Properties

Label 75.14.b.b.49.2
Level $75$
Weight $14$
Character 75.49
Analytic conductor $80.423$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,14,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(80.4231967139\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.14.b.b.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.0000i q^{2} -729.000i q^{3} +8048.00 q^{4} +8748.00 q^{6} -235088. i q^{7} +194880. i q^{8} -531441. q^{9} -1.11829e7 q^{11} -5.86699e6i q^{12} +8.04961e6i q^{13} +2.82106e6 q^{14} +6.35907e7 q^{16} +1.17495e8i q^{17} -6.37729e6i q^{18} +2.14061e8 q^{19} -1.71379e8 q^{21} -1.34195e8i q^{22} +8.30556e8i q^{23} +1.42068e8 q^{24} -9.65954e7 q^{26} +3.87420e8i q^{27} -1.89199e9i q^{28} +1.25240e9 q^{29} +6.15935e9 q^{31} +2.35954e9i q^{32} +8.15234e9i q^{33} -1.40994e9 q^{34} -4.27704e9 q^{36} +5.49819e9i q^{37} +2.56874e9i q^{38} +5.86817e9 q^{39} -4.67869e9 q^{41} -2.05655e9i q^{42} +7.11501e9i q^{43} -9.00000e10 q^{44} -9.96667e9 q^{46} +2.95288e10i q^{47} -4.63576e10i q^{48} +4.16226e10 q^{49} +8.56536e10 q^{51} +6.47833e10i q^{52} -2.04125e11i q^{53} -4.64905e9 q^{54} +4.58139e10 q^{56} -1.56051e11i q^{57} +1.50288e10i q^{58} +2.99098e10 q^{59} -1.34392e11 q^{61} +7.39122e10i q^{62} +1.24935e11i q^{63} +4.92620e11 q^{64} -9.78281e10 q^{66} -3.48519e11i q^{67} +9.45597e11i q^{68} +6.05475e11 q^{69} +1.31434e12 q^{71} -1.03567e11i q^{72} -1.17888e12i q^{73} -6.59783e10 q^{74} +1.72277e12 q^{76} +2.62897e12i q^{77} +7.04180e10i q^{78} +1.07242e12 q^{79} +2.82430e11 q^{81} -5.61443e10i q^{82} +1.12403e12i q^{83} -1.37926e12 q^{84} -8.53802e10 q^{86} -9.13000e11i q^{87} -2.17933e12i q^{88} -2.23561e12 q^{89} +1.89237e12 q^{91} +6.68431e12i q^{92} -4.49017e12i q^{93} -3.54345e11 q^{94} +1.72011e12 q^{96} +1.42153e13i q^{97} +4.99472e11i q^{98} +5.94306e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16096 q^{4} + 17496 q^{6} - 1062882 q^{9} - 22365816 q^{11} + 5642112 q^{14} + 127181312 q^{16} + 428122760 q^{19} - 342758304 q^{21} + 284135040 q^{24} - 193190736 q^{26} + 2504800500 q^{29} + 12318701104 q^{31}+ \cdots + 11886111620856 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 12.0000i 0.132583i 0.997800 + 0.0662913i \(0.0211166\pi\)
−0.997800 + 0.0662913i \(0.978883\pi\)
\(3\) − 729.000i − 0.577350i
\(4\) 8048.00 0.982422
\(5\) 0 0
\(6\) 8748.00 0.0765466
\(7\) − 235088.i − 0.755254i −0.925958 0.377627i \(-0.876740\pi\)
0.925958 0.377627i \(-0.123260\pi\)
\(8\) 194880.i 0.262834i
\(9\) −531441. −0.333333
\(10\) 0 0
\(11\) −1.11829e7 −1.90328 −0.951639 0.307218i \(-0.900602\pi\)
−0.951639 + 0.307218i \(0.900602\pi\)
\(12\) − 5.86699e6i − 0.567202i
\(13\) 8.04961e6i 0.462534i 0.972890 + 0.231267i \(0.0742870\pi\)
−0.972890 + 0.231267i \(0.925713\pi\)
\(14\) 2.82106e6 0.100134
\(15\) 0 0
\(16\) 6.35907e7 0.947575
\(17\) 1.17495e8i 1.18059i 0.807187 + 0.590296i \(0.200989\pi\)
−0.807187 + 0.590296i \(0.799011\pi\)
\(18\) − 6.37729e6i − 0.0441942i
\(19\) 2.14061e8 1.04385 0.521927 0.852990i \(-0.325213\pi\)
0.521927 + 0.852990i \(0.325213\pi\)
\(20\) 0 0
\(21\) −1.71379e8 −0.436046
\(22\) − 1.34195e8i − 0.252341i
\(23\) 8.30556e8i 1.16987i 0.811080 + 0.584935i \(0.198880\pi\)
−0.811080 + 0.584935i \(0.801120\pi\)
\(24\) 1.42068e8 0.151748
\(25\) 0 0
\(26\) −9.65954e7 −0.0613239
\(27\) 3.87420e8i 0.192450i
\(28\) − 1.89199e9i − 0.741978i
\(29\) 1.25240e9 0.390981 0.195491 0.980706i \(-0.437370\pi\)
0.195491 + 0.980706i \(0.437370\pi\)
\(30\) 0 0
\(31\) 6.15935e9 1.24648 0.623238 0.782032i \(-0.285817\pi\)
0.623238 + 0.782032i \(0.285817\pi\)
\(32\) 2.35954e9i 0.388466i
\(33\) 8.15234e9i 1.09886i
\(34\) −1.40994e9 −0.156526
\(35\) 0 0
\(36\) −4.27704e9 −0.327474
\(37\) 5.49819e9i 0.352297i 0.984364 + 0.176148i \(0.0563639\pi\)
−0.984364 + 0.176148i \(0.943636\pi\)
\(38\) 2.56874e9i 0.138397i
\(39\) 5.86817e9 0.267044
\(40\) 0 0
\(41\) −4.67869e9 −0.153826 −0.0769129 0.997038i \(-0.524506\pi\)
−0.0769129 + 0.997038i \(0.524506\pi\)
\(42\) − 2.05655e9i − 0.0578121i
\(43\) 7.11501e9i 0.171645i 0.996310 + 0.0858224i \(0.0273518\pi\)
−0.996310 + 0.0858224i \(0.972648\pi\)
\(44\) −9.00000e10 −1.86982
\(45\) 0 0
\(46\) −9.96667e9 −0.155104
\(47\) 2.95288e10i 0.399585i 0.979838 + 0.199793i \(0.0640268\pi\)
−0.979838 + 0.199793i \(0.935973\pi\)
\(48\) − 4.63576e10i − 0.547082i
\(49\) 4.16226e10 0.429591
\(50\) 0 0
\(51\) 8.56536e10 0.681615
\(52\) 6.47833e10i 0.454403i
\(53\) − 2.04125e11i − 1.26504i −0.774545 0.632518i \(-0.782021\pi\)
0.774545 0.632518i \(-0.217979\pi\)
\(54\) −4.64905e9 −0.0255155
\(55\) 0 0
\(56\) 4.58139e10 0.198507
\(57\) − 1.56051e11i − 0.602670i
\(58\) 1.50288e10i 0.0518373i
\(59\) 2.99098e10 0.0923157 0.0461579 0.998934i \(-0.485302\pi\)
0.0461579 + 0.998934i \(0.485302\pi\)
\(60\) 0 0
\(61\) −1.34392e11 −0.333987 −0.166993 0.985958i \(-0.553406\pi\)
−0.166993 + 0.985958i \(0.553406\pi\)
\(62\) 7.39122e10i 0.165261i
\(63\) 1.24935e11i 0.251751i
\(64\) 4.92620e11 0.896071
\(65\) 0 0
\(66\) −9.78281e10 −0.145689
\(67\) − 3.48519e11i − 0.470695i −0.971911 0.235348i \(-0.924377\pi\)
0.971911 0.235348i \(-0.0756229\pi\)
\(68\) 9.45597e11i 1.15984i
\(69\) 6.05475e11 0.675425
\(70\) 0 0
\(71\) 1.31434e12 1.21766 0.608831 0.793300i \(-0.291639\pi\)
0.608831 + 0.793300i \(0.291639\pi\)
