102e18 1.60705
\(705\) 0 0
\(706\) 2.49741e18 0.759030
\(707\) − 1.34869e18i − 0.406150i
\(708\) − 3.19568e18i − 0.953558i
\(709\) −3.41704e18 −1.01030 −0.505150 0.863032i \(-0.668563\pi\)
−0.505150 + 0.863032i \(0.668563\pi\)
\(710\) 0 0
\(711\) 2.12195e18 0.616002
\(712\) − 8.53557e17i − 0.245535i
\(713\) − 3.60672e18i − 1.02809i
\(714\) 1.12874e18 0.318826
\(715\) 0 0
\(716\) −1.06205e19 −2.94586
\(717\) − 1.24515e18i − 0.342254i
\(718\) 1.18666e19i 3.23234i
\(719\) 4.01107e18 1.08274 0.541368 0.840786i \(-0.317907\pi\)
0.541368 + 0.840786i \(0.317907\pi\)
\(720\) 0 0
\(721\) −4.15677e18 −1.10199
\(722\) 9.97455e18i 2.62060i
\(723\) − 2.09345e18i − 0.545084i
\(724\) 6.76252e18 1.74505
\(725\) 0 0
\(726\) 2.95352e17 0.0748603
\(727\) − 2.32433e18i − 0.583881i −0.956436 0.291941i \(-0.905699\pi\)
0.956436 0.291941i \(-0.0943010\pi\)
\(728\) − 3.83972e17i − 0.0955973i
\(729\) −1.50095e17 −0.0370370
\(730\) 0 0
\(731\) 1.87300e18 0.454019
\(732\) 1.81497e18i 0.436062i
\(733\) 2.96621e17i 0.0706359i 0.999376 + 0.0353180i \(0.0112444\pi\)
−0.999376 + 0.0353180i \(0.988756\pi\)
\(734\) 1.04062e19 2.45622
\(735\) 0 0
\(736\) −2.26231e18 −0.524622
\(737\) 3.81847e17i 0.0877710i
\(738\) 1.67682e18i 0.382049i
\(739\) −8.38574e18 −1.89388 −0.946940 0.321410i \(-0.895843\pi\)
−0.946940 + 0.321410i \(0.895843\pi\)
\(740\) 0 0
\(741\) −2.72595e17 −0.0604923
\(742\) − 1.04315e19i − 2.29468i
\(743\) − 1.06547e18i − 0.232335i −0.993230 0.116168i \(-0.962939\pi\)
0.993230 0.116168i \(-0.0370610\pi\)
\(744\) −4.93077e18 −1.06584
\(745\) 0 0
\(746\) 3.10382e18 0.659316
\(747\) 4.56123e17i 0.0960501i
\(748\) 2.32203e18i 0.484739i
\(749\) −5.72536e18 −1.18487
\(750\) 0 0
\(751\) −9.57457e18 −1.94742 −0.973710 0.227792i \(-0.926849\pi\)
−0.973710 + 0.227792i \(0.926849\pi\)
\(752\) 1.63561e18i 0.329810i
\(753\) 6.86282e17i 0.137194i
\(754\) 7.18929e17 0.142486
\(755\) 0 0
\(756\) 2.09861e18 0.408827
\(757\) 4.59607e18i 0.887695i 0.896102 + 0.443847i \(0.146387\pi\)
−0.896102 + 0.443847i \(0.853613\pi\)
\(758\) − 1.16045e19i − 2.22217i
\(759\) −2.09169e18 −0.397124
\(760\) 0 0
\(761\) 3.11769e18 0.581879 0.290940 0.956741i \(-0.406032\pi\)
0.290940 + 0.956741i \(0.406032\pi\)
\(762\) 7.64030e18i 1.41385i
\(763\) 7.73258e18i 1.41878i
\(764\) −6.63967e18 −1.20792
\(765\) 0 0
\(766\) 9.89464e18 1.76975
\(767\) 3.52392e17i 0.0624966i
\(768\) 4.45313e18i 0.783101i
\(769\) −4.30427e18 −0.750547 −0.375274 0.926914i \(-0.622451\pi\)
−0.375274 + 0.926914i \(0.622451\pi\)
\(770\) 0 0
\(771\) −2.41529e18 −0.414110
\(772\) − 1.75311e18i − 0.298056i
\(773\) 6.51519e18i 1.09840i 0.835691 + 0.549200i \(0.185067\pi\)
−0.835691 + 0.549200i \(0.814933\pi\)
\(774\) 5.50587e18 0.920470
\(775\) 0 0
\(776\) 2.20491e18 0.362485
\(777\) − 7.93199e18i − 1.29314i
\(778\) 4.52719e17i 0.0731916i
\(779\) −6.97289e18 −1.11794
\(780\) 0 0
