Properties

Label 75.14.b.e.49.2
Level $75$
Weight $14$
Character 75.49
Analytic conductor $80.423$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,14,Mod(49,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.49"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-12482] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(80.4231967139\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{3121})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1561x^{2} + 608400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(-28.4330i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.14.b.e.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-18.2989i q^{2} -729.000i q^{3} +7857.15 q^{4} -13339.9 q^{6} +112047. i q^{7} -293681. i q^{8} -531441. q^{9} +143727. q^{11} -5.72786e6i q^{12} -627845. i q^{13} +2.05033e6 q^{14} +5.89918e7 q^{16} +7.51428e7i q^{17} +9.72477e6i q^{18} -3.68418e8 q^{19} +8.16820e7 q^{21} -2.63004e6i q^{22} -2.64060e8i q^{23} -2.14094e8 q^{24} -1.14888e7 q^{26} +3.87420e8i q^{27} +8.80367e8i q^{28} -5.37538e9 q^{29} -1.57044e9 q^{31} -3.48532e9i q^{32} -1.04777e8i q^{33} +1.37503e9 q^{34} -4.17561e9 q^{36} -1.85013e10i q^{37} +6.74163e9i q^{38} -4.57699e8 q^{39} -8.47428e9 q^{41} -1.49469e9i q^{42} -6.20298e9i q^{43} +1.12928e9 q^{44} -4.83201e9 q^{46} +3.77183e9i q^{47} -4.30050e10i q^{48} +8.43346e10 q^{49} +5.47791e10 q^{51} -4.93307e9i q^{52} -2.30272e11i q^{53} +7.08936e9 q^{54} +3.29060e10 q^{56} +2.68577e11i q^{57} +9.83633e10i q^{58} -4.11830e11 q^{59} -4.06580e11 q^{61} +2.87372e10i q^{62} -5.95462e10i q^{63} +4.19483e11 q^{64} -1.91730e9 q^{66} +2.96486e11i q^{67} +5.90409e11i q^{68} -1.92500e11 q^{69} -3.97640e11 q^{71} +1.56074e11i q^{72} +1.37728e12i q^{73} -3.38553e11 q^{74} -2.89472e12 q^{76} +1.61041e10i q^{77} +8.37537e9i q^{78} +4.66466e11 q^{79} +2.82430e11 q^{81} +1.55070e11i q^{82} -4.77278e12i q^{83} +6.41788e11 q^{84} -1.13508e11 q^{86} +3.91865e12i q^{87} -4.22098e10i q^{88} -6.88111e12 q^{89} +7.03479e10 q^{91} -2.07476e12i q^{92} +1.14485e12i q^{93} +6.90203e10 q^{94} -2.54080e12 q^{96} +1.38827e13i q^{97} -1.54323e12i q^{98} -7.63823e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12482 q^{4} + 190998 q^{6} - 2125764 q^{9} + 12491776 q^{11} - 110628168 q^{14} + 150297410 q^{16} - 76950688 q^{19} + 723564576 q^{21} - 1713825054 q^{24} + 315428908 q^{26} - 2252949416 q^{29} + 12200208624 q^{31}+ \cdots - 6638641929216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 18.2989i − 0.202176i −0.994877 0.101088i \(-0.967768\pi\)
0.994877 0.101088i \(-0.0322323\pi\)
\(3\) − 729.000i − 0.577350i
\(4\) 7857.15 0.959125
\(5\) 0 0
\(6\) −13339.9 −0.116726
\(7\) 112047.i 0.359966i 0.983670 + 0.179983i \(0.0576043\pi\)
−0.983670 + 0.179983i \(0.942396\pi\)
\(8\) − 293681.i − 0.396088i
\(9\) −531441. −0.333333
\(10\) 0 0
\(11\) 143727. 0.0244616 0.0122308 0.999925i \(-0.496107\pi\)
0.0122308 + 0.999925i \(0.496107\pi\)
\(12\) − 5.72786e6i − 0.553751i
\(13\) − 627845.i − 0.0360762i −0.999837 0.0180381i \(-0.994258\pi\)
0.999837 0.0180381i \(-0.00574201\pi\)
\(14\) 2.05033e6 0.0727764
\(15\) 0 0
\(16\) 5.89918e7 0.879046
\(17\) 7.51428e7i 0.755039i 0.926002 + 0.377520i \(0.123223\pi\)
−0.926002 + 0.377520i \(0.876777\pi\)
\(18\) 9.72477e6i 0.0673919i
\(19\) −3.68418e8 −1.79656 −0.898282 0.439420i \(-0.855184\pi\)
−0.898282 + 0.439420i \(0.855184\pi\)
\(20\) 0 0
\(21\) 8.16820e7 0.207827
\(22\) − 2.63004e6i − 0.00494555i
\(23\) − 2.64060e8i − 0.371939i −0.982555 0.185970i \(-0.940457\pi\)
0.982555 0.185970i \(-0.0595426\pi\)
\(24\) −2.14094e8 −0.228681
\(25\) 0 0
\(26\) −1.14888e7 −0.00729373
\(27\) 3.87420e8i 0.192450i
\(28\) 8.80367e8i 0.345252i
\(29\) −5.37538e9 −1.67812 −0.839058 0.544042i \(-0.816893\pi\)
−0.839058 + 0.544042i \(0.816893\pi\)
\(30\) 0 0
\(31\) −1.57044e9 −0.317812 −0.158906 0.987294i \(-0.550797\pi\)
−0.158906 + 0.987294i \(0.550797\pi\)
\(32\) − 3.48532e9i − 0.573809i
\(33\) − 1.04777e8i − 0.0141229i
\(34\) 1.37503e9 0.152651
\(35\) 0 0
\(36\) −4.17561e9 −0.319708
\(37\) − 1.85013e10i − 1.18547i −0.805397 0.592735i \(-0.798048\pi\)
0.805397 0.592735i \(-0.201952\pi\)
\(38\) 6.74163e9i 0.363222i
\(39\) −4.57699e8 −0.0208286
\(40\) 0 0
\(41\) −8.47428e9 −0.278617 −0.139309 0.990249i \(-0.544488\pi\)
−0.139309 + 0.990249i \(0.544488\pi\)
\(42\) − 1.49469e9i − 0.0420175i
\(43\) − 6.20298e9i − 0.149643i −0.997197 0.0748214i \(-0.976161\pi\)
0.997197 0.0748214i \(-0.0238387\pi\)
\(44\) 1.12928e9 0.0234617
\(45\) 0 0
\(46\) −4.83201e9 −0.0751972
\(47\) 3.77183e9i 0.0510407i 0.999674 + 0.0255203i \(0.00812426\pi\)
−0.999674 + 0.0255203i \(0.991876\pi\)
\(48\) − 4.30050e10i − 0.507517i
\(49\) 8.43346e10 0.870424
\(50\) 0 0
\(51\) 5.47791e10 0.435922
\(52\) − 4.93307e9i − 0.0346016i
\(53\) − 2.30272e11i − 1.42708i −0.700614 0.713540i \(-0.747091\pi\)
0.700614 0.713540i \(-0.252909\pi\)
\(54\) 7.08936e9 0.0389088
\(55\) 0 0
\(56\) 3.29060e10 0.142578
\(57\) 2.68577e11i 1.03725i
\(58\) 9.83633e10i 0.339275i
\(59\) −4.11830e11 −1.27110 −0.635551 0.772059i \(-0.719227\pi\)
−0.635551 + 0.772059i \(0.719227\pi\)
\(60\) 0 0
\(61\) −4.06580e11 −1.01042 −0.505210 0.862996i \(-0.668585\pi\)
−0.505210 + 0.862996i \(0.668585\pi\)
\(62\) 2.87372e10i 0.0642538i
\(63\) − 5.95462e10i − 0.119989i
\(64\) 4.19483e11 0.763035