\(72\) − 1.03567e11i − 0.0876115i
\(73\) − 1.17888e12i − 0.911737i −0.890047 0.455868i \(-0.849329\pi\)
0.890047 0.455868i \(-0.150671\pi\)
\(74\) −6.59783e10 −0.0467084
\(75\) 0 0
\(76\) 1.72277e12 1.02551
\(77\) 2.62897e12i 1.43746i
\(78\) 7.04180e10i 0.0354054i
\(79\) 1.07242e12 0.496351 0.248176 0.968715i \(-0.420169\pi\)
0.248176 + 0.968715i \(0.420169\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) − 5.61443e10i − 0.0203946i
\(83\) 1.12403e12i 0.377371i 0.982038 + 0.188685i \(0.0604227\pi\)
−0.982038 + 0.188685i \(0.939577\pi\)
\(84\) −1.37926e12 −0.428381
\(85\) 0 0
\(86\) −8.53802e10 −0.0227571
\(87\) − 9.13000e11i − 0.225733i
\(88\) − 2.17933e12i − 0.500247i
\(89\) −2.23561e12 −0.476827 −0.238414 0.971164i \(-0.576627\pi\)
−0.238414 + 0.971164i \(0.576627\pi\)
\(90\) 0 0
\(91\) 1.89237e12 0.349330
\(92\) 6.68431e12i 1.14931i
\(93\) − 4.49017e12i − 0.719653i
\(94\) −3.54345e11 −0.0529780
\(95\) 0 0
\(96\) 1.72011e12 0.224281
\(97\) 1.42153e13i 1.73276i 0.499385 + 0.866380i \(0.333559\pi\)
−0.499385 + 0.866380i \(0.666441\pi\)
\(98\) 4.99472e11i 0.0569563i
\(99\) 5.94306e12 0.634426
\(100\) 0 0
\(101\) 1.70194e13 1.59535 0.797675 0.603088i \(-0.206063\pi\)
0.797675 + 0.603088i \(0.206063\pi\)
\(102\) 1.02784e12i 0.0903703i
\(103\) 1.09904e13i 0.906928i 0.891275 + 0.453464i \(0.149812\pi\)
−0.891275 + 0.453464i \(0.850188\pi\)
\(104\) −1.56871e12 −0.121570
\(105\) 0 0
\(106\) 2.44950e12 0.167722
\(107\) 1.96403e13i 1.26519i 0.774485 + 0.632593i \(0.218009\pi\)
−0.774485 + 0.632593i \(0.781991\pi\)
\(108\) 3.11796e12i 0.189067i
\(109\) 9.82099e12 0.560897 0.280448 0.959869i \(-0.409517\pi\)
0.280448 + 0.959869i \(0.409517\pi\)
\(110\) 0 0
\(111\) 4.00818e12 0.203399
\(112\) − 1.49494e13i − 0.715660i
\(113\) − 1.70267e13i − 0.769344i −0.923053 0.384672i \(-0.874315\pi\)
0.923053 0.384672i \(-0.125685\pi\)
\(114\) 1.87261e12 0.0799035
\(115\) 0 0
\(116\) 1.00793e13 0.384109
\(117\) − 4.27789e12i − 0.154178i
\(118\) 3.58918e11i 0.0122395i
\(119\) 2.76216e13 0.891648
\(120\) 0 0
\(121\) 9.05347e13 2.62247
\(122\) − 1.61270e12i − 0.0442808i
\(123\) 3.41076e12i 0.0888113i
\(124\) 4.95705e13 1.22457
\(125\) 0 0
\(126\) −1.49922e12 −0.0333778
\(127\) 4.49347e13i 0.950292i 0.879907 + 0.475146i \(0.157605\pi\)
−0.879907 + 0.475146i \(0.842395\pi\)
\(128\) 2.52408e13i 0.507270i
\(129\) 5.18685e12 0.0990992
\(130\) 0 0
\(131\) −1.20182e12 −0.0207768 −0.0103884 0.999946i \(-0.503307\pi\)
−0.0103884 + 0.999946i \(0.503307\pi\)
\(132\) 6.56100e13i 1.07954i
\(133\) − 5.03233e13i − 0.788375i
\(134\) 4.18223e12 0.0624060
\(135\) 0 0
\(136\) −2.28974e13 −0.310300
\(137\) − 1.71562e13i − 0.221685i −0.993838 0.110842i \(-0.964645\pi\)
0.993838 0.110842i \(-0.0353549\pi\)
\(138\) 7.26570e12i 0.0895495i
\(139\) −1.05644e14 −1.24236 −0.621182 0.783666i \(-0.713347\pi\)
−0.621182 + 0.783666i \(0.713347\pi\)
\(140\) 0 0
\(141\) 2.15265e13 0.230701
\(142\) 1.57720e13i 0.161441i
\(143\) − 9.00181e13i − 0.880330i
\(144\) −3.37947e13 −0.315858
\(145\) 0 0
\(146\) 1.41465e13 0.120880
\(147\) − 3.03429e13i − 0.248024i
\(148\) 4.42494e13i 0.346104i
\(149\) 8.53533e13 0.639012 0.319506 0.947584i \(-0.396483\pi\)
0.319506 + 0.947584i \(0.396483\pi\)
\(150\) 0 0
\(151\) −6.16414e13 −0.423177 −0.211589 0.977359i \(-0.567864\pi\)
−0.211589 + 0.977359i \(0.567864\pi\)
\(152\) 4.17163e13i 0.274361i
\(153\) − 6.24415e13i − 0.393531i
\(154\) −3.15476e13 −0.190582
\(155\) 0 0
\(156\) 4.72270e13 0.262350
\(157\) 1.18021e14i 0.628942i 0.949267 + 0.314471i \(0.101827\pi\)
−0.949267 + 0.314471i \(0.898173\pi\)
\(158\) 1.28690e13i 0.0658075i
\(159\) −1.48807e14 −0.730369
\(160\) 0 0
\(161\) 1.95254e14 0.883550
\(162\) 3.38915e12i 0.0147314i
\(163\) 1.54710e14i 0.646099i 0.946382 + 0.323050i \(0.104708\pi\)
−0.946382 + 0.323050i \(0.895292\pi\)
\(164\) −3.76541e13 −0.151122
\(165\) 0 0
\(166\) −1.34883e13 −0.0500328
\(167\) − 3.76012e14i − 1.34136i −0.741748 0.670679i \(-0.766003\pi\)
0.741748 0.670679i \(-0.233997\pi\)
\(168\) − 3.33984e13i − 0.114608i
\(169\) 2.38079e14 0.786063
\(170\) 0 0
\(171\) −1.13761e14 −0.347951
\(172\) 5.72616e13i 0.168628i
\(173\) 3.73562e14i 1.05941i 0.848182 + 0.529704i \(0.177697\pi\)
−0.848182 + 0.529704i \(0.822303\pi\)
\(174\) 1.09560e13 0.0299283
\(175\) 0 0
\(176\) −7.11128e14 −1.80350
\(177\) − 2.18043e13i − 0.0532985i
\(178\) − 2.68273e13i − 0.0632190i
\(179\) −4.23349e13 −0.0961952 −0.0480976 0.998843i \(-0.515316\pi\)
−0.0480976 + 0.998843i \(0.515316\pi\)
\(180\) 0 0
\(181\) −3.10447e14 −0.656261 −0.328130 0.944632i \(-0.606419\pi\)
−0.328130 + 0.944632i \(0.606419\pi\)
\(182\) 2.27084e13i 0.0463151i
\(183\) 9.79718e13i 0.192827i
\(184\) −1.61859e14 −0.307482
\(185\) 0 0
\(186\) 5.38820e13 0.0954134
\(187\) − 1.31393e15i − 2.24700i
\(188\) 2.37648e14i 0.392561i
\(189\) 9.10779e13 0.145349
\(190\) 0 0
\(191\) −8.62273e14 −1.28507 −0.642537 0.766255i \(-0.722118\pi\)
−0.642537 + 0.766255i \(0.722118\pi\)
\(192\) − 3.59120e14i − 0.517347i
\(193\) − 9.37837e14i − 1.30618i −0.757278 0.653092i \(-0.773471\pi\)
0.757278 0.653092i \(-0.226529\pi\)
\(194\) −1.70583e14 −0.229734
\(195\) 0 0
\(196\) 3.34979e14 0.422040
\(197\) 6.71715e14i 0.818756i 0.912365 + 0.409378i \(0.134254\pi\)
−0.912365 + 0.409378i \(0.865746\pi\)