\(781\) 6.92099e18 1.09128
\(782\) − 1.89481e18i − 0.296293i
\(783\) 1.64611e18i 0.255275i
\(784\) −8.19806e17 −0.126083
\(785\) 0 0
\(786\) 1.00890e19 1.52616
\(787\) − 7.49401e18i − 1.12429i −0.827039 0.562145i \(-0.809976\pi\)
0.827039 0.562145i \(-0.190024\pi\)
\(788\) 5.92412e16i 0.00881462i
\(789\) 2.27871e18 0.336270
\(790\) 0 0
\(791\) 1.10620e19 1.60579
\(792\) 2.85956e18i 0.411705i
\(793\) − 2.00139e17i − 0.0285796i
\(794\) −5.19098e18 −0.735218
\(795\) 0 0
\(796\) 1.54975e19 2.15936
\(797\) − 8.43590e18i − 1.16588i −0.812516 0.582938i \(-0.801903\pi\)
0.812516 0.582938i \(-0.198097\pi\)
\(798\) 1.37978e19i 1.89143i
\(799\) 2.73239e18 0.371526
\(800\) 0 0
\(801\) −5.14430e17 −0.0688201
\(802\) 6.67801e18i 0.886163i
\(803\) 7.15119e17i 0.0941298i
\(804\) −6.43125e17 −0.0839714
\(805\) 0 0
\(806\) 1.29788e18 0.166747
\(807\) 1.83633e18i 0.234030i
\(808\) 3.09519e18i 0.391304i
\(809\) 2.98965e18 0.374934 0.187467 0.982271i \(-0.439972\pi\)
0.187467 + 0.982271i \(0.439972\pi\)
\(810\) 0 0
\(811\) −1.10858e19 −1.36814 −0.684072 0.729415i \(-0.739792\pi\)
−0.684072 + 0.729415i \(0.739792\pi\)
\(812\) − 2.30157e19i − 2.81780i
\(813\) 6.75434e17i 0.0820341i
\(814\) 2.57993e19 3.10849
\(815\) 0 0
\(816\) −3.17914e17 −0.0376985
\(817\) 2.28956e19i 2.69345i
\(818\) − 6.84893e18i − 0.799330i
\(819\) −2.31416e17 −0.0267946
\(820\) 0 0
\(821\) 1.97742e18 0.225356 0.112678 0.993632i \(-0.464057\pi\)
0.112678 + 0.993632i \(0.464057\pi\)
\(822\) − 5.32442e18i − 0.602012i
\(823\) 1.12620e19i 1.26333i 0.775242 + 0.631665i \(0.217628\pi\)
−0.775242 + 0.631665i \(0.782372\pi\)
\(824\) 9.53963e18 1.06171
\(825\) 0 0
\(826\) 1.78368e19 1.95410
\(827\) − 1.16025e19i − 1.26115i −0.776129 0.630574i \(-0.782819\pi\)
0.776129 0.630574i \(-0.217181\pi\)
\(828\) − 3.52293e18i − 0.379933i
\(829\) 4.67038e18 0.499745 0.249872 0.968279i \(-0.419611\pi\)
0.249872 + 0.968279i \(0.419611\pi\)
\(830\) 0 0
\(831\) −2.94092e17 −0.0309797
\(832\) − 9.64098e17i − 0.100767i
\(833\) 1.36954e18i 0.142030i
\(834\) −4.88396e18 −0.502565
\(835\) 0 0
\(836\) −2.83847e19 −2.87570
\(837\) 2.97173e18i 0.298740i
\(838\) − 1.05194e19i − 1.04931i
\(839\) 8.73017e17 0.0864112 0.0432056 0.999066i \(-0.486243\pi\)
0.0432056 + 0.999066i \(0.486243\pi\)
\(840\) 0 0
\(841\) 7.79256e18 0.759462
\(842\) − 3.15953e18i − 0.305559i
\(843\) 6.24222e18i 0.599046i
\(844\) 6.25586e18 0.595746
\(845\) 0 0
\(846\) 8.03215e18 0.753225
\(847\) 1.04266e18i 0.0970285i
\(848\) 2.93808e18i 0.271326i
\(849\) 2.73283e18 0.250445
\(850\) 0 0
\(851\) −1.33154e19 −1.20175
\(852\) 1.16567e19i 1.04404i
\(853\) − 1.24079e19i − 1.10288i −0.834213 0.551442i \(-0.814078\pi\)
0.834213 0.551442i \(-0.185922\pi\)
\(854\) −1.01303e19 −0.893607
\(855\) 0 0
\(856\) 1.31395e19 1.14156
\(857\) 7.04934e18i 0.607817i 0.952701 + 0.303909i \(0.0982918\pi\)
−0.952701 + 0.303909i \(0.901708\pi\)