\(65\) 0 0
\(66\) −1.91730e9 −0.00285531
\(67\) 2.96486e11i 0.400423i 0.979753 + 0.200211i \(0.0641629\pi\)
−0.979753 + 0.200211i \(0.935837\pi\)
\(68\) 5.90409e11i 0.724177i
\(69\) −1.92500e11 −0.214739
\(70\) 0 0
\(71\) −3.97640e11 −0.368393 −0.184196 0.982889i \(-0.558968\pi\)
−0.184196 + 0.982889i \(0.558968\pi\)
\(72\) 1.56074e11i 0.132029i
\(73\) 1.37728e12i 1.06518i 0.846373 + 0.532591i \(0.178781\pi\)
−0.846373 + 0.532591i \(0.821219\pi\)
\(74\) −3.38553e11 −0.239673
\(75\) 0 0
\(76\) −2.89472e12 −1.72313
\(77\) 1.61041e10i 0.00880535i
\(78\) 8.37537e9i 0.00421104i
\(79\) 4.66466e11 0.215896 0.107948 0.994157i \(-0.465572\pi\)
0.107948 + 0.994157i \(0.465572\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) 1.55070e11i 0.0563297i
\(83\) − 4.77278e12i − 1.60237i −0.598415 0.801186i \(-0.704203\pi\)
0.598415 0.801186i \(-0.295797\pi\)
\(84\) 6.41788e11 0.199332
\(85\) 0 0
\(86\) −1.13508e11 −0.0302541
\(87\) 3.91865e12i 0.968861i
\(88\) − 4.22098e10i − 0.00968894i
\(89\) −6.88111e12 −1.46765 −0.733827 0.679336i \(-0.762268\pi\)
−0.733827 + 0.679336i \(0.762268\pi\)
\(90\) 0 0
\(91\) 7.03479e10 0.0129862
\(92\) − 2.07476e12i − 0.356736i
\(93\) 1.14485e12i 0.183489i
\(94\) 6.90203e10 0.0103192
\(95\) 0 0
\(96\) −2.54080e12 −0.331289
\(97\) 1.38827e13i 1.69223i 0.533004 + 0.846113i \(0.321063\pi\)
−0.533004 + 0.846113i \(0.678937\pi\)
\(98\) − 1.54323e12i − 0.175979i
\(99\) −7.63823e10 −0.00815387
\(100\) 0 0
\(101\) −1.02752e13 −0.963162 −0.481581 0.876402i \(-0.659937\pi\)
−0.481581 + 0.876402i \(0.659937\pi\)
\(102\) − 1.00240e12i − 0.0881329i
\(103\) − 1.05918e13i − 0.874036i −0.899453 0.437018i \(-0.856035\pi\)
0.899453 0.437018i \(-0.143965\pi\)
\(104\) −1.84386e11 −0.0142893
\(105\) 0 0
\(106\) −4.21372e12 −0.288521
\(107\) 1.26172e13i 0.812774i 0.913701 + 0.406387i \(0.133211\pi\)
−0.913701 + 0.406387i \(0.866789\pi\)
\(108\) 3.04402e12i 0.184584i
\(109\) −1.49988e13 −0.856612 −0.428306 0.903634i \(-0.640890\pi\)
−0.428306 + 0.903634i \(0.640890\pi\)
\(110\) 0 0
\(111\) −1.34874e13 −0.684432
\(112\) 6.60983e12i 0.316427i
\(113\) 3.11837e13i 1.40902i 0.709693 + 0.704512i \(0.248834\pi\)
−0.709693 + 0.704512i \(0.751166\pi\)
\(114\) 4.91465e12 0.209706
\(115\) 0 0
\(116\) −4.22352e13 −1.60952
\(117\) 3.33662e11i 0.0120254i
\(118\) 7.53603e12i 0.256986i
\(119\) −8.41950e12 −0.271789
\(120\) 0 0
\(121\) −3.45021e13 −0.999402
\(122\) 7.43996e12i 0.204283i
\(123\) 6.17775e12i 0.160860i
\(124\) −1.23392e13 −0.304821
\(125\) 0 0
\(126\) −1.08963e12 −0.0242588
\(127\) 6.92694e13i 1.46493i 0.680804 + 0.732466i \(0.261631\pi\)
−0.680804 + 0.732466i \(0.738369\pi\)
\(128\) − 3.62278e13i − 0.728077i
\(129\) −4.52198e12 −0.0863963
\(130\) 0 0
\(131\) −3.60740e13 −0.623636 −0.311818 0.950142i \(-0.600938\pi\)
−0.311818 + 0.950142i \(0.600938\pi\)
\(132\) − 8.23247e11i − 0.0135456i
\(133\) − 4.12800e13i − 0.646702i
\(134\) 5.42537e12 0.0809558
\(135\) 0 0
\(136\) 2.20680e13 0.299062
\(137\) 8.46431e13i 1.09372i 0.837223 + 0.546862i \(0.184178\pi\)
−0.837223 + 0.546862i \(0.815822\pi\)
\(138\) 3.52253e12i 0.0434151i
\(139\) −1.23811e13 −0.145600 −0.0728002 0.997347i \(-0.523194\pi\)
−0.0728002 + 0.997347i \(0.523194\pi\)
\(140\) 0 0
\(141\) 2.74967e12 0.0294683
\(142\) 7.27637e12i 0.0744801i
\(143\) − 9.02380e10i 0 0.000882481i
\(144\) −3.13506e13 −0.293015
\(145\) 0 0
\(146\) 2.52027e13 0.215354
\(147\) − 6.14799e13i − 0.502540i
\(148\) − 1.45367e14i − 1.13701i
\(149\) 1.01554e14 0.760303 0.380152 0.924924i \(-0.375872\pi\)
0.380152 + 0.924924i \(0.375872\pi\)
\(150\) 0 0
\(151\) −6.26055e13 −0.429796 −0.214898 0.976636i \(-0.568942\pi\)
−0.214898 + 0.976636i \(0.568942\pi\)
\(152\) 1.08198e14i 0.711597i
\(153\) − 3.99340e13i − 0.251680i
\(154\) 2.94687e11 0.00178023
\(155\) 0 0
\(156\) −3.59621e12 −0.0199772
\(157\) − 3.46935e14i − 1.84885i −0.381368 0.924423i \(-0.624547\pi\)
0.381368 0.924423i \(-0.375453\pi\)
\(158\) − 8.53580e12i − 0.0436489i
\(159\) −1.67868e14 −0.823925
\(160\) 0 0
\(161\) 2.95871e13 0.133886
\(162\) − 5.16814e12i − 0.0224640i
\(163\) 4.29452e14i 1.79347i 0.442565 + 0.896736i \(0.354069\pi\)
−0.442565 + 0.896736i \(0.645931\pi\)
\(164\) −6.65837e13 −0.267229
\(165\) 0 0
\(166\) −8.73364e13 −0.323961
\(167\) − 3.09663e14i − 1.10467i −0.833623 0.552334i \(-0.813737\pi\)
0.833623 0.552334i \(-0.186263\pi\)
\(168\) − 2.39885e13i − 0.0823175i
\(169\) 3.02481e14 0.998699
\(170\) 0 0
\(171\) 1.95793e14 0.598855
\(172\) − 4.87378e13i − 0.143526i
\(173\) − 4.50613e13i − 0.127792i −0.997957 0.0638960i \(-0.979647\pi\)
0.997957 0.0638960i \(-0.0203526\pi\)
\(174\) 7.17069e13 0.195880
\(175\) 0 0
\(176\) 8.47869e12 0.0215029
\(177\) 3.00224e14i 0.733871i
\(178\) 1.25917e14i 0.296724i
\(179\) −1.74245e14 −0.395926 −0.197963 0.980209i \(-0.563433\pi\)
−0.197963 + 0.980209i \(0.563433\pi\)
\(180\) 0 0
\(181\) 6.89956e14 1.45851 0.729257 0.684240i \(-0.239866\pi\)
0.729257 + 0.684240i \(0.239866\pi\)
\(182\) − 1.28729e12i − 0.00262549i
\(183\) 2.96397e14i 0.583367i
\(184\) −7.75496e13 −0.147321
\(185\) 0 0
\(186\) 2.09494e13 0.0370970
\(187\) 1.08000e13i 0.0184695i
\(188\) 2.96359e13i 0.0489544i
\(189\) −4.34092e13 −0.0692755
\(190\) 0 0
\(191\) 7.52391e14 1.12131 0.560656 0.828049i \(-0.310549\pi\)
0.560656 + 0.828049i \(0.310549\pi\)