\(198\) 7.13167e13i 0.0841138i
\(199\) 4.36451e13 0.0498185 0.0249093 0.999690i \(-0.492070\pi\)
0.0249093 + 0.999690i \(0.492070\pi\)
\(200\) 0 0
\(201\) −2.54070e14 −0.271756
\(202\) 2.04233e14i 0.211515i
\(203\) − 2.94424e14i − 0.295290i
\(204\) 6.89340e14 0.669634
\(205\) 0 0
\(206\) −1.31885e14 −0.120243
\(207\) − 4.41391e14i − 0.389957i
\(208\) 5.11880e14i 0.438285i
\(209\) −2.39383e15 −1.98675
\(210\) 0 0
\(211\) −1.62162e15 −1.26507 −0.632534 0.774533i \(-0.717985\pi\)
−0.632534 + 0.774533i \(0.717985\pi\)
\(212\) − 1.64280e15i − 1.24280i
\(213\) − 9.58151e14i − 0.703018i
\(214\) −2.35684e14 −0.167742
\(215\) 0 0
\(216\) −7.55005e13 −0.0505825
\(217\) − 1.44799e15i − 0.941406i
\(218\) 1.17852e14i 0.0743651i
\(219\) −8.59401e14 −0.526392
\(220\) 0 0
\(221\) −9.45786e14 −0.546064
\(222\) 4.80982e13i 0.0269671i
\(223\) 1.47333e15i 0.802266i 0.916020 + 0.401133i \(0.131383\pi\)
−0.916020 + 0.401133i \(0.868617\pi\)
\(224\) 5.54701e14 0.293391
\(225\) 0 0
\(226\) 2.04320e14 0.102002
\(227\) 3.74889e15i 1.81859i 0.416153 + 0.909294i \(0.363378\pi\)
−0.416153 + 0.909294i \(0.636622\pi\)
\(228\) − 1.25590e15i − 0.592076i
\(229\) 1.47993e13 0.00678126 0.00339063 0.999994i \(-0.498921\pi\)
0.00339063 + 0.999994i \(0.498921\pi\)
\(230\) 0 0
\(231\) 1.91652e15 0.829917
\(232\) 2.44068e14i 0.102763i
\(233\) 3.63053e15i 1.48647i 0.669030 + 0.743236i \(0.266710\pi\)
−0.669030 + 0.743236i \(0.733290\pi\)
\(234\) 5.13347e13 0.0204413
\(235\) 0 0
\(236\) 2.40714e14 0.0906930
\(237\) − 7.81795e14i − 0.286569i
\(238\) 3.31459e14i 0.118217i
\(239\) 4.33900e15 1.50592 0.752962 0.658063i \(-0.228624\pi\)
0.752962 + 0.658063i \(0.228624\pi\)
\(240\) 0 0
\(241\) 3.02372e15 0.994103 0.497051 0.867721i \(-0.334416\pi\)
0.497051 + 0.867721i \(0.334416\pi\)
\(242\) 1.08642e15i 0.347693i
\(243\) − 2.05891e14i − 0.0641500i
\(244\) −1.08159e15 −0.328116
\(245\) 0 0
\(246\) −4.09292e13 −0.0117748
\(247\) 1.72311e15i 0.482818i
\(248\) 1.20033e15i 0.327617i
\(249\) 8.19414e14 0.217875
\(250\) 0 0
\(251\) −1.75146e15 −0.442099 −0.221050 0.975263i \(-0.570948\pi\)
−0.221050 + 0.975263i \(0.570948\pi\)
\(252\) 1.00548e15i 0.247326i
\(253\) − 9.28803e15i − 2.22659i
\(254\) −5.39216e14 −0.125992
\(255\) 0 0
\(256\) 3.73265e15 0.828816
\(257\) − 4.87604e15i − 1.05561i −0.849367 0.527803i \(-0.823016\pi\)
0.849367 0.527803i \(-0.176984\pi\)
\(258\) 6.22421e13i 0.0131388i
\(259\) 1.29256e15 0.266074
\(260\) 0 0
\(261\) −6.65577e14 −0.130327
\(262\) − 1.44219e13i − 0.00275463i
\(263\) 4.67882e15i 0.871815i 0.899992 + 0.435907i \(0.143572\pi\)
−0.899992 + 0.435907i \(0.856428\pi\)
\(264\) −1.58873e15 −0.288818
\(265\) 0 0
\(266\) 6.03879e14 0.104525
\(267\) 1.62976e15i 0.275296i
\(268\) − 2.80488e15i − 0.462422i
\(269\) 1.80262e15 0.290078 0.145039 0.989426i \(-0.453669\pi\)
0.145039 + 0.989426i \(0.453669\pi\)
\(270\) 0 0
\(271\) 6.10016e15 0.935494 0.467747 0.883862i \(-0.345066\pi\)
0.467747 + 0.883862i \(0.345066\pi\)
\(272\) 7.47156e15i 1.11870i
\(273\) − 1.37954e15i − 0.201686i
\(274\) 2.05874e14 0.0293915
\(275\) 0 0
\(276\) 4.87286e15 0.663552
\(277\) 1.07023e16i 1.42351i 0.702428 + 0.711754i \(0.252099\pi\)
−0.702428 + 0.711754i \(0.747901\pi\)
\(278\) − 1.26773e15i − 0.164716i
\(279\) −3.27333e15 −0.415492
\(280\) 0 0
\(281\) −2.45460e15 −0.297433 −0.148717 0.988880i \(-0.547514\pi\)
−0.148717 + 0.988880i \(0.547514\pi\)
\(282\) 2.58318e14i 0.0305869i
\(283\) 4.01155e15i 0.464195i 0.972692 + 0.232098i \(0.0745589\pi\)
−0.972692 + 0.232098i \(0.925441\pi\)
\(284\) 1.05778e16 1.19626
\(285\) 0 0
\(286\) 1.08022e15 0.116716
\(287\) 1.09990e15i 0.116178i
\(288\) − 1.25396e15i − 0.129489i
\(289\) −3.90041e15 −0.393799
\(290\) 0 0
\(291\) 1.03629e16 1.00041
\(292\) − 9.48759e15i − 0.895710i
\(293\) 2.08187e15i 0.192227i 0.995370 + 0.0961133i \(0.0306411\pi\)
−0.995370 + 0.0961133i \(0.969359\pi\)
\(294\) 3.64115e14 0.0328837
\(295\) 0 0
\(296\) −1.07149e15 −0.0925957
\(297\) − 4.33249e15i − 0.366286i
\(298\) 1.02424e15i 0.0847219i
\(299\) −6.68565e15 −0.541104
\(300\) 0 0
\(301\) 1.67265e15 0.129636
\(302\) − 7.39697e14i − 0.0561059i
\(303\) − 1.24072e16i − 0.921075i
\(304\) 1.36123e16 0.989130
\(305\) 0 0
\(306\) 7.49298e14 0.0521753
\(307\) 1.32352e16i 0.902260i 0.892458 + 0.451130i \(0.148979\pi\)
−0.892458 + 0.451130i \(0.851021\pi\)
\(308\) 2.11579e16i 1.41219i
\(309\) 8.01202e15 0.523615
\(310\) 0 0
\(311\) −8.09301e15 −0.507187 −0.253593 0.967311i \(-0.581612\pi\)
−0.253593 + 0.967311i \(0.581612\pi\)
\(312\) 1.14359e15i 0.0701883i
\(313\) − 1.48181e16i − 0.890748i −0.895345 0.445374i \(-0.853071\pi\)
0.895345 0.445374i \(-0.146929\pi\)
\(314\) −1.41625e15 −0.0833868
\(315\) 0 0
\(316\) 8.63084e15 0.487626
\(317\) 2.43171e16i 1.34594i 0.739670 + 0.672970i \(0.234982\pi\)
−0.739670 + 0.672970i \(0.765018\pi\)
\(318\) − 1.78569e15i − 0.0968342i
\(319\) −1.40055e16 −0.744147
\(320\) 0 0
\(321\) 1.43178e16 0.730455
\(322\) 2.34304e15i 0.117143i
\(323\) 2.51511e16i 1.23237i
\(324\) 2.27299e15 0.109158
\(325\) 0 0
\(326\) −1.85652e15 −0.0856615
\(327\) − 7.15950e15i − 0.323834i
\(328\) − 9.11783e14i − 0.0404307i
\(329\) 6.94186e15 0.301788
\(330\) 0 0
\(331\) 1.16232e16 0.485783 0.242892 0.970053i \(-0.421904\pi\)
0.242892 + 0.970053i \(0.421904\pi\)
\(332\) 9.04615e15i 0.370737i