\(858\) − 7.52697e17i − 0.0644099i
\(859\) 2.37855e17 0.0202003 0.0101001 0.999949i \(-0.496785\pi\)
0.0101001 + 0.999949i \(0.496785\pi\)
\(860\) 0 0
\(861\) −5.91953e18 −0.495185
\(862\) 6.10992e18i 0.507269i
\(863\) − 1.21210e19i − 0.998774i −0.866379 0.499387i \(-0.833559\pi\)
0.866379 0.499387i \(-0.166441\pi\)
\(864\) 1.86401e18 0.152444
\(865\) 0 0
\(866\) 1.27981e19 1.03105
\(867\) − 6.68934e18i − 0.534884i
\(868\) − 4.15503e19i − 3.29759i
\(869\) −2.43648e19 −1.91926
\(870\) 0 0
\(871\) 7.09183e16 0.00550352
\(872\) − 1.77460e19i − 1.36692i
\(873\) − 1.32888e18i − 0.101600i
\(874\) 2.31623e19 1.75775
\(875\) 0 0
\(876\) −1.20444e18 −0.0900549
\(877\) − 3.74100e18i − 0.277645i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443318\pi\)
\(878\) − 5.53354e18i − 0.407651i
\(879\) −1.80361e18 −0.131891
\(880\) 0 0
\(881\) −1.36085e19 −0.980544 −0.490272 0.871570i \(-0.663102\pi\)
−0.490272 + 0.871570i \(0.663102\pi\)
\(882\) 4.02590e18i 0.287950i
\(883\) − 9.87005e18i − 0.700769i −0.936606 0.350384i \(-0.886051\pi\)
0.936606 0.350384i \(-0.113949\pi\)
\(884\) 4.31258e17 0.0303947
\(885\) 0 0
\(886\) −2.31436e18 −0.160736
\(887\) 1.35100e19i 0.931432i 0.884934 + 0.465716i \(0.154203\pi\)
−0.884934 + 0.465716i \(0.845797\pi\)
\(888\) 1.82036e19i 1.24587i
\(889\) −2.69720e19 −1.83253
\(890\) 0 0
\(891\) 1.72343e18 0.115395
\(892\) − 3.03805e19i − 2.01941i
\(893\) 3.34010e19i 2.20407i
\(894\) −1.41712e19 −0.928350
\(895\) 0 0
\(896\) −3.36550e19 −2.17294
\(897\) 3.88478e17i 0.0249009i
\(898\) 4.12025e19i 2.62197i
\(899\) 3.25914e19 2.05904
\(900\) 0 0
\(901\) 4.90826e18 0.305644
\(902\) − 1.92537e19i − 1.19034i
\(903\) 1.94369e19i 1.19305i
\(904\) −2.53869e19 −1.54709
\(905\) 0 0
\(906\) −2.11858e19 −1.27266
\(907\) − 7.78812e18i − 0.464500i −0.972656 0.232250i \(-0.925391\pi\)
0.972656 0.232250i \(-0.0746087\pi\)
\(908\) − 5.45460e19i − 3.23002i
\(909\) 1.86544e18 0.109677
\(910\) 0 0
\(911\) 6.24185e17 0.0361779 0.0180890 0.999836i \(-0.494242\pi\)
0.0180890 + 0.999836i \(0.494242\pi\)
\(912\) − 3.88621e18i − 0.223645i
\(913\) − 5.23733e18i − 0.299261i
\(914\) −3.06272e19 −1.73763
\(915\) 0 0
\(916\) −1.54860e19 −0.866203
\(917\) 3.56164e19i 1.97810i
\(918\) 1.56121e18i 0.0860963i
\(919\) 3.08457e19 1.68906 0.844528 0.535511i \(-0.179881\pi\)
0.844528 + 0.535511i \(0.179881\pi\)
\(920\) 0 0
\(921\) 2.27614e18 0.122888
\(922\) 3.42675e19i 1.83709i
\(923\) − 1.28539e18i − 0.0684267i
\(924\) −2.40968e19 −1.27377
\(925\) 0 0
\(926\) 2.84363e19 1.48218
\(927\) − 5.74944e18i − 0.297582i
\(928\) − 2.04429e19i − 1.05071i
\(929\) 2.60942e19 1.33181 0.665905 0.746037i \(-0.268046\pi\)
0.665905 + 0.746037i \(0.268046\pi\)
\(930\) 0 0
\(931\) −1.67413e19 −0.842592
\(932\) 6.12039e19i 3.05897i
\(933\) − 6.35615e18i − 0.315474i
\(934\) 2.50432e19 1.23434
\(935\) 0 0