\(192\) − 3.05803e14i − 0.440539i
\(193\) − 4.18449e14i − 0.582801i −0.956601 0.291400i \(-0.905879\pi\)
0.956601 0.291400i \(-0.0941212\pi\)
\(194\) 2.54038e14 0.342127
\(195\) 0 0
\(196\) 6.62629e14 0.834846
\(197\) − 5.04365e14i − 0.614772i −0.951585 0.307386i \(-0.900546\pi\)
0.951585 0.307386i \(-0.0994543\pi\)
\(198\) 1.39771e12i 0.00164852i
\(199\) 1.01359e15 1.15696 0.578479 0.815697i \(-0.303646\pi\)
0.578479 + 0.815697i \(0.303646\pi\)
\(200\) 0 0
\(201\) 2.16139e14 0.231184
\(202\) 1.88024e14i 0.194728i
\(203\) − 6.02293e14i − 0.604065i
\(204\) 4.30408e14 0.418104
\(205\) 0 0
\(206\) −1.93819e14 −0.176709
\(207\) 1.40333e14i 0.123980i
\(208\) − 3.70377e13i − 0.0317126i
\(209\) −5.29515e13 −0.0439468
\(210\) 0 0
\(211\) 6.68511e14 0.521522 0.260761 0.965403i \(-0.416027\pi\)
0.260761 + 0.965403i \(0.416027\pi\)
\(212\) − 1.80928e15i − 1.36875i
\(213\) 2.89880e14i 0.212692i
\(214\) 2.30881e14 0.164323
\(215\) 0 0
\(216\) 1.13778e14 0.0762271
\(217\) − 1.75962e14i − 0.114401i
\(218\) 2.74461e14i 0.173186i
\(219\) 1.00404e15 0.614983
\(220\) 0 0
\(221\) 4.71780e13 0.0272389
\(222\) 2.46805e14i 0.138376i
\(223\) 6.64343e14i 0.361752i 0.983506 + 0.180876i \(0.0578933\pi\)
−0.983506 + 0.180876i \(0.942107\pi\)
\(224\) 3.90518e14 0.206552
\(225\) 0 0
\(226\) 5.70627e14 0.284870
\(227\) − 2.74872e15i − 1.33341i −0.745324 0.666703i \(-0.767705\pi\)
0.745324 0.666703i \(-0.232295\pi\)
\(228\) 2.11025e15i 0.994849i
\(229\) −1.93108e15 −0.884851 −0.442426 0.896805i \(-0.645882\pi\)
−0.442426 + 0.896805i \(0.645882\pi\)
\(230\) 0 0
\(231\) 1.17399e13 0.00508377
\(232\) 1.57865e15i 0.664681i
\(233\) − 3.04503e15i − 1.24674i −0.781925 0.623372i \(-0.785762\pi\)
0.781925 0.623372i \(-0.214238\pi\)
\(234\) 6.10564e12 0.00243124
\(235\) 0 0
\(236\) −3.23581e15 −1.21914
\(237\) − 3.40054e14i − 0.124647i
\(238\) 1.54067e14i 0.0549491i
\(239\) −1.63875e15 −0.568756 −0.284378 0.958712i \(-0.591787\pi\)
−0.284378 + 0.958712i \(0.591787\pi\)
\(240\) 0 0
\(241\) −2.33624e14 −0.0768081 −0.0384041 0.999262i \(-0.512227\pi\)
−0.0384041 + 0.999262i \(0.512227\pi\)
\(242\) 6.31348e14i 0.202055i
\(243\) − 2.05891e14i − 0.0641500i
\(244\) −3.19456e15 −0.969120
\(245\) 0 0
\(246\) 1.13046e14 0.0325219
\(247\) 2.31309e14i 0.0648131i
\(248\) 4.61208e14i 0.125881i
\(249\) −3.47935e15 −0.925130
\(250\) 0 0
\(251\) −3.58149e15 −0.904033 −0.452016 0.892010i \(-0.649295\pi\)
−0.452016 + 0.892010i \(0.649295\pi\)
\(252\) − 4.67863e14i − 0.115084i
\(253\) − 3.79525e13i − 0.00909824i
\(254\) 1.26755e15 0.296174
\(255\) 0 0
\(256\) 2.77348e15 0.615836
\(257\) 7.60591e15i 1.64659i 0.567612 + 0.823296i \(0.307867\pi\)
−0.567612 + 0.823296i \(0.692133\pi\)
\(258\) 8.27470e13i 0.0174672i
\(259\) 2.07301e15 0.426729
\(260\) 0 0
\(261\) 2.85670e15 0.559372
\(262\) 6.60113e14i 0.126084i
\(263\) − 7.86154e15i − 1.46486i −0.680844 0.732428i \(-0.738387\pi\)
0.680844 0.732428i \(-0.261613\pi\)
\(264\) −3.07710e13 −0.00559391
\(265\) 0 0
\(266\) −7.55378e14 −0.130748
\(267\) 5.01633e15i 0.847350i
\(268\) 2.32954e15i 0.384055i
\(269\) 6.04452e15 0.972685 0.486343 0.873768i \(-0.338331\pi\)
0.486343 + 0.873768i \(0.338331\pi\)
\(270\) 0 0
\(271\) −1.14219e16 −1.75162 −0.875809 0.482658i \(-0.839672\pi\)
−0.875809 + 0.482658i \(0.839672\pi\)
\(272\) 4.43281e15i 0.663714i
\(273\) − 5.12836e13i − 0.00749758i
\(274\) 1.54887e15 0.221125
\(275\) 0 0
\(276\) −1.51250e15 −0.205962
\(277\) − 1.65973e15i − 0.220760i −0.993889 0.110380i \(-0.964793\pi\)
0.993889 0.110380i \(-0.0352068\pi\)
\(278\) 2.26560e14i 0.0294369i
\(279\) 8.34595e14 0.105937
\(280\) 0 0
\(281\) −1.28234e16 −1.55386 −0.776930 0.629587i \(-0.783224\pi\)
−0.776930 + 0.629587i \(0.783224\pi\)
\(282\) − 5.03158e13i − 0.00595779i
\(283\) 1.55354e16i 1.79767i 0.438283 + 0.898837i \(0.355587\pi\)
−0.438283 + 0.898837i \(0.644413\pi\)
\(284\) −3.12432e15 −0.353335
\(285\) 0 0
\(286\) −1.65125e12 −0.000178416 0
\(287\) − 9.49515e14i − 0.100293i
\(288\) 1.85224e15i 0.191270i
\(289\) 4.25813e15 0.429916
\(290\) 0 0
\(291\) 1.01205e16 0.977007
\(292\) 1.08215e16i 1.02164i
\(293\) − 1.56366e16i − 1.44378i −0.692007 0.721891i \(-0.743273\pi\)
0.692007 0.721891i \(-0.256727\pi\)
\(294\) −1.12501e15 −0.101601
\(295\) 0 0
\(296\) −5.43348e15 −0.469550
\(297\) 5.56827e13i 0.00470764i
\(298\) − 1.85833e15i − 0.153715i
\(299\) −1.65789e14 −0.0134182
\(300\) 0 0
\(301\) 6.95024e14 0.0538663
\(302\) 1.14561e15i 0.0868944i
\(303\) 7.49059e15i 0.556082i
\(304\) −2.17336e16 −1.57926
\(305\) 0 0
\(306\) −7.30747e14 −0.0508836
\(307\) − 4.73925e15i − 0.323080i −0.986866 0.161540i \(-0.948354\pi\)
0.986866 0.161540i \(-0.0516461\pi\)
\(308\) 1.26532e14i 0.00844543i
\(309\) −7.72145e15 −0.504625
\(310\) 0 0
\(311\) −2.24003e16 −1.40382 −0.701911 0.712265i \(-0.747670\pi\)
−0.701911 + 0.712265i \(0.747670\pi\)
\(312\) 1.34418e14i 0.00824995i
\(313\) 2.48799e15i 0.149558i 0.997200 + 0.0747791i \(0.0238252\pi\)
−0.997200 + 0.0747791i \(0.976175\pi\)
\(314\) −6.34852e15 −0.373792
\(315\) 0 0
\(316\) 3.66510e15 0.207071
\(317\) − 7.02646e14i − 0.0388912i −0.999811 0.0194456i \(-0.993810\pi\)
0.999811 0.0194456i \(-0.00619012\pi\)
\(318\) 3.07180e15i 0.166578i
\(319\) −7.72585e14 −0.0410494
\(320\) 0 0
\(321\) 9.19797e15 0.469255
\(322\) − 5.41410e14i − 0.0270684i
\(323\) − 2.76840e16i − 1.35648i