\(333\) − 2.92196e15i − 0.117432i
\(334\) 4.51214e15 0.177841
\(335\) 0 0
\(336\) −1.08981e16 −0.413186
\(337\) − 4.62652e16i − 1.72052i −0.509853 0.860262i \(-0.670300\pi\)
0.509853 0.860262i \(-0.329700\pi\)
\(338\) 2.85695e15i 0.104218i
\(339\) −1.24125e16 −0.444181
\(340\) 0 0
\(341\) −6.88795e16 −2.37239
\(342\) − 1.36513e15i − 0.0461323i
\(343\) − 3.25624e16i − 1.07970i
\(344\) −1.38657e15 −0.0451142
\(345\) 0 0
\(346\) −4.48275e15 −0.140459
\(347\) − 4.79404e15i − 0.147421i −0.997280 0.0737106i \(-0.976516\pi\)
0.997280 0.0737106i \(-0.0234841\pi\)
\(348\) − 7.34782e15i − 0.221765i
\(349\) −3.76900e16 −1.11651 −0.558253 0.829671i \(-0.688528\pi\)
−0.558253 + 0.829671i \(0.688528\pi\)
\(350\) 0 0
\(351\) −3.11859e15 −0.0890146
\(352\) − 2.63866e16i − 0.739360i
\(353\) 4.80179e16i 1.32089i 0.750873 + 0.660446i \(0.229633\pi\)
−0.750873 + 0.660446i \(0.770367\pi\)
\(354\) 2.61651e14 0.00706645
\(355\) 0 0
\(356\) −1.79922e16 −0.468446
\(357\) − 2.01361e16i − 0.514793i
\(358\) − 5.08018e14i − 0.0127538i
\(359\) −4.06616e16 −1.00247 −0.501234 0.865312i \(-0.667120\pi\)
−0.501234 + 0.865312i \(0.667120\pi\)
\(360\) 0 0
\(361\) 3.76929e15 0.0896320
\(362\) − 3.72536e15i − 0.0870087i
\(363\) − 6.59998e16i − 1.51408i
\(364\) 1.52298e16 0.343190
\(365\) 0 0
\(366\) −1.17566e15 −0.0255656
\(367\) − 2.96733e16i − 0.633923i −0.948438 0.316961i \(-0.897337\pi\)
0.948438 0.316961i \(-0.102663\pi\)
\(368\) 5.28156e16i 1.10854i
\(369\) 2.48645e15 0.0512752
\(370\) 0 0
\(371\) −4.79873e16 −0.955424
\(372\) − 3.61369e16i − 0.707003i
\(373\) − 9.01346e16i − 1.73294i −0.499227 0.866471i \(-0.666383\pi\)
0.499227 0.866471i \(-0.333617\pi\)
\(374\) 1.57672e16 0.297912
\(375\) 0 0
\(376\) −5.75457e15 −0.105025
\(377\) 1.00813e16i 0.180842i
\(378\) 1.09293e15i 0.0192707i
\(379\) 1.54841e16 0.268369 0.134184 0.990956i \(-0.457159\pi\)
0.134184 + 0.990956i \(0.457159\pi\)
\(380\) 0 0
\(381\) 3.27574e16 0.548652
\(382\) − 1.03473e16i − 0.170378i
\(383\) 9.37088e15i 0.151701i 0.997119 + 0.0758505i \(0.0241672\pi\)
−0.997119 + 0.0758505i \(0.975833\pi\)
\(384\) 1.84006e16 0.292872
\(385\) 0 0
\(386\) 1.12540e16 0.173177
\(387\) − 3.78121e15i − 0.0572150i
\(388\) 1.14404e17i 1.70230i
\(389\) −2.95806e16 −0.432847 −0.216423 0.976300i \(-0.569439\pi\)
−0.216423 + 0.976300i \(0.569439\pi\)
\(390\) 0 0
\(391\) −9.75858e16 −1.38114
\(392\) 8.11142e15i 0.112911i
\(393\) 8.76130e14i 0.0119955i
\(394\) −8.06058e15 −0.108553
\(395\) 0 0
\(396\) 4.78297e16 0.623274
\(397\) − 1.80617e16i − 0.231538i −0.993276 0.115769i \(-0.963067\pi\)
0.993276 0.115769i \(-0.0369332\pi\)
\(398\) 5.23742e14i 0.00660507i
\(399\) −3.66857e16 −0.455169
\(400\) 0 0
\(401\) −1.20412e17 −1.44621 −0.723107 0.690736i \(-0.757287\pi\)
−0.723107 + 0.690736i \(0.757287\pi\)
\(402\) − 3.04884e15i − 0.0360301i
\(403\) 4.95804e16i 0.576537i
\(404\) 1.36972e17 1.56731
\(405\) 0 0
\(406\) 3.53309e15 0.0391503
\(407\) − 6.14858e16i − 0.670519i
\(408\) 1.66922e16i 0.179152i
\(409\) 1.77522e16 0.187521 0.0937606 0.995595i \(-0.470111\pi\)
0.0937606 + 0.995595i \(0.470111\pi\)
\(410\) 0 0
\(411\) −1.25068e16 −0.127990
\(412\) 8.84510e16i 0.890986i
\(413\) − 7.03144e15i − 0.0697219i
\(414\) 5.29670e15 0.0517015
\(415\) 0 0
\(416\) −1.89934e16 −0.179679
\(417\) 7.70145e16i 0.717279i
\(418\) − 2.87259e16i − 0.263408i
\(419\) −1.75670e17 −1.58602 −0.793008 0.609212i \(-0.791486\pi\)
−0.793008 + 0.609212i \(0.791486\pi\)
\(420\) 0 0
\(421\) 1.84473e17 1.61473 0.807365 0.590052i \(-0.200893\pi\)
0.807365 + 0.590052i \(0.200893\pi\)
\(422\) − 1.94595e16i − 0.167726i
\(423\) − 1.56928e16i − 0.133195i
\(424\) 3.97799e16 0.332495
\(425\) 0 0
\(426\) 1.14978e16 0.0932079
\(427\) 3.15939e16i 0.252245i
\(428\) 1.58065e17i 1.24295i
\(429\) −6.56232e16 −0.508259
\(430\) 0 0
\(431\) 8.05532e16 0.605314 0.302657 0.953100i \(-0.402126\pi\)
0.302657 + 0.953100i \(0.402126\pi\)
\(432\) 2.46363e16i 0.182361i
\(433\) − 1.97092e17i − 1.43714i −0.695457 0.718568i \(-0.744798\pi\)
0.695457 0.718568i \(-0.255202\pi\)
\(434\) 1.73759e16 0.124814
\(435\) 0 0
\(436\) 7.90393e16 0.551037
\(437\) 1.77790e17i 1.22117i
\(438\) − 1.03128e16i − 0.0697903i
\(439\) −9.89007e16 −0.659447 −0.329724 0.944078i \(-0.606956\pi\)
−0.329724 + 0.944078i \(0.606956\pi\)
\(440\) 0 0
\(441\) −2.21200e16 −0.143197
\(442\) − 1.13494e16i − 0.0723985i
\(443\) − 1.25104e17i − 0.786404i −0.919452 0.393202i \(-0.871367\pi\)
0.919452 0.393202i \(-0.128633\pi\)
\(444\) 3.22578e16 0.199823
\(445\) 0 0
\(446\) −1.76800e16 −0.106366
\(447\) − 6.22225e16i − 0.368934i
\(448\) − 1.15809e17i − 0.676761i
\(449\) 1.80095e17 1.03729 0.518645 0.854990i \(-0.326437\pi\)
0.518645 + 0.854990i \(0.326437\pi\)
\(450\) 0 0
\(451\) 5.23213e16 0.292773
\(452\) − 1.37031e17i − 0.755820i
\(453\) 4.49366e16i 0.244322i
\(454\) −4.49867e16 −0.241113
\(455\) 0 0
\(456\) 3.04112e16 0.158402
\(457\) 9.43597e16i 0.484542i 0.970209 + 0.242271i \(0.0778923\pi\)
−0.970209 + 0.242271i \(0.922108\pi\)
\(458\) 1.77592e14i 0 0.000899076i
\(459\) −4.55198e16 −0.227205
\(460\) 0 0
\(461\) 8.00500e16 0.388423 0.194212 0.980960i \(-0.437785\pi\)
0.194212 + 0.980960i \(0.437785\pi\)
\(462\) 2.29982e16i 0.110033i
\(463\) 2.14174e17i 1.01039i 0.863004 + 0.505196i \(0.168580\pi\)