\(936\) 5.31090e17 0.0258152
\(937\) − 1.43219e19i − 0.691340i −0.938356 0.345670i \(-0.887652\pi\)
0.938356 0.345670i \(-0.112348\pi\)
\(938\) − 3.58962e18i − 0.172080i
\(939\) −1.41651e19 −0.674361
\(940\) 0 0
\(941\) −6.74040e18 −0.316485 −0.158242 0.987400i \(-0.550583\pi\)
−0.158242 + 0.987400i \(0.550583\pi\)
\(942\) − 8.63731e18i − 0.402761i
\(943\) 9.93712e18i 0.460187i
\(944\) −5.02381e18 −0.231055
\(945\) 0 0
\(946\) −6.32200e19 −2.86789
\(947\) − 4.26475e18i − 0.192140i −0.995375 0.0960701i \(-0.969373\pi\)
0.995375 0.0960701i \(-0.0306273\pi\)
\(948\) − 4.10364e19i − 1.83618i
\(949\) 1.32815e17 0.00590223
\(950\) 0 0
\(951\) 1.99548e19 0.874729
\(952\) − 9.14471e18i − 0.398134i
\(953\) − 2.39618e17i − 0.0103613i −0.999987 0.00518067i \(-0.998351\pi\)
0.999987 0.00518067i \(-0.00164906\pi\)
\(954\) 1.44283e19 0.619658
\(955\) 0 0
\(956\) −2.40800e19 −1.02019
\(957\) − 1.89011e19i − 0.795354i
\(958\) 5.54985e19i 2.31956i
\(959\) 1.87964e19 0.780285
\(960\) 0 0
\(961\) 3.44197e19 1.40963
\(962\) − 4.79157e18i − 0.194912i
\(963\) − 7.91903e18i − 0.319964i
\(964\) −4.04853e19 −1.62479
\(965\) 0 0
\(966\) 1.96633e19 0.778584
\(967\) 1.50588e19i 0.592268i 0.955146 + 0.296134i \(0.0956975\pi\)
−0.955146 + 0.296134i \(0.904302\pi\)
\(968\) − 2.39286e18i − 0.0934817i
\(969\) −6.49215e18 −0.251933
\(970\) 0 0
\(971\) 1.51669e19 0.580728 0.290364 0.956916i \(-0.406224\pi\)
0.290364 + 0.956916i \(0.406224\pi\)
\(972\) 2.90268e18i 0.110400i
\(973\) − 1.72415e19i − 0.651389i
\(974\) −7.28221e18 −0.273294
\(975\) 0 0
\(976\) 2.85325e18 0.105661
\(977\) 5.43050e18i 0.199768i 0.994999 + 0.0998838i \(0.0318471\pi\)
−0.994999 + 0.0998838i \(0.968153\pi\)
\(978\) 1.76413e19i 0.644656i
\(979\) 5.90684e18 0.214421
\(980\) 0 0
\(981\) −1.06953e19 −0.383129
\(982\) − 9.24822e18i − 0.329104i
\(983\) 4.45646e19i 1.57540i 0.616057 + 0.787702i \(0.288729\pi\)
−0.616057 + 0.787702i \(0.711271\pi\)
\(984\) 1.35851e19 0.477084
\(985\) 0 0
\(986\) 1.71221e19 0.593412
\(987\) 2.83553e19i 0.976275i
\(988\) 5.27173e18i 0.180315i
\(989\) 3.26288e19 1.10873
\(990\) 0 0
\(991\) 8.11044e18 0.271998 0.135999 0.990709i \(-0.456576\pi\)
0.135999 + 0.990709i \(0.456576\pi\)
\(992\) − 3.69056e19i − 1.22961i
\(993\) − 1.08479e19i − 0.359067i
\(994\) −6.50619e19 −2.13951
\(995\) 0 0
\(996\) 8.82097e18 0.286306
\(997\) 3.75569e19i 1.21107i 0.795817 + 0.605537i \(0.207042\pi\)
−0.795817 + 0.605537i \(0.792958\pi\)
\(998\) 4.17627e19i 1.33795i
\(999\) 1.09711e19 0.349201
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.14.b.e.49.4 4
5.2 odd 4 75.14.a.c.1.1 2
5.3 odd 4 15.14.a.c.1.2 2
5.4 even 2 inner 75.14.b.e.49.1 4
15.8 even 4 45.14.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.14.a.c.1.2 2 5.3 odd 4
45.14.a.b.1.1 2 15.8 even 4
75.14.a.c.1.1 2 5.2 odd 4
75.14.b.e.49.1 4 5.4 even 2 inner
75.14.b.e.49.4 4 1.1 even 1 trivial