\(324\) 2.21909e15 0.106569
\(325\) 0 0
\(326\) 7.85848e15 0.362597
\(327\) 1.09341e16i 0.494565i
\(328\) 2.48874e15i 0.110357i
\(329\) −4.22621e14 −0.0183729
\(330\) 0 0
\(331\) 2.99883e16 1.25334 0.626672 0.779283i \(-0.284417\pi\)
0.626672 + 0.779283i \(0.284417\pi\)
\(332\) − 3.75004e16i − 1.53688i
\(333\) 9.83234e15i 0.395157i
\(334\) −5.66648e15 −0.223337
\(335\) 0 0
\(336\) 4.81856e15 0.182689
\(337\) 2.60291e16i 0.967975i 0.875075 + 0.483987i \(0.160812\pi\)
−0.875075 + 0.483987i \(0.839188\pi\)
\(338\) − 5.53506e15i − 0.201913i
\(339\) 2.27329e16 0.813500
\(340\) 0 0
\(341\) −2.25714e14 −0.00777419
\(342\) − 3.58278e15i − 0.121074i
\(343\) 2.03055e16i 0.673289i
\(344\) −1.82170e15 −0.0592717
\(345\) 0 0
\(346\) −8.24570e14 −0.0258365
\(347\) − 5.96465e16i − 1.83419i −0.398674 0.917093i \(-0.630530\pi\)
0.398674 0.917093i \(-0.369470\pi\)
\(348\) 3.07894e16i 0.929259i
\(349\) 2.72283e16 0.806595 0.403298 0.915069i \(-0.367864\pi\)
0.403298 + 0.915069i \(0.367864\pi\)
\(350\) 0 0
\(351\) 2.43240e14 0.00694286
\(352\) − 5.00933e14i − 0.0140363i
\(353\) − 5.67802e16i − 1.56193i −0.624576 0.780964i \(-0.714728\pi\)
0.624576 0.780964i \(-0.285272\pi\)
\(354\) 5.49376e15 0.148371
\(355\) 0 0
\(356\) −5.40659e16 −1.40766
\(357\) 6.13782e15i 0.156917i
\(358\) 3.18848e15i 0.0800467i
\(359\) 7.02312e16 1.73147 0.865737 0.500499i \(-0.166850\pi\)
0.865737 + 0.500499i \(0.166850\pi\)
\(360\) 0 0
\(361\) 9.36790e16 2.22764
\(362\) − 1.26254e16i − 0.294876i
\(363\) 2.51520e16i 0.577005i
\(364\) 5.52734e14 0.0124554
\(365\) 0 0
\(366\) 5.42373e15 0.117943
\(367\) − 2.11880e16i − 0.452649i −0.974052 0.226324i \(-0.927329\pi\)
0.974052 0.226324i \(-0.0726710\pi\)
\(368\) − 1.55774e16i − 0.326952i
\(369\) 4.50358e15 0.0928724
\(370\) 0 0
\(371\) 2.58012e16 0.513700
\(372\) 8.99526e15i 0.175989i
\(373\) − 2.26994e16i − 0.436421i −0.975902 0.218211i \(-0.929978\pi\)
0.975902 0.218211i \(-0.0700220\pi\)
\(374\) 1.97628e14 0.00373408
\(375\) 0 0
\(376\) 1.10772e15 0.0202166
\(377\) 3.37490e15i 0.0605400i
\(378\) 7.94338e14i 0.0140058i
\(379\) 3.61052e16 0.625770 0.312885 0.949791i \(-0.398704\pi\)
0.312885 + 0.949791i \(0.398704\pi\)
\(380\) 0 0
\(381\) 5.04974e16 0.845779
\(382\) − 1.37679e16i − 0.226702i
\(383\) − 2.14417e16i − 0.347110i −0.984824 0.173555i \(-0.944475\pi\)
0.984824 0.173555i \(-0.0555254\pi\)
\(384\) −2.64101e16 −0.420355
\(385\) 0 0
\(386\) −7.65714e15 −0.117828
\(387\) 3.29652e15i 0.0498809i
\(388\) 1.09079e17i 1.62306i
\(389\) −6.52962e16 −0.955466 −0.477733 0.878505i \(-0.658541\pi\)
−0.477733 + 0.878505i \(0.658541\pi\)
\(390\) 0 0
\(391\) 1.98422e16 0.280829
\(392\) − 2.47675e16i − 0.344764i
\(393\) 2.62980e16i 0.360056i
\(394\) −9.22930e15 −0.124292
\(395\) 0 0
\(396\) −6.00147e14 −0.00782058
\(397\) 3.27384e16i 0.419680i 0.977736 + 0.209840i \(0.0672944\pi\)
−0.977736 + 0.209840i \(0.932706\pi\)
\(398\) − 1.85476e16i − 0.233909i
\(399\) −3.00931e16 −0.373374
\(400\) 0 0
\(401\) 3.67179e16 0.441001 0.220501 0.975387i \(-0.429231\pi\)
0.220501 + 0.975387i \(0.429231\pi\)
\(402\) − 3.95509e15i − 0.0467398i
\(403\) 9.85991e14i 0.0114654i
\(404\) −8.07334e16 −0.923793
\(405\) 0 0
\(406\) −1.10213e16 −0.122127
\(407\) − 2.65913e15i − 0.0289985i
\(408\) − 1.60876e16i − 0.172663i
\(409\) −2.37728e14 −0.00251119 −0.00125559 0.999999i \(-0.500400\pi\)
−0.00125559 + 0.999999i \(0.500400\pi\)
\(410\) 0 0
\(411\) 6.17048e16 0.631462
\(412\) − 8.32217e16i − 0.838310i
\(413\) − 4.61442e16i − 0.457553i
\(414\) 2.56793e15 0.0250657
\(415\) 0 0
\(416\) −2.18824e15 −0.0207008
\(417\) 9.02581e15i 0.0840624i
\(418\) 9.68953e14i 0.00888499i
\(419\) 1.07748e17 0.972785 0.486392 0.873741i \(-0.338313\pi\)
0.486392 + 0.873741i \(0.338313\pi\)
\(420\) 0 0
\(421\) −4.46846e15 −0.0391133 −0.0195566 0.999809i \(-0.506225\pi\)
−0.0195566 + 0.999809i \(0.506225\pi\)
\(422\) − 1.22330e16i − 0.105439i
\(423\) − 2.00451e15i − 0.0170136i
\(424\) −6.76266e16 −0.565249
\(425\) 0 0
\(426\) 5.30447e15 0.0430011
\(427\) − 4.55559e16i − 0.363717i
\(428\) 9.91356e16i 0.779552i
\(429\) −6.57835e13 −0.000509501 0
\(430\) 0 0
\(431\) −2.38034e17 −1.78869 −0.894347 0.447373i \(-0.852360\pi\)
−0.894347 + 0.447373i \(0.852360\pi\)
\(432\) 2.28546e16i 0.169172i
\(433\) − 1.52333e16i − 0.111077i −0.998457 0.0555384i \(-0.982312\pi\)
0.998457 0.0555384i \(-0.0176875\pi\)
\(434\) −3.21991e15 −0.0231292
\(435\) 0 0
\(436\) −1.17848e17 −0.821598
\(437\) 9.72846e16i 0.668213i
\(438\) − 1.83727e16i − 0.124335i
\(439\) 1.46731e17 0.978370 0.489185 0.872180i \(-0.337294\pi\)
0.489185 + 0.872180i \(0.337294\pi\)
\(440\) 0 0
\(441\) −4.48188e16 −0.290141
\(442\) − 8.63304e14i − 0.00550705i
\(443\) − 1.80890e17i − 1.13708i −0.822656 0.568540i \(-0.807508\pi\)
0.822656 0.568540i \(-0.192492\pi\)
\(444\) −1.05973e17 −0.656455
\(445\) 0 0
\(446\) 1.21567e16 0.0731375
\(447\) − 7.40330e16i − 0.438961i
\(448\) 4.70017e16i 0.274667i
\(449\) 2.86599e17 1.65072 0.825360 0.564607i \(-0.190972\pi\)
0.825360 + 0.564607i \(0.190972\pi\)
\(450\) 0 0
\(451\) −1.21798e15 −0.00681542
\(452\) 2.45015e17i 1.35143i
\(453\) 4.56394e16i 0.248143i
\(454\) −5.02984e16 −0.269582
\(455\) 0 0
\(456\) 7.88760e16 0.410841
\(457\) 2.00560e17i 1.02989i 0.857224 + 0.514943i \(0.172187\pi\)
−0.857224 + 0.514943i \(0.827813\pi\)