−0.863004 + 0.505196i \(0.831420\pi\)
\(464\) 7.96410e16 0.370484
\(465\) 0 0
\(466\) −4.35663e16 −0.197080
\(467\) 1.80681e17i 0.806031i 0.915193 + 0.403015i \(0.132038\pi\)
−0.915193 + 0.403015i \(0.867962\pi\)
\(468\) − 3.44285e16i − 0.151468i
\(469\) −8.19326e16 −0.355495
\(470\) 0 0
\(471\) 8.60372e16 0.363120
\(472\) 5.82883e15i 0.0242638i
\(473\) − 7.95665e16i − 0.326688i
\(474\) 9.38154e15 0.0379940
\(475\) 0 0
\(476\) 2.22298e17 0.875974
\(477\) 1.08480e17i 0.421679i
\(478\) 5.20680e16i 0.199659i
\(479\) 2.66712e17 1.00893 0.504466 0.863431i \(-0.331689\pi\)
0.504466 + 0.863431i \(0.331689\pi\)
\(480\) 0 0
\(481\) −4.42583e16 −0.162949
\(482\) 3.62847e16i 0.131801i
\(483\) − 1.42340e17i − 0.510118i
\(484\) 7.28623e17 2.57637
\(485\) 0 0
\(486\) 2.47069e15 0.00850517
\(487\) 2.63552e17i 0.895216i 0.894230 + 0.447608i \(0.147724\pi\)
−0.894230 + 0.447608i \(0.852276\pi\)
\(488\) − 2.61903e16i − 0.0877833i
\(489\) 1.12784e17 0.373026
\(490\) 0 0
\(491\) 4.11733e17 1.32613 0.663065 0.748562i \(-0.269255\pi\)
0.663065 + 0.748562i \(0.269255\pi\)
\(492\) 2.74498e16i 0.0872502i
\(493\) 1.47150e17i 0.461590i
\(494\) −2.06773e16 −0.0640132
\(495\) 0 0
\(496\) 3.91677e17 1.18113
\(497\) − 3.08984e17i − 0.919645i
\(498\) 9.83297e15i 0.0288864i
\(499\) −3.99658e17 −1.15887 −0.579435 0.815018i \(-0.696727\pi\)
−0.579435 + 0.815018i \(0.696727\pi\)
\(500\) 0 0
\(501\) −2.74113e17 −0.774433
\(502\) − 2.10175e16i − 0.0586146i
\(503\) − 2.83581e17i − 0.780702i −0.920666 0.390351i \(-0.872354\pi\)
0.920666 0.390351i \(-0.127646\pi\)
\(504\) −2.43474e16 −0.0661690
\(505\) 0 0
\(506\) 1.11456e17 0.295207
\(507\) − 1.73559e17i − 0.453834i
\(508\) 3.61634e17i 0.933588i
\(509\) −6.40327e17 −1.63206 −0.816030 0.578009i \(-0.803830\pi\)
−0.816030 + 0.578009i \(0.803830\pi\)
\(510\) 0 0
\(511\) −2.77140e17 −0.688593
\(512\) 2.51565e17i 0.617156i
\(513\) 8.29318e16i 0.200890i
\(514\) 5.85124e16 0.139955
\(515\) 0 0
\(516\) 4.17437e16 0.0973572
\(517\) − 3.30218e17i − 0.760522i
\(518\) 1.55107e16i 0.0352767i
\(519\) 2.72327e17 0.611650
\(520\) 0 0
\(521\) −4.01348e17 −0.879175 −0.439588 0.898200i \(-0.644875\pi\)
−0.439588 + 0.898200i \(0.644875\pi\)
\(522\) − 7.98692e15i − 0.0172791i
\(523\) − 5.05985e17i − 1.08113i −0.841303 0.540564i \(-0.818211\pi\)
0.841303 0.540564i \(-0.181789\pi\)
\(524\) −9.67228e15 −0.0204115
\(525\) 0 0
\(526\) −5.61459e16 −0.115587
\(527\) 7.23691e17i 1.47158i
\(528\) 5.18413e17i 1.04125i
\(529\) −1.85786e17 −0.368597
\(530\) 0 0
\(531\) −1.58953e16 −0.0307719
\(532\) − 4.05002e17i − 0.774517i
\(533\) − 3.76616e16i − 0.0711496i
\(534\) −1.95571e16 −0.0364995
\(535\) 0 0
\(536\) 6.79193e16 0.123715
\(537\) 3.08621e16i 0.0555383i
\(538\) 2.16314e16i 0.0384592i
\(539\) −4.65462e17 −0.817631
\(540\) 0 0
\(541\) −1.69124e17 −0.290017 −0.145009 0.989430i \(-0.546321\pi\)
−0.145009 + 0.989430i \(0.546321\pi\)
\(542\) 7.32020e16i 0.124030i
\(543\) 2.26316e17i 0.378892i
\(544\) −2.77234e17 −0.458620
\(545\) 0 0
\(546\) 1.65544e16 0.0267400
\(547\) 4.32104e17i 0.689717i 0.938655 + 0.344858i \(0.112073\pi\)
−0.938655 + 0.344858i \(0.887927\pi\)
\(548\) − 1.38073e17i − 0.217788i
\(549\) 7.14214e16 0.111329
\(550\) 0 0
\(551\) 2.68091e17 0.408128
\(552\) 1.17995e17i 0.177525i
\(553\) − 2.52113e17i − 0.374871i
\(554\) −1.28428e17 −0.188732
\(555\) 0 0
\(556\) −8.50224e17 −1.22053
\(557\) − 1.36804e18i − 1.94107i −0.240966 0.970534i \(-0.577464\pi\)
0.240966 0.970534i \(-0.422536\pi\)
\(558\) − 3.92800e16i − 0.0550870i
\(559\) −5.72731e16 −0.0793915
\(560\) 0 0
\(561\) −9.57856e17 −1.29730
\(562\) − 2.94552e16i − 0.0394345i
\(563\) − 9.52405e17i − 1.26043i −0.776422 0.630213i \(-0.782968\pi\)
0.776422 0.630213i \(-0.217032\pi\)
\(564\) 1.73245e17 0.226645
\(565\) 0 0
\(566\) −4.81386e16 −0.0615442
\(567\) − 6.63958e16i − 0.0839171i
\(568\) 2.56138e17i 0.320044i
\(569\) −1.53632e17 −0.189780 −0.0948902 0.995488i \(-0.530250\pi\)
−0.0948902 + 0.995488i \(0.530250\pi\)
\(570\) 0 0
\(571\) −1.27956e18 −1.54500 −0.772498 0.635017i \(-0.780993\pi\)
−0.772498 + 0.635017i \(0.780993\pi\)
\(572\) − 7.24466e17i − 0.864856i
\(573\) 6.28597e17i 0.741938i
\(574\) −1.31988e16 −0.0154031
\(575\) 0 0
\(576\) −2.61799e17 −0.298690
\(577\) − 3.56770e17i − 0.402481i −0.979542 0.201241i \(-0.935503\pi\)
0.979542 0.201241i \(-0.0644973\pi\)
\(578\) − 4.68049e16i − 0.0522108i
\(579\) −6.83683e17 −0.754126
\(580\) 0 0
\(581\) 2.64245e17 0.285011
\(582\) 1.24355e17i 0.132637i
\(583\) 2.28271e18i 2.40772i
\(584\) 2.29739e17 0.239636
\(585\) 0 0
\(586\) −2.49824e16 −0.0254859
\(587\) − 1.28968e18i − 1.30118i −0.759431 0.650588i \(-0.774523\pi\)
0.759431 0.650588i \(-0.225477\pi\)
\(588\) − 2.44200e17i − 0.243665i
\(589\) 1.31848e18 1.30114
\(590\) 0 0
\(591\) 4.89680e17 0.472709
\(592\) 3.49634e17i 0.333827i
\(593\) − 1.88640e18i − 1.78147i −0.454523 0.890735i \(-0.650190\pi\)
0.454523 0.890735i \(-0.349810\pi\)
\(594\) 5.19899e16 0.0485631
\(595\) 0 0
\(596\) 6.86923e17 0.627780
\(597\) − 3.18173e16i − 0.0287627i
\(598\) − 8.02278e16i − 0.0717410i
\(599\) 1.44668e18 1.27967 0.639834 0.768513i \(-0.279003\pi\)
0.639834 + 0.768513i \(0.279003\pi\)
\(600\) 0 0
\(601\) −4.44358e16 −0.0384635 −0.0192317 0.999815i \(-0.506122\pi\)
−0.0192317 + 0.999815i \(0.506122\pi\)
\(602\) 2.00719e16i 0.0171874i
\(603\) 1.85217e17i 0.156898i
\(604\) −4.96090e17 −0.415739
\(605\) 0 0
\(606\) 1.48886e17 0.122118
\(607\) − 2.98050e16i − 0.0241860i −0.999927 0.0120930i \(-0.996151\pi\)
0.999927 0.0120930i \(-0.00384941\pi\)
\(608\) 5.05087e17i 0.405502i
\(609\) −2.14635e17 −0.170486
\(610\) 0 0
\(611\) −2.37695e17 −0.184822
\(612\) − 5.02529e17i − 0.386613i
\(613\) − 8.84082e17i − 0.672976i −0.941688 0.336488i \(-0.890761\pi\)
0.941688 0.336488i \(-0.109239\pi\)
\(614\) −1.58823e17 −0.119624
\(615\) 0 0
\(616\) −5.12333e17 −0.377814
\(617\) − 1.43684e18i − 1.04846i −0.851575 0.524232i \(-0.824352\pi\)
0.851575 0.524232i \(-0.175648\pi\)
\(618\) 9.61443e16i 0.0694222i
\(619\) −1.68862e18 −1.20654 −0.603272 0.797535i \(-0.706137\pi\)
−0.603272 + 0.797535i \(0.706137\pi\)
\(620\) 0 0
\(621\) −3.21774e17 −0.225142
\(622\) − 9.71162e16i − 0.0672441i
\(623\) 5.25565e17i 0.360126i
\(624\) 3.73161e17 0.253044
\(625\) 0 0
\(626\) 1.77817e17 0.118098
\(627\) 1.74510e18i 1.14705i
\(628\) 9.49831e17i 0.617887i
\(629\) −6.46008e17 −0.415919
\(630\) 0 0
\(631\) −3.53490e17 −0.222939 −0.111470 0.993768i \(-0.535556\pi\)
−0.111470 + 0.993768i \(0.535556\pi\)
\(632\) 2.08993e17i 0.130458i
\(633\) 1.18216e18i 0.730387i
\(634\) −2.91805e17 −0.178448
\(635\) 0 0
\(636\) −1.19760e18 −0.717531
\(637\) 3.35046e17i 0.198700i
\(638\) − 1.68066e17i − 0.0986608i
\(639\) −6.98492e17 −0.405888
\(640\) 0 0
\(641\) 1.61802e18 0.921313 0.460656 0.887579i \(-0.347614\pi\)
0.460656 + 0.887579i \(0.347614\pi\)
\(642\) 1.71814e17i 0.0968456i
\(643\) − 1.96065e18i − 1.09403i −0.837123 0.547015i \(-0.815764\pi\)
0.837123 0.547015i \(-0.184236\pi\)
\(644\) 1.57140e18 0.868018
\(645\) 0 0
\(646\) −3.01813e17 −0.163390
\(647\) 5.96114e17i 0.319486i 0.987159 + 0.159743i \(0.0510665\pi\)
−0.987159 + 0.159743i \(0.948933\pi\)
\(648\) 5.50399e16i 0.0292038i
\(649\) −3.34479e17 −0.175703
\(650\) 0 0
\(651\) −1.05558e18 −0.543521
\(652\) 1.24511e18i 0.634742i
\(653\) − 2.58318e18i − 1.30382i −0.758295 0.651912i \(-0.773967\pi\)
0.758295 0.651912i \(-0.226033\pi\)
\(654\) 8.59140e16 0.0429347
\(655\) 0 0
\(656\) −2.97521e17 −0.145761
\(657\) 6.26503e17i 0.303912i
\(658\) 8.33023e16i 0.0400119i
\(659\) −2.64137e18 −1.25624 −0.628121 0.778116i \(-0.716176\pi\)
−0.628121 + 0.778116i \(0.716176\pi\)
\(660\) 0 0
\(661\) 4.12451e18 1.92337 0.961685 0.274156i \(-0.0883983\pi\)
0.961685 + 0.274156i \(0.0883983\pi\)
\(662\) 1.39478e17i 0.0644064i
\(663\) 6.89478e17i 0.315270i
\(664\) −2.19050e17 −0.0991861
\(665\) 0 0
\(666\) 3.50636e16 0.0155695
\(667\) 1.04019e18i 0.457398i
\(668\) − 3.02614e18i − 1.31778i
\(669\) 1.07406e18 0.463189
\(670\) 0 0
\(671\) 1.50289e18 0.635670
\(672\) − 4.04377e17i − 0.169389i
\(673\) 2.79726e18i 1.16047i 0.814449 + 0.580236i \(0.197039\pi\)
−0.814449 + 0.580236i \(0.802961\pi\)
\(674\) 5.55183e17 0.228111
\(675\) 0 0
\(676\) 1.91606e18 0.772245
\(677\) 4.25553e18i 1.69874i 0.527795 + 0.849372i \(0.323019\pi\)
−0.527795 + 0.849372i \(0.676981\pi\)
\(678\) − 1.48950e17i − 0.0588906i
\(679\) 3.34184e18 1.30867
\(680\) 0 0
\(681\) 2.73294e18 1.04996
\(682\) − 8.26553e17i − 0.314538i
\(683\) 1.60893e18i 0.606461i 0.952917 + 0.303230i \(0.0980652\pi\)
−0.952917 + 0.303230i \(0.901935\pi\)
\(684\) −9.15548e17 −0.341835
\(685\) 0 0
\(686\) 3.90749e17 0.143150
\(687\) − 1.07887e16i − 0.00391516i
\(688\) 4.52448e17i 0.162646i
\(689\) 1.64313e18 0.585122
\(690\) 0 0
\(691\) −3.06331e18 −1.07049 −0.535247 0.844696i \(-0.679782\pi\)
−0.535247 + 0.844696i \(0.679782\pi\)
\(692\) 3.00643e18i 1.04079i
\(693\) − 1.39714e18i − 0.479153i
\(694\) 5.75285e16 0.0195455
\(695\) 0 0
\(696\) 1.77925e17 0.0593305
\(697\) − 5.49721e17i − 0.181606i
\(698\) − 4.52280e17i − 0.148029i
\(699\) 2.64666e18 0.858214
\(700\) 0 0
\(701\) 2.99144e18 0.952166 0.476083 0.879400i \(-0.342056\pi\)
0.476083 + 0.879400i \(0.342056\pi\)
\(702\) − 3.74230e16i − 0.0118018i
\(703\) 1.17695e18i 0.367747i
\(704\) −5.50893e18 −1.70547
\(705\) 0 0
\(706\) −5.76215e17 −0.175127
\(707\) − 4.00106e18i − 1.20489i
\(708\) − 1.75481e17i − 0.0523616i
\(709\) 5.31694e18 1.57203 0.786015 0.618207i \(-0.212141\pi\)
0.786015 + 0.618207i \(0.212141\pi\)
\(710\) 0 0
\(711\) −5.69928e17 −0.165450
\(712\) − 4.35676e17i − 0.125327i
\(713\) 5.11568e18i 1.45822i
\(714\) 2.41634e17 0.0682525
\(715\) 0 0
\(716\) −3.40711e17 −0.0945043
\(717\) − 3.16313e18i − 0.869446i
\(718\) − 4.87939e17i − 0.132910i
\(719\) 4.03153e18 1.08826 0.544129 0.839001i \(-0.316860\pi\)
0.544129 + 0.839001i \(0.316860\pi\)
\(720\) 0 0
\(721\) 2.58372e18 0.684961
\(722\) 4.52315e16i 0.0118836i
\(723\) − 2.20429e18i − 0.573945i
\(724\) −2.49848e18 −0.644725
\(725\) 0 0
\(726\) 7.91998e17 0.200741
\(727\) 4.77643e18i 1.19986i 0.800054 + 0.599928i \(0.204804\pi\)
−0.800054 + 0.599928i \(0.795196\pi\)
\(728\) 3.68785e17i 0.0918161i
\(729\) −1.50095e17 −0.0370370
\(730\) 0 0
\(731\) −8.35976e17 −0.202643
\(732\) 7.88477e17i 0.189438i
\(733\) 1.71668e18i 0.408803i 0.978887 + 0.204401i \(0.0655248\pi\)
−0.978887 + 0.204401i \(0.934475\pi\)
\(734\) 3.56080e17 0.0840471
\(735\) 0 0
\(736\) −1.95973e18 −0.454455
\(737\) 3.89745e18i 0.895864i
\(738\) 2.98374e16i 0.00679820i
\(739\) 8.69723e17 0.196423 0.0982114 0.995166i \(-0.468688\pi\)