\(458\) 3.53366e16i 0.178895i
\(459\) −2.91119e16 −0.145307
\(460\) 0 0
\(461\) −7.03451e16 −0.341332 −0.170666 0.985329i \(-0.554592\pi\)
−0.170666 + 0.985329i \(0.554592\pi\)
\(462\) − 2.14827e14i − 0.00102782i
\(463\) − 1.71885e17i − 0.810891i −0.914119 0.405446i \(-0.867116\pi\)
0.914119 0.405446i \(-0.132884\pi\)
\(464\) −3.17103e17 −1.47514
\(465\) 0 0
\(466\) −5.57205e16 −0.252062
\(467\) 5.37684e16i 0.239865i 0.992782 + 0.119933i \(0.0382678\pi\)
−0.992782 + 0.119933i \(0.961732\pi\)
\(468\) 2.62164e15i 0.0115339i
\(469\) −3.32203e16 −0.144139
\(470\) 0 0
\(471\) −2.52916e17 −1.06743
\(472\) 1.20947e17i 0.503467i
\(473\) − 8.91535e14i − 0.00366050i
\(474\) −6.22260e15 −0.0252007
\(475\) 0 0
\(476\) −6.61533e16 −0.260679
\(477\) 1.22376e17i 0.475693i
\(478\) 2.99872e16i 0.114989i
\(479\) −1.45707e17 −0.551188 −0.275594 0.961274i \(-0.588875\pi\)
−0.275594 + 0.961274i \(0.588875\pi\)
\(480\) 0 0
\(481\) −1.16159e16 −0.0427672
\(482\) 4.27506e15i 0.0155287i
\(483\) − 2.15690e16i − 0.0772989i
\(484\) −2.71088e17 −0.958551
\(485\) 0 0
\(486\) −3.76757e15 −0.0129696
\(487\) 2.20545e17i 0.749132i 0.927200 + 0.374566i \(0.122208\pi\)
−0.927200 + 0.374566i \(0.877792\pi\)
\(488\) 1.19405e17i 0.400215i
\(489\) 3.13070e17 1.03546
\(490\) 0 0
\(491\) −2.43820e16 −0.0785309 −0.0392654 0.999229i \(-0.512502\pi\)
−0.0392654 + 0.999229i \(0.512502\pi\)
\(492\) 4.85395e16i 0.154285i
\(493\) − 4.03921e17i − 1.26704i
\(494\) 4.23270e15 0.0131036
\(495\) 0 0
\(496\) −9.26429e16 −0.279371
\(497\) − 4.45543e16i − 0.132609i
\(498\) 6.36682e16i 0.187039i
\(499\) −2.54719e17 −0.738599 −0.369299 0.929311i \(-0.620402\pi\)
−0.369299 + 0.929311i \(0.620402\pi\)
\(500\) 0 0
\(501\) −2.25744e17 −0.637781
\(502\) 6.55371e16i 0.182774i
\(503\) 3.72489e17i 1.02547i 0.858548 + 0.512733i \(0.171367\pi\)
−0.858548 + 0.512733i \(0.828633\pi\)
\(504\) −1.74876e16 −0.0475260
\(505\) 0 0
\(506\) −6.94488e14 −0.00183944
\(507\) − 2.20509e17i − 0.576599i
\(508\) 5.44260e17i 1.40505i
\(509\) 1.62073e17 0.413091 0.206546 0.978437i \(-0.433778\pi\)
0.206546 + 0.978437i \(0.433778\pi\)
\(510\) 0 0
\(511\) −1.54320e17 −0.383429
\(512\) − 3.47530e17i − 0.852584i
\(513\) − 1.42733e17i − 0.345749i
\(514\) 1.39180e17 0.332901
\(515\) 0 0
\(516\) −3.55298e16 −0.0828648
\(517\) 5.42113e14i 0.00124854i
\(518\) − 3.79337e16i − 0.0862743i
\(519\) −3.28497e16 −0.0737808
\(520\) 0 0
\(521\) 1.71142e17 0.374896 0.187448 0.982275i \(-0.439978\pi\)
0.187448 + 0.982275i \(0.439978\pi\)
\(522\) − 5.22743e16i − 0.113092i
\(523\) − 4.86625e17i − 1.03976i −0.854239 0.519880i \(-0.825977\pi\)
0.854239 0.519880i \(-0.174023\pi\)
\(524\) −2.83439e17 −0.598145
\(525\) 0 0
\(526\) −1.43857e17 −0.296159
\(527\) − 1.18007e17i − 0.239960i
\(528\) − 6.18096e15i − 0.0124147i
\(529\) 4.34308e17 0.861661
\(530\) 0 0
\(531\) 2.18863e17 0.423700
\(532\) − 3.24343e17i − 0.620268i
\(533\) 5.32053e15i 0.0100514i
\(534\) 9.17932e16 0.171314
\(535\) 0 0
\(536\) 8.70725e16 0.158602
\(537\) 1.27024e17i 0.228588i
\(538\) − 1.10608e17i − 0.196653i
\(539\) 1.21211e16 0.0212920
\(540\) 0 0
\(541\) 2.80840e17 0.481589 0.240795 0.970576i \(-0.422592\pi\)
0.240795 + 0.970576i \(0.422592\pi\)
\(542\) 2.09009e17i 0.354135i
\(543\) − 5.02978e17i − 0.842073i
\(544\) 2.61897e17 0.433249
\(545\) 0 0
\(546\) −9.38432e14 −0.00151583
\(547\) − 6.77006e17i − 1.08062i −0.841464 0.540312i \(-0.818306\pi\)
0.841464 0.540312i \(-0.181694\pi\)
\(548\) 6.65054e17i 1.04902i
\(549\) 2.16073e17 0.336807
\(550\) 0 0
\(551\) 1.98039e18 3.01484
\(552\) 5.65336e16i 0.0850556i
\(553\) 5.22660e16i 0.0777152i
\(554\) −3.03713e16 −0.0446323
\(555\) 0 0
\(556\) −9.72800e16 −0.139649
\(557\) − 4.76254e17i − 0.675740i −0.941193 0.337870i \(-0.890294\pi\)
0.941193 0.337870i \(-0.109706\pi\)
\(558\) − 1.52721e16i − 0.0214179i
\(559\) −3.89451e15 −0.00539854
\(560\) 0 0
\(561\) 7.87322e15 0.0106634
\(562\) 2.34654e17i 0.314153i
\(563\) 1.40153e17i 0.185480i 0.995690 + 0.0927400i \(0.0295625\pi\)
−0.995690 + 0.0927400i \(0.970437\pi\)
\(564\) 2.16045e16 0.0282638
\(565\) 0 0
\(566\) 2.84280e17 0.363446
\(567\) 3.16453e16i 0.0399962i
\(568\) 1.16780e17i 0.145916i
\(569\) −4.19192e17 −0.517825 −0.258912 0.965901i \(-0.583364\pi\)
−0.258912 + 0.965901i \(0.583364\pi\)
\(570\) 0 0
\(571\) 4.21896e17 0.509414 0.254707 0.967018i \(-0.418021\pi\)
0.254707 + 0.967018i \(0.418021\pi\)
\(572\) − 7.09014e14i 0 0.000846410i
\(573\) − 5.48493e17i − 0.647390i
\(574\) −1.73750e16 −0.0202768
\(575\) 0 0
\(576\) −2.22930e17 −0.254345
\(577\) − 2.42814e17i − 0.273924i −0.990576 0.136962i \(-0.956266\pi\)
0.990576 0.136962i \(-0.0437338\pi\)
\(578\) − 7.79190e16i − 0.0869185i
\(579\) −3.05049e17 −0.336480
\(580\) 0 0
\(581\) 5.34774e17 0.576800
\(582\) − 1.85194e17i − 0.197527i
\(583\) − 3.30963e16i − 0.0349087i
\(584\) 4.04481e17 0.421905
\(585\) 0 0
\(586\) −2.86131e17 −0.291898
\(587\) 1.71527e18i 1.73055i 0.501299 + 0.865274i \(0.332856\pi\)
−0.501299 + 0.865274i \(0.667144\pi\)
\(588\) − 4.83057e17i − 0.481998i
\(589\) 5.78578e17 0.570969
\(590\) 0 0
\(591\) −3.67682e17 −0.354939
\(592\) − 1.09142e18i − 1.04208i
\(593\) 1.76024e18i 1.66232i 0.556031 + 0.831161i \(0.312324\pi\)
−0.556031 + 0.831161i \(0.687676\pi\)
\(594\) 1.01893e15 0.000951771 0
\(595\) 0 0
\(596\) 7.97926e17 0.729226