0.0982114 + 0.995166i \(0.468688\pi\)
\(740\) 0 0
\(741\) 1.25615e18 0.278755
\(742\) − 5.75848e17i − 0.126673i
\(743\) 2.40272e18i 0.523933i 0.965077 + 0.261966i \(0.0843710\pi\)
−0.965077 + 0.261966i \(0.915629\pi\)
\(744\) 8.75044e17 0.189150
\(745\) 0 0
\(746\) 1.08161e18 0.229758
\(747\) − 5.97353e17i − 0.125790i
\(748\) − 1.05745e19i − 2.20750i
\(749\) 4.61721e18 0.955537
\(750\) 0 0
\(751\) 9.37175e18 1.90617 0.953084 0.302706i \(-0.0978899\pi\)
0.953084 + 0.302706i \(0.0978899\pi\)
\(752\) 1.87775e18i 0.378637i
\(753\) 1.27681e18i 0.255246i
\(754\) −1.20976e17 −0.0239765
\(755\) 0 0
\(756\) 7.32995e17 0.142794
\(757\) − 3.09120e18i − 0.597040i −0.954403 0.298520i \(-0.903507\pi\)
0.954403 0.298520i \(-0.0964930\pi\)
\(758\) 1.85810e17i 0.0355810i
\(759\) −6.77097e18 −1.28552
\(760\) 0 0
\(761\) −7.97787e18 −1.48897 −0.744486 0.667638i \(-0.767306\pi\)
−0.744486 + 0.667638i \(0.767306\pi\)
\(762\) 3.93088e17i 0.0727416i
\(763\) − 2.30880e18i − 0.423620i
\(764\) −6.93957e18 −1.26248
\(765\) 0 0
\(766\) −1.12451e17 −0.0201129
\(767\) 2.40763e17i 0.0426991i
\(768\) − 2.72110e18i − 0.478517i
\(769\) −7.37344e18 −1.28573 −0.642863 0.765981i \(-0.722254\pi\)
−0.642863 + 0.765981i \(0.722254\pi\)
\(770\) 0 0
\(771\) −3.55463e18 −0.609454
\(772\) − 7.54771e18i − 1.28322i
\(773\) − 1.67335e18i − 0.282111i −0.990002 0.141056i \(-0.954950\pi\)
0.990002 0.141056i \(-0.0450497\pi\)
\(774\) 4.53745e16 0.00758570
\(775\) 0 0
\(776\) −2.77027e18 −0.455429
\(777\) − 9.42275e17i − 0.153618i
\(778\) − 3.54967e17i − 0.0573879i
\(779\) −1.00153e18 −0.160572
\(780\) 0 0
\(781\) −1.46981e19 −2.31755
\(782\) − 1.17103e18i − 0.183115i
\(783\) 4.85206e17i 0.0752444i
\(784\) 2.64681e18 0.407069
\(785\) 0 0
\(786\) −1.05136e16 −0.00159039
\(787\) 3.75359e18i 0.563133i 0.959542 + 0.281566i \(0.0908540\pi\)
−0.959542 + 0.281566i \(0.909146\pi\)
\(788\) 5.40596e18i 0.804363i
\(789\) 3.41086e18 0.503342
\(790\) 0 0
\(791\) −4.00277e18 −0.581050
\(792\) 1.15818e18i 0.166749i
\(793\) − 1.08180e18i − 0.154480i
\(794\) 2.16741e17 0.0306978
\(795\) 0 0
\(796\) 3.51256e17 0.0489428
\(797\) − 3.38853e18i − 0.468309i −0.972199 0.234154i \(-0.924768\pi\)
0.972199 0.234154i \(-0.0752321\pi\)
\(798\) − 4.40228e17i − 0.0603474i
\(799\) −3.46947e18 −0.471747
\(800\) 0 0
\(801\) 1.18810e18 0.158942
\(802\) − 1.44495e18i − 0.191743i
\(803\) 1.31833e19i 1.73529i
\(804\) −2.04476e18 −0.266979
\(805\) 0 0
\(806\) −5.94965e17 −0.0764387
\(807\) − 1.31411e18i − 0.167476i
\(808\) 3.31674e18i 0.419313i
\(809\) 3.13119e18 0.392685 0.196343 0.980535i \(-0.437094\pi\)
0.196343 + 0.980535i \(0.437094\pi\)
\(810\) 0 0
\(811\) 1.04731e19 1.29253 0.646264 0.763114i \(-0.276331\pi\)
0.646264 + 0.763114i \(0.276331\pi\)
\(812\) − 2.36953e18i − 0.290100i
\(813\) − 4.44702e18i − 0.540108i
\(814\) 7.37829e17 0.0888991
\(815\) 0 0
\(816\) 5.44677e18 0.645881
\(817\) 1.52305e18i 0.179172i
\(818\) 2.13026e17i 0.0248620i
\(819\) −1.00568e18 −0.116443
\(820\) 0 0
\(821\) −6.85162e18 −0.780841 −0.390421 0.920637i \(-0.627670\pi\)
−0.390421 + 0.920637i \(0.627670\pi\)
\(822\) − 1.50082e17i − 0.0169692i
\(823\) 3.06934e17i 0.0344308i 0.999852 + 0.0172154i \(0.00548010\pi\)
−0.999852 + 0.0172154i \(0.994520\pi\)
\(824\) −2.14181e18 −0.238372
\(825\) 0 0
\(826\) 8.43773e16 0.00924390
\(827\) − 7.75365e18i − 0.842792i −0.906877 0.421396i \(-0.861540\pi\)
0.906877 0.421396i \(-0.138460\pi\)
\(828\) − 3.55232e18i − 0.383102i
\(829\) −2.34336e18 −0.250747 −0.125373 0.992110i \(-0.540013\pi\)
−0.125373 + 0.992110i \(0.540013\pi\)
\(830\) 0 0
\(831\) 7.80200e18 0.821863
\(832\) 3.96540e18i 0.414463i
\(833\) 4.89044e18i 0.507172i
\(834\) −9.24174e17 −0.0950987
\(835\) 0 0
\(836\) −1.92655e19 −1.95182
\(837\) 2.38626e18i 0.239884i
\(838\) − 2.10804e18i − 0.210278i
\(839\) 1.63297e19 1.61632 0.808158 0.588965i \(-0.200465\pi\)
0.808158 + 0.588965i \(0.200465\pi\)
\(840\) 0 0
\(841\) −8.69212e18 −0.847134
\(842\) 2.21368e18i 0.214085i
\(843\) 1.78940e18i 0.171723i
\(844\) −1.30508e19 −1.24283
\(845\) 0 0
\(846\) 1.88314e17 0.0176593
\(847\) − 2.12836e19i − 1.98063i
\(848\) − 1.29804e19i − 1.19872i
\(849\) 2.92442e18 0.268003
\(850\) 0 0
\(851\) −4.56655e18 −0.412142
\(852\) − 7.71120e18i − 0.690660i
\(853\) 1.93794e19i 1.72255i 0.508137 + 0.861276i \(0.330334\pi\)
−0.508137 + 0.861276i \(0.669666\pi\)
\(854\) −3.79127e17 −0.0334433
\(855\) 0 0
\(856\) −3.82751e18 −0.332534
\(857\) − 1.20537e19i − 1.03931i −0.854376 0.519656i \(-0.826060\pi\)
0.854376 0.519656i \(-0.173940\pi\)
\(858\) − 7.87478e17i − 0.0673862i
\(859\) 1.00612e19 0.854465 0.427232 0.904142i \(-0.359489\pi\)
0.427232 + 0.904142i \(0.359489\pi\)
\(860\) 0 0
\(861\) 8.01830e17 0.0670751
\(862\) 9.66639e17i 0.0802541i
\(863\) 8.01407e18i 0.660363i 0.943917 + 0.330182i \(0.107110\pi\)
−0.943917 + 0.330182i \(0.892890\pi\)
\(864\) −9.14136e17 −0.0747604
\(865\) 0 0
\(866\) 2.36510e18 0.190539
\(867\) 2.84340e18i 0.227360i
\(868\) − 1.16534e19i − 0.924858i
\(869\) −1.19928e19 −0.944694
\(870\) 0 0
\(871\) 2.80544e18 0.217712
\(872\) 1.91391e18i 0.147423i
\(873\) − 7.55457e18i − 0.577587i
\(874\) −2.13348e18 −0.161906
\(875\) 0 0
\(876\) −6.91646e18 −0.517139
\(877\) − 8.87791e17i − 0.0658891i −0.999457 0.0329445i \(-0.989512\pi\)