\(597\) − 7.38908e17i − 0.667970i
\(598\) 3.03375e15i 0.00271283i
\(599\) 1.01218e18 0.895328 0.447664 0.894202i \(-0.352256\pi\)
0.447664 + 0.894202i \(0.352256\pi\)
\(600\) 0 0
\(601\) −1.00124e18 −0.866669 −0.433335 0.901233i \(-0.642663\pi\)
−0.433335 + 0.901233i \(0.642663\pi\)
\(602\) − 1.27181e16i − 0.0108905i
\(603\) − 1.57565e17i − 0.133474i
\(604\) −4.91901e17 −0.412228
\(605\) 0 0
\(606\) 1.37069e17 0.112426
\(607\) − 1.81791e18i − 1.47518i −0.675249 0.737590i \(-0.735964\pi\)
0.675249 0.737590i \(-0.264036\pi\)
\(608\) 1.28405e18i 1.03089i
\(609\) −4.39072e17 −0.348757
\(610\) 0 0
\(611\) 2.36812e15 0.00184135
\(612\) − 3.13767e17i − 0.241392i
\(613\) 1.45199e18i 1.10527i 0.833422 + 0.552637i \(0.186378\pi\)
−0.833422 + 0.552637i \(0.813622\pi\)
\(614\) −8.67229e16 −0.0653190
\(615\) 0 0
\(616\) 4.72947e15 0.00348769
\(617\) 7.36777e17i 0.537629i 0.963192 + 0.268814i \(0.0866318\pi\)
−0.963192 + 0.268814i \(0.913368\pi\)
\(618\) 1.41294e17i 0.102023i
\(619\) −3.78289e16 −0.0270293 −0.0135147 0.999909i \(-0.504302\pi\)
−0.0135147 + 0.999909i \(0.504302\pi\)
\(620\) 0 0
\(621\) 1.02302e17 0.0715798
\(622\) 4.09901e17i 0.283819i
\(623\) − 7.71006e17i − 0.528306i
\(624\) −2.70004e16 −0.0183093
\(625\) 0 0
\(626\) 4.55273e16 0.0302370
\(627\) 3.86017e16i 0.0253727i
\(628\) − 2.72592e18i − 1.77327i
\(629\) 1.39024e18 0.895077
\(630\) 0 0
\(631\) 1.18325e18 0.746253 0.373127 0.927780i \(-0.378286\pi\)
0.373127 + 0.927780i \(0.378286\pi\)
\(632\) − 1.36992e17i − 0.0855137i
\(633\) − 4.87344e17i − 0.301101i
\(634\) −1.28576e16 −0.00786286
\(635\) 0 0
\(636\) −1.31897e18 −0.790247
\(637\) − 5.29490e16i − 0.0314016i
\(638\) 1.41374e16i 0.00829920i
\(639\) 2.11322e17 0.122798
\(640\) 0 0
\(641\) 2.00244e17 0.114020 0.0570102 0.998374i \(-0.481843\pi\)
0.0570102 + 0.998374i \(0.481843\pi\)
\(642\) − 1.68312e17i − 0.0948721i
\(643\) − 2.12199e18i − 1.18406i −0.805917 0.592028i \(-0.798327\pi\)
0.805917 0.592028i \(-0.201673\pi\)
\(644\) 2.32470e17 0.128413
\(645\) 0 0
\(646\) −5.06586e17 −0.274247
\(647\) − 1.12704e18i − 0.604032i −0.953303 0.302016i \(-0.902340\pi\)
0.953303 0.302016i \(-0.0976595\pi\)
\(648\) − 8.29443e16i − 0.0440097i
\(649\) −5.91910e16 −0.0310932
\(650\) 0 0
\(651\) −1.28277e17 −0.0660497
\(652\) 3.37427e18i 1.72016i
\(653\) 2.48373e18i 1.25363i 0.779169 + 0.626813i \(0.215641\pi\)
−0.779169 + 0.626813i \(0.784359\pi\)
\(654\) 2.00082e17 0.0999891
\(655\) 0 0
\(656\) −4.99913e17 −0.244917
\(657\) − 7.31943e17i − 0.355060i
\(658\) 7.73349e15i 0.00371456i
\(659\) −3.56057e18 −1.69342 −0.846709 0.532056i \(-0.821420\pi\)
−0.846709 + 0.532056i \(0.821420\pi\)
\(660\) 0 0
\(661\) −1.25090e18 −0.583329 −0.291664 0.956521i \(-0.594209\pi\)
−0.291664 + 0.956521i \(0.594209\pi\)
\(662\) − 5.48752e17i − 0.253396i
\(663\) − 3.43928e16i − 0.0157264i
\(664\) −1.40167e18 −0.634680
\(665\) 0 0
\(666\) 1.79921e17 0.0798911
\(667\) 1.41942e18i 0.624158i
\(668\) − 2.43307e18i − 1.05952i
\(669\) 4.84306e17 0.208858
\(670\) 0 0
\(671\) −5.84364e16 −0.0247165
\(672\) − 2.84688e17i − 0.119253i
\(673\) − 2.74283e18i − 1.13789i −0.822375 0.568946i \(-0.807352\pi\)
0.822375 0.568946i \(-0.192648\pi\)
\(674\) 4.76302e17 0.195701
\(675\) 0 0
\(676\) 2.37664e18 0.957877
\(677\) 4.19537e18i 1.67473i 0.546646 + 0.837364i \(0.315905\pi\)
−0.546646 + 0.837364i \(0.684095\pi\)
\(678\) − 4.15987e17i − 0.164470i
\(679\) −1.55551e18 −0.609144
\(680\) 0 0
\(681\) −2.00382e18 −0.769842
\(682\) 4.13031e15i 0.00157175i
\(683\) 2.74346e18i 1.03410i 0.855954 + 0.517052i \(0.172971\pi\)
−0.855954 + 0.517052i \(0.827029\pi\)
\(684\) 1.53837e18 0.574376
\(685\) 0 0
\(686\) 3.71567e17 0.136123
\(687\) 1.40776e18i 0.510869i
\(688\) − 3.65925e17i − 0.131543i
\(689\) −1.44575e17 −0.0514836
\(690\) 0 0
\(691\) −5.46424e18 −1.90951 −0.954756 0.297390i \(-0.903884\pi\)
−0.954756 + 0.297390i \(0.903884\pi\)
\(692\) − 3.54053e17i − 0.122569i
\(693\) − 8.55838e15i − 0.00293512i
\(694\) −1.09146e18 −0.370828
\(695\) 0 0
\(696\) 1.15083e18 0.383754
\(697\) − 6.36782e17i − 0.210367i
\(698\) − 4.98248e17i − 0.163074i
\(699\) −2.21982e18 −0.719808
\(700\) 0 0
\(701\) −5.09836e18 −1.62279 −0.811397 0.584495i \(-0.801293\pi\)
−0.811397 + 0.584495i \(0.801293\pi\)
\(702\) − 4.45101e15i − 0.00140368i
\(703\) 6.81621e18i 2.12977i
\(704\) 6.02909e16 0.0186651
\(705\) 0 0
\(706\) −1.03901e18 −0.315784
\(707\) − 1.15130e18i − 0.346706i
\(708\) 2.35891e18i 0.703874i
\(709\) 2.21731e18 0.655580 0.327790 0.944751i \(-0.393696\pi\)
0.327790 + 0.944751i \(0.393696\pi\)
\(710\) 0 0
\(711\) −2.47899e17 −0.0719653
\(712\) 2.02085e18i 0.581320i
\(713\) 4.14691e17i 0.118207i
\(714\) 1.12315e17 0.0317249
\(715\) 0 0
\(716\) −1.36907e18 −0.379743
\(717\) 1.19465e18i 0.328371i
\(718\) − 1.28515e18i − 0.350062i
\(719\) −5.05135e18 −1.36355 −0.681773 0.731563i \(-0.738791\pi\)
−0.681773 + 0.731563i \(0.738791\pi\)
\(720\) 0 0
\(721\) 1.18678e18 0.314623
\(722\) − 1.71422e18i − 0.450375i
\(723\) 1.70312e17i 0.0443452i
\(724\) 5.42109e18 1.39890
\(725\) 0 0
\(726\) 4.60253e17 0.116656
\(727\) 2.06443e18i 0.518594i 0.965798 + 0.259297i \(0.0834908\pi\)
−0.965798 + 0.259297i \(0.916509\pi\)
\(728\) − 2.06599e16i − 0.00514367i
\(729\) −1.50095e17 −0.0370370
\(730\) 0 0
\(731\) 4.66110e17 0.112986
\(732\) 2.32884e18i 0.559522i
\(733\) 2.95043e18i 0.702603i 0.936262 + 0.351301i \(0.114261\pi\)
−0.936262 + 0.351301i \(0.885739\pi\)
\(734\) −3.87717e17 −0.0915147
\(735\) 0 0
\(736\) −9.20335e17 −0.213422
\(737\) 4.26130e16i 0.00979498i
\(738\) − 8.24104e16i − 0.0187766i
\(739\) 1.77031e18 0.399816 0.199908 0.979815i \(-0.435936\pi\)
0.199908 + 0.979815i \(0.435936\pi\)
\(740\) 0 0
\(741\) 1.68625e17 0.0374199
\(742\) − 4.72133e17i − 0.103858i
\(743\) − 8.75773e18i − 1.90970i −0.297094 0.954848i \(-0.596017\pi\)
0.297094 0.954848i \(-0.403983\pi\)
\(744\) 3.36221e17 0.0726776
\(745\) 0 0
\(746\) −4.15372e17 −0.0882339
\(747\) 2.53645e18i 0.534124i
\(748\) 8.48575e16i 0.0177145i
\(749\) −1.41372e18 −0.292571
\(750\) 0 0
\(751\) 3.32951e18 0.677205 0.338602 0.940930i \(-0.390046\pi\)
0.338602 + 0.940930i \(0.390046\pi\)
\(752\) 2.22507e17i 0.0448671i
\(753\) 2.61090e18i 0.521944i
\(754\) 6.17569e16 0.0122397
\(755\) 0 0
\(756\) −3.41072e17 −0.0664439
\(757\) 1.11835e17i 0.0216001i 0.999942 + 0.0108000i \(0.00343783\pi\)
−0.999942 + 0.0108000i \(0.996562\pi\)
\(758\) − 6.60685e17i − 0.126516i
\(759\) −2.76674e16 −0.00525287
\(760\) 0 0
\(761\) 1.10635e18 0.206486 0.103243 0.994656i \(-0.467078\pi\)
0.103243 + 0.994656i \(0.467078\pi\)
\(762\) − 9.24045e17i − 0.170996i
\(763\) − 1.68057e18i − 0.308351i
\(764\) 5.91165e18 1.07548
\(765\) 0 0
\(766\) −3.92359e17 −0.0701773
\(767\) 2.58565e17i 0.0458565i
\(768\) − 2.02186e18i − 0.355553i
\(769\) −7.10729e18 −1.23932 −0.619659 0.784871i \(-0.712729\pi\)
−0.619659 + 0.784871i \(0.712729\pi\)
\(770\) 0 0
\(771\) 5.54471e18 0.950661
\(772\) − 3.28782e18i − 0.558979i
\(773\) − 4.57751e18i − 0.771724i −0.922556 0.385862i \(-0.873904\pi\)
0.922556 0.385862i \(-0.126096\pi\)
\(774\) 6.03226e16 0.0100847
\(775\) 0 0
\(776\) 4.07709e18 0.670270
\(777\) − 1.51122e18i − 0.246372i
\(778\) 1.19485e18i 0.193172i
\(779\) 3.12208e18 0.500554
\(780\) 0 0
\(781\) −5.71515e16 −0.00901148
\(782\) − 3.63091e17i − 0.0567768i
\(783\) − 2.08253e18i − 0.322954i
\(784\) 4.97504e18 0.765143
\(785\) 0 0
\(786\) 4.81223e17 0.0727947
\(787\) − 8.42386e18i − 1.26379i −0.775053 0.631896i \(-0.782277\pi\)
0.775053 0.631896i \(-0.217723\pi\)
\(788\) − 3.96287e18i − 0.589643i
\(789\) −5.73106e18 −0.845736
\(790\) 0 0
\(791\) −3.49403e18 −0.507201
\(792\) 2.24320e16i 0.00322965i
\(793\) 2.55269e17i 0.0364521i
\(794\) 5.99075e17 0.0848492
\(795\) 0 0
\(796\) 7.96393e18 1.10967
\(797\) − 4.95824e18i − 0.685249i −0.939472 0.342625i \(-0.888684\pi\)
0.939472 0.342625i \(-0.111316\pi\)
\(798\) 5.50670e17i 0.0754871i
\(799\) −2.83426e17 −0.0385377
\(800\) 0 0
\(801\) 3.65691e18 0.489218
\(802\) − 6.71897e17i − 0.0891598i
\(803\) 1.97952e17i 0.0260560i
\(804\) 1.69823e18 0.221734
\(805\) 0 0
\(806\) 1.80425e16 0.00231803
\(807\) − 4.40646e18i − 0.561580i
\(808\) 3.01762e18i 0.381497i
\(809\) 2.91720e18 0.365848 0.182924 0.983127i \(-0.441444\pi\)
0.182924 + 0.983127i \(0.441444\pi\)
\(810\) 0 0
\(811\) 2.27898e18 0.281258 0.140629 0.990062i \(-0.455088\pi\)
0.140629 + 0.990062i \(0.455088\pi\)
\(812\) − 4.73231e18i − 0.579374i
\(813\) 8.32659e18i 1.01130i
\(814\) −4.86590e16 −0.00586280
\(815\) 0 0
\(816\) 3.23152e18 0.383195
\(817\) 2.28529e18i 0.268843i
\(818\) 4.35016e15i 0 0.000507702i
\(819\) −3.73857e16 −0.00432873
\(820\) 0 0
\(821\) −9.35907e18 −1.06660 −0.533301 0.845926i \(-0.679049\pi\)
−0.533301 + 0.845926i \(0.679049\pi\)
\(822\) − 1.12913e18i − 0.127666i
\(823\) 1.20581e19i 1.35264i 0.736609 + 0.676319i \(0.236426\pi\)
−0.736609 + 0.676319i \(0.763574\pi\)
\(824\) −3.11063e18 −0.346195
\(825\) 0 0
\(826\) −8.44386e17 −0.0925062
\(827\) − 7.53213e18i − 0.818714i −0.912374 0.409357i \(-0.865753\pi\)
0.912374 0.409357i \(-0.134247\pi\)
\(828\) 1.10261e18i 0.118912i
\(829\) −1.09464e19 −1.17130 −0.585649 0.810565i \(-0.699160\pi\)
−0.585649 + 0.810565i \(0.699160\pi\)
\(830\) 0 0
\(831\) −1.20995e18 −0.127456
\(832\) − 2.63370e17i − 0.0275274i
\(833\) 6.33714e18i 0.657205i
\(834\) 1.65162e17 0.0169954
\(835\) 0 0
\(836\) −4.16048e17 −0.0421505
\(837\) − 6.08420e17i − 0.0611629i
\(838\) − 1.97166e18i − 0.196674i
\(839\) 1.38440e19 1.37028 0.685139 0.728413i \(-0.259742\pi\)
0.685139 + 0.728413i \(0.259742\pi\)
\(840\) 0 0
\(841\) 1.86341e19 1.81607
\(842\) 8.17677e16i 0.00790775i
\(843\) 9.34826e18i 0.897122i
\(844\) 5.25259e18 0.500204
\(845\) 0 0
\(846\) −3.66802e16 −0.00343973
\(847\) − 3.86584e18i − 0.359751i
\(848\) − 1.35842e19i − 1.25447i
\(849\) 1.13253e19 1.03789
\(850\) 0 0
\(851\) −4.88546e18 −0.440923
\(852\) 2.27763e18i 0.203998i
\(853\) − 1.10709e19i − 0.984039i −0.870584 0.492020i \(-0.836259\pi\)
0.870584 0.492020i \(-0.163741\pi\)
\(854\) −8.33622e17 −0.0735348
\(855\) 0 0
\(856\) 3.70545e18 0.321930
\(857\) − 3.38629e18i − 0.291977i −0.989286 0.145989i \(-0.953364\pi\)
0.989286 0.145989i \(-0.0466363\pi\)
\(858\) 1.20376e15i 0 0.000103009i
\(859\) −5.43237e18 −0.461354 −0.230677 0.973030i \(-0.574094\pi\)
−0.230677 + 0.973030i \(0.574094\pi\)
\(860\) 0 0
\(861\) −6.92196e17 −0.0579040
\(862\) 4.35575e18i 0.361631i
\(863\) − 1.86531e18i − 0.153703i −0.997043 0.0768513i \(-0.975513\pi\)
0.997043 0.0768513i \(-0.0244867\pi\)
\(864\) 1.35028e18 0.110430
\(865\) 0 0
\(866\) −2.78752e17 −0.0224570
\(867\) − 3.10418e18i − 0.248212i
\(868\) − 1.38256e18i − 0.109725i