0.999457 0.0329445i \(-0.0104885\pi\)
\(878\) − 1.18681e18i − 0.0874312i
\(879\) 1.51768e18 0.110982
\(880\) 0 0
\(881\) 3.78774e18 0.272921 0.136460 0.990646i \(-0.456427\pi\)
0.136460 + 0.990646i \(0.456427\pi\)
\(882\) − 2.65440e17i − 0.0189854i
\(883\) − 2.75428e19i − 1.95553i −0.209712 0.977763i \(-0.567253\pi\)
0.209712 0.977763i \(-0.432747\pi\)
\(884\) −7.61169e18 −0.536465
\(885\) 0 0
\(886\) 1.50124e18 0.104263
\(887\) 2.84165e19i 1.95914i 0.201092 + 0.979572i \(0.435551\pi\)
−0.201092 + 0.979572i \(0.564449\pi\)
\(888\) 7.81114e17i 0.0534602i
\(889\) 1.05636e19 0.717712
\(890\) 0 0
\(891\) −3.15838e18 −0.211475
\(892\) 1.18574e19i 0.788164i
\(893\) 6.32097e18i 0.417109i
\(894\) 7.46670e17 0.0489142
\(895\) 0 0
\(896\) 5.93382e18 0.383118
\(897\) 4.87384e18i 0.312407i
\(898\) 2.16114e18i 0.137527i
\(899\) 7.71397e18 0.487349
\(900\) 0 0
\(901\) 2.39836e19 1.49349
\(902\) 6.27856e17i 0.0388166i
\(903\) − 1.21937e18i − 0.0748451i
\(904\) 3.31816e18 0.202210
\(905\) 0 0
\(906\) −5.39239e17 −0.0323928
\(907\) − 7.51023e18i − 0.447926i −0.974598 0.223963i \(-0.928101\pi\)
0.974598 0.223963i \(-0.0718994\pi\)
\(908\) 3.01711e19i 1.78662i
\(909\) −9.04482e18 −0.531783
\(910\) 0 0
\(911\) −2.34028e19 −1.35643 −0.678216 0.734863i \(-0.737247\pi\)
−0.678216 + 0.734863i \(0.737247\pi\)
\(912\) − 9.92337e18i − 0.571074i
\(913\) − 1.25699e19i − 0.718242i
\(914\) −1.13232e18 −0.0642418
\(915\) 0 0
\(916\) 1.19105e17 0.00666206
\(917\) 2.82535e17i 0.0156917i
\(918\) − 5.46238e17i − 0.0301234i
\(919\) −2.20881e19 −1.20950 −0.604752 0.796414i \(-0.706728\pi\)
−0.604752 + 0.796414i \(0.706728\pi\)
\(920\) 0 0
\(921\) 9.64848e18 0.520920
\(922\) 9.60600e17i 0.0514982i
\(923\) 1.05799e19i 0.563210i
\(924\) 1.54241e19 0.815329
\(925\) 0 0
\(926\) −2.57009e18 −0.133960
\(927\) − 5.84077e18i − 0.302309i
\(928\) 2.95509e18i 0.151883i
\(929\) 1.05632e19 0.539132 0.269566 0.962982i \(-0.413120\pi\)
0.269566 + 0.962982i \(0.413120\pi\)
\(930\) 0 0
\(931\) 8.90980e18 0.448430
\(932\) 2.92185e19i 1.46034i
\(933\) 5.89981e18i 0.292824i
\(934\) −2.16817e18 −0.106866
\(935\) 0 0
\(936\) 8.33676e17 0.0405233
\(937\) 1.72833e19i 0.834294i 0.908839 + 0.417147i \(0.136970\pi\)
−0.908839 + 0.417147i \(0.863030\pi\)
\(938\) − 9.83191e17i − 0.0471324i
\(939\) −1.08024e19 −0.514273
\(940\) 0 0
\(941\) 2.14038e19 1.00498 0.502490 0.864583i \(-0.332417\pi\)
0.502490 + 0.864583i \(0.332417\pi\)
\(942\) 1.03245e18i 0.0481434i
\(943\) − 3.88591e18i − 0.179956i
\(944\) 1.90199e18 0.0874760
\(945\) 0 0
\(946\) 9.54799e17 0.0433131
\(947\) 5.91308e17i 0.0266403i 0.999911 + 0.0133202i \(0.00424006\pi\)
−0.999911 + 0.0133202i \(0.995760\pi\)
\(948\) − 6.29188e18i − 0.281531i
\(949\) 9.48950e18 0.421709
\(950\) 0 0
\(951\) 1.77271e19 0.777079
\(952\) 5.38289e18i 0.234356i
\(953\) − 2.39396e19i − 1.03517i −0.855631 0.517587i \(-0.826830\pi\)
0.855631 0.517587i \(-0.173170\pi\)
\(954\) −1.30177e18 −0.0559073
\(955\) 0 0
\(956\) 3.49203e19 1.47945
\(957\) 1.02100e19i 0.429633i
\(958\) 3.20055e18i 0.133767i
\(959\) −4.03321e18 −0.167429
\(960\) 0 0
\(961\) 1.35201e19 0.553702
\(962\) − 5.31100e17i − 0.0216042i
\(963\) − 1.04377e19i − 0.421729i
\(964\) 2.43349e19 0.976628
\(965\) 0 0
\(966\) 1.70808e18 0.0676327
\(967\) − 1.99045e18i − 0.0782853i −0.999234 0.0391427i \(-0.987537\pi\)
0.999234 0.0391427i \(-0.0124627\pi\)
\(968\) 1.76434e19i 0.689275i
\(969\) 1.83351e19 0.711507
\(970\) 0 0
\(971\) 4.12385e19 1.57898 0.789492 0.613761i \(-0.210344\pi\)
0.789492 + 0.613761i \(0.210344\pi\)
\(972\) − 1.65701e18i − 0.0630224i
\(973\) 2.48357e19i 0.938301i
\(974\) −3.16262e18 −0.118690
\(975\) 0 0
\(976\) −8.54608e18 −0.316478
\(977\) 1.25374e19i 0.461202i 0.973048 + 0.230601i \(0.0740693\pi\)
−0.973048 + 0.230601i \(0.925931\pi\)
\(978\) 1.35340e18i 0.0494567i
\(979\) 2.50006e19 0.907535
\(980\) 0 0
\(981\) −5.21928e18 −0.186966
\(982\) 4.94080e18i 0.175822i
\(983\) − 1.83966e19i − 0.650340i −0.945656 0.325170i \(-0.894578\pi\)
0.945656 0.325170i \(-0.105422\pi\)
\(984\) −6.64690e17 −0.0233427
\(985\) 0 0
\(986\) −1.76580e18 −0.0611987
\(987\) − 5.06062e18i − 0.174238i
\(988\) 1.38676e19i 0.474331i
\(989\) −5.90941e18 −0.200802
\(990\) 0 0
\(991\) −3.43064e19 −1.15053 −0.575263 0.817969i \(-0.695100\pi\)
−0.575263 + 0.817969i \(0.695100\pi\)
\(992\) 1.45333e19i 0.484214i
\(993\) − 8.47329e18i − 0.280467i
\(994\) 3.70781e18 0.121929
\(995\) 0 0
\(996\) 6.59465e18 0.214045
\(997\) 5.72458e19i 1.84597i 0.384835 + 0.922985i \(0.374258\pi\)
−0.384835 + 0.922985i \(0.625742\pi\)
\(998\) − 4.79589e18i − 0.153646i
\(999\) −2.13011e18 −0.0677995
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.14.b.b.49.2 2
5.2 odd 4 3.14.a.a.1.1 1
5.3 odd 4 75.14.a.a.1.1 1
5.4 even 2 inner 75.14.b.b.49.1 2
15.2 even 4 9.14.a.a.1.1 1
20.7 even 4 48.14.a.c.1.1 1
35.27 even 4 147.14.a.a.1.1 1
40.27 even 4 192.14.a.e.1.1 1
40.37 odd 4 192.14.a.j.1.1 1
60.47 odd 4 144.14.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3.14.a.a.1.1 1 5.2 odd 4
9.14.a.a.1.1 1 15.2 even 4
48.14.a.c.1.1 1 20.7 even 4
75.14.a.a.1.1 1 5.3 odd 4
75.14.b.b.49.1 2 5.4 even 2 inner
75.14.b.b.49.2 2 1.1 even 1 trivial
144.14.a.k.1.1 1 60.47 odd 4
147.14.a.a.1.1 1 35.27 even 4
192.14.a.e.1.1 1 40.27 even 4
192.14.a.j.1.1 1 40.37 odd 4