\(869\) 6.70437e16 0.00528116
\(870\) 0 0
\(871\) 1.86147e17 0.0144457
\(872\) 4.40487e18i 0.339294i
\(873\) − 7.37784e18i − 0.564075i
\(874\) 1.78020e18 0.135097
\(875\) 0 0
\(876\) 7.88887e18 0.589845
\(877\) 1.78738e19i 1.32654i 0.748381 + 0.663269i \(0.230831\pi\)
−0.748381 + 0.663269i \(0.769169\pi\)
\(878\) − 2.68501e18i − 0.197803i
\(879\) −1.13991e19 −0.833568
\(880\) 0 0
\(881\) 3.72462e18 0.268372 0.134186 0.990956i \(-0.457158\pi\)
0.134186 + 0.990956i \(0.457158\pi\)
\(882\) 8.20134e17i 0.0586596i
\(883\) 1.78621e19i 1.26820i 0.773250 + 0.634102i \(0.218630\pi\)
−0.773250 + 0.634102i \(0.781370\pi\)
\(884\) 3.70685e17 0.0261255
\(885\) 0 0
\(886\) −3.31009e18 −0.229890
\(887\) 1.20818e19i 0.832967i 0.909143 + 0.416483i \(0.136738\pi\)
−0.909143 + 0.416483i \(0.863262\pi\)
\(888\) 3.96101e18i 0.271095i
\(889\) −7.76141e18 −0.527326
\(890\) 0 0
\(891\) 4.05927e16 0.00271796
\(892\) 5.21985e18i 0.346965i
\(893\) − 1.38961e18i − 0.0916978i
\(894\) −1.35472e18 −0.0887474
\(895\) 0 0
\(896\) 4.05920e18 0.262083
\(897\) 1.20860e17i 0.00774697i
\(898\) − 5.24444e18i − 0.333736i
\(899\) 8.44170e18 0.533325
\(900\) 0 0
\(901\) 1.73033e19 1.07750
\(902\) 2.22877e16i 0.00137791i
\(903\) − 5.06672e17i − 0.0310997i
\(904\) 9.15808e18 0.558097
\(905\) 0 0
\(906\) 8.35150e17 0.0501685
\(907\) − 1.97495e19i − 1.17790i −0.808168 0.588951i \(-0.799541\pi\)
0.808168 0.588951i \(-0.200459\pi\)
\(908\) − 2.15971e19i − 1.27890i
\(909\) 5.46064e18 0.321054
\(910\) 0 0
\(911\) −2.11213e19 −1.22420 −0.612100 0.790781i \(-0.709675\pi\)
−0.612100 + 0.790781i \(0.709675\pi\)
\(912\) 1.58438e19i 0.911787i
\(913\) − 6.85975e17i − 0.0391966i
\(914\) 3.67002e18 0.208218
\(915\) 0 0
\(916\) −1.51728e19 −0.848683
\(917\) − 4.04197e18i − 0.224488i
\(918\) 5.32714e17i 0.0293776i
\(919\) 2.23735e18 0.122513 0.0612566 0.998122i \(-0.480489\pi\)
0.0612566 + 0.998122i \(0.480489\pi\)
\(920\) 0 0
\(921\) −3.45491e18 −0.186530
\(922\) 1.28723e18i 0.0690092i
\(923\) 2.49656e17i 0.0132902i
\(924\) 9.22421e16 0.00487597
\(925\) 0 0
\(926\) −3.14531e18 −0.163943
\(927\) 5.62894e18i 0.291345i
\(928\) 1.87349e19i 0.962919i
\(929\) −2.69207e19 −1.37399 −0.686996 0.726662i \(-0.741071\pi\)
−0.686996 + 0.726662i \(0.741071\pi\)
\(930\) 0 0
\(931\) −3.10704e19 −1.56377
\(932\) − 2.39252e19i − 1.19578i
\(933\) 1.63298e19i 0.810497i
\(934\) 9.83900e17 0.0484949
\(935\) 0 0
\(936\) 9.79904e16 0.00476311
\(937\) 1.74551e19i 0.842588i 0.906924 + 0.421294i \(0.138424\pi\)
−0.906924 + 0.421294i \(0.861576\pi\)
\(938\) 6.07894e17i 0.0291413i
\(939\) 1.81374e18 0.0863474
\(940\) 0 0
\(941\) −2.30287e19 −1.08128 −0.540638 0.841255i \(-0.681817\pi\)
−0.540638 + 0.841255i \(0.681817\pi\)
\(942\) 4.62807e18i 0.215809i
\(943\) 2.23772e18i 0.103629i
\(944\) −2.42946e19 −1.11736
\(945\) 0 0
\(946\) −1.63141e16 −0.000740065 0
\(947\) − 2.31518e18i − 0.104306i −0.998639 0.0521532i \(-0.983392\pi\)
0.998639 0.0521532i \(-0.0166084\pi\)
\(948\) − 2.67186e18i − 0.119553i
\(949\) 8.64718e17 0.0384277
\(950\) 0 0
\(951\) −5.12229e17 −0.0224538
\(952\) 2.47265e18i 0.107652i
\(953\) − 1.88776e19i − 0.816288i −0.912917 0.408144i \(-0.866176\pi\)
0.912917 0.408144i \(-0.133824\pi\)
\(954\) 2.23934e18 0.0961737
\(955\) 0 0
\(956\) −1.28759e19 −0.545508
\(957\) 5.63215e17i 0.0236999i
\(958\) 2.66627e18i 0.111437i
\(959\) −9.48398e18 −0.393704
\(960\) 0 0
\(961\) −2.19513e19 −0.898996
\(962\) 2.12558e17i 0.00864650i
\(963\) − 6.70532e18i − 0.270925i
\(964\) −1.83562e18 −0.0736686
\(965\) 0 0
\(966\) −3.94688e17 −0.0156280
\(967\) 3.58183e18i 0.140875i 0.997516 + 0.0704374i \(0.0224395\pi\)
−0.997516 + 0.0704374i \(0.977561\pi\)
\(968\) 1.01326e19i 0.395851i
\(969\) −2.01816e19 −0.783162
\(970\) 0 0
\(971\) 3.44871e19 1.32048 0.660240 0.751055i \(-0.270455\pi\)
0.660240 + 0.751055i \(0.270455\pi\)
\(972\) − 1.61772e18i − 0.0615279i
\(973\) − 1.38726e18i − 0.0524112i
\(974\) 4.03572e18 0.151456
\(975\) 0 0
\(976\) −2.39849e19 −0.888206
\(977\) 1.61246e19i 0.593162i 0.955008 + 0.296581i \(0.0958465\pi\)
−0.955008 + 0.296581i \(0.904154\pi\)
\(978\) − 5.72883e18i − 0.209345i
\(979\) −9.89000e17 −0.0359012
\(980\) 0 0
\(981\) 7.97098e18 0.285537
\(982\) 4.46164e17i 0.0158770i
\(983\) 1.25333e19i 0.443065i 0.975153 + 0.221532i \(0.0711059\pi\)
−0.975153 + 0.221532i \(0.928894\pi\)
\(984\) 1.81429e18 0.0637146
\(985\) 0 0
\(986\) −7.39130e18 −0.256166
\(987\) 3.08091e17i 0.0106076i
\(988\) 1.81743e18i 0.0621639i
\(989\) −1.63796e18 −0.0556581
\(990\) 0 0
\(991\) −5.10124e18 −0.171079 −0.0855396 0.996335i \(-0.527261\pi\)
−0.0855396 + 0.996335i \(0.527261\pi\)
\(992\) 5.47348e18i 0.182363i
\(993\) − 2.18615e19i − 0.723618i
\(994\) −8.15292e17 −0.0268103
\(995\) 0 0
\(996\) −2.73378e19 −0.887315
\(997\) 2.50551e18i 0.0807939i 0.999184 + 0.0403969i \(0.0128622\pi\)
−0.999184 + 0.0403969i \(0.987138\pi\)
\(998\) 4.66108e18i 0.149327i
\(999\) 7.16778e18 0.228144
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.14.b.e.49.2 4
5.2 odd 4 75.14.a.c.1.2 2
5.3 odd 4 15.14.a.c.1.1 2
5.4 even 2 inner 75.14.b.e.49.3 4
15.8 even 4 45.14.a.b.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.14.a.c.1.1 2 5.3 odd 4
45.14.a.b.1.2 2 15.8 even 4
75.14.a.c.1.2 2 5.2 odd 4
75.14.b.e.49.2 4 1.1 even 1 trivial
75.14.b.e.49.3 4 5.4 even 2 inner