Properties

Label 75.14.a.i.1.1
Level $75$
Weight $14$
Character 75.1
Self dual yes
Analytic conductor $80.423$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,14,Mod(1,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.4231967139\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 34660x^{3} - 255524x^{2} + 207252123x + 3641392989 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-160.423\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-171.423 q^{2} -729.000 q^{3} +21194.0 q^{4} +124968. q^{6} +162072. q^{7} -2.22884e6 q^{8} +531441. q^{9} +6.40531e6 q^{11} -1.54504e7 q^{12} -2.02248e7 q^{13} -2.77829e7 q^{14} +2.08454e8 q^{16} +1.34243e8 q^{17} -9.11014e7 q^{18} +1.95770e8 q^{19} -1.18150e8 q^{21} -1.09802e9 q^{22} +1.34574e9 q^{23} +1.62482e9 q^{24} +3.46700e9 q^{26} -3.87420e8 q^{27} +3.43494e9 q^{28} +4.25977e9 q^{29} +5.99466e9 q^{31} -1.74752e10 q^{32} -4.66947e9 q^{33} -2.30124e10 q^{34} +1.12633e10 q^{36} -2.63847e10 q^{37} -3.35595e10 q^{38} +1.47439e10 q^{39} -2.26917e10 q^{41} +2.02537e10 q^{42} +1.75669e9 q^{43} +1.35754e11 q^{44} -2.30691e11 q^{46} +9.16446e10 q^{47} -1.51963e11 q^{48} -7.06217e10 q^{49} -9.78634e10 q^{51} -4.28643e11 q^{52} -1.75644e10 q^{53} +6.64129e10 q^{54} -3.61232e11 q^{56} -1.42716e11 q^{57} -7.30223e11 q^{58} +3.03625e11 q^{59} +1.25392e11 q^{61} -1.02762e12 q^{62} +8.61316e10 q^{63} +1.28801e12 q^{64} +8.00456e11 q^{66} +2.29310e11 q^{67} +2.84515e12 q^{68} -9.81042e11 q^{69} -1.77148e12 q^{71} -1.18450e12 q^{72} -6.66295e11 q^{73} +4.52296e12 q^{74} +4.14914e12 q^{76} +1.03812e12 q^{77} -2.52744e12 q^{78} +1.73192e12 q^{79} +2.82430e11 q^{81} +3.88988e12 q^{82} +1.27600e12 q^{83} -2.50407e12 q^{84} -3.01137e11 q^{86} -3.10537e12 q^{87} -1.42764e13 q^{88} -4.87003e12 q^{89} -3.27786e12 q^{91} +2.85215e13 q^{92} -4.37011e12 q^{93} -1.57100e13 q^{94} +1.27394e13 q^{96} +4.88961e12 q^{97} +1.21062e13 q^{98} +3.40404e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 54 q^{2} - 3645 q^{3} + 28944 q^{4} + 39366 q^{6} + 54809 q^{7} - 538596 q^{8} + 2657205 q^{9} + 4726458 q^{11} - 21100176 q^{12} + 9983301 q^{13} - 14754798 q^{14} + 204457656 q^{16} + 107620650 q^{17}+ \cdots + 2511833565978 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −171.423 −1.89398 −0.946989 0.321266i \(-0.895892\pi\)
−0.946989 + 0.321266i \(0.895892\pi\)
\(3\) −729.000 −0.577350
\(4\) 21194.0 2.58715
\(5\) 0 0
\(6\) 124968. 1.09349
\(7\) 162072. 0.520679 0.260340 0.965517i \(-0.416165\pi\)
0.260340 + 0.965517i \(0.416165\pi\)
\(8\) −2.22884e6 −3.00603
\(9\) 531441. 0.333333
\(10\) 0 0
\(11\) 6.40531e6 1.09015 0.545077 0.838386i \(-0.316501\pi\)
0.545077 + 0.838386i \(0.316501\pi\)
\(12\) −1.54504e7 −1.49369
\(13\) −2.02248e7 −1.16212 −0.581061 0.813860i \(-0.697362\pi\)
−0.581061 + 0.813860i \(0.697362\pi\)
\(14\) −2.77829e7 −0.986155
\(15\) 0 0
\(16\) 2.08454e8 3.10621
\(17\) 1.34243e8 1.34888 0.674442 0.738328i \(-0.264384\pi\)
0.674442 + 0.738328i \(0.264384\pi\)
\(18\) −9.11014e7 −0.631326
\(19\) 1.95770e8 0.954657 0.477329 0.878725i \(-0.341605\pi\)
0.477329 + 0.878725i \(0.341605\pi\)
\(20\) 0 0
\(21\) −1.18150e8 −0.300614
\(22\) −1.09802e9 −2.06473
\(23\) 1.34574e9 1.89552 0.947761 0.318981i \(-0.103341\pi\)
0.947761 + 0.318981i \(0.103341\pi\)
\(24\) 1.62482e9 1.73553
\(25\) 0 0
\(26\) 3.46700e9 2.20103
\(27\) −3.87420e8 −0.192450
\(28\) 3.43494e9 1.34708
\(29\) 4.25977e9 1.32984 0.664919 0.746915i \(-0.268466\pi\)
0.664919 + 0.746915i \(0.268466\pi\)
\(30\) 0 0
\(31\) 5.99466e9 1.21315 0.606574 0.795027i \(-0.292544\pi\)
0.606574 + 0.795027i \(0.292544\pi\)
\(32\) −1.74752e10 −2.87705
\(33\) −4.66947e9 −0.629400
\(34\) −2.30124e10 −2.55476
\(35\) 0 0
\(36\) 1.12633e10 0.862384
\(37\) −2.63847e10 −1.69060 −0.845301 0.534291i \(-0.820579\pi\)
−0.845301 + 0.534291i \(0.820579\pi\)
\(38\) −3.35595e10 −1.80810
\(39\) 1.47439e10 0.670951
\(40\) 0 0
\(41\) −2.26917e10 −0.746055 −0.373028 0.927820i \(-0.621680\pi\)
−0.373028 + 0.927820i \(0.621680\pi\)
\(42\) 2.02537e10 0.569357
\(43\) 1.75669e9 0.0423788 0.0211894 0.999775i \(-0.493255\pi\)
0.0211894 + 0.999775i \(0.493255\pi\)
\(44\) 1.35754e11 2.82039
\(45\) 0 0
\(46\) −2.30691e11 −3.59008
\(47\) 9.16446e10 1.24014 0.620070 0.784547i \(-0.287104\pi\)
0.620070 + 0.784547i \(0.287104\pi\)
\(48\) −1.51963e11 −1.79337
\(49\) −7.06217e10 −0.728893
\(50\) 0 0
\(51\) −9.78634e10 −0.778779
\(52\) −4.28643e11 −3.00659
\(53\) −1.75644e10 −0.108853 −0.0544263 0.998518i \(-0.517333\pi\)
−0.0544263 + 0.998518i \(0.517333\pi\)
\(54\) 6.64129e10 0.364496
\(55\) 0 0
\(56\) −3.61232e11 −1.56518
\(57\) −1.42716e11 −0.551172
\(58\) −7.30223e11 −2.51868
\(59\) 3.03625e11 0.937128 0.468564 0.883430i \(-0.344772\pi\)
0.468564 + 0.883430i \(0.344772\pi\)
\(60\) 0 0
\(61\) 1.25392e11 0.311621 0.155810 0.987787i \(-0.450201\pi\)
0.155810 + 0.987787i \(0.450201\pi\)
\(62\) −1.02762e12 −2.29767
\(63\) 8.61316e10 0.173560
\(64\) 1.28801e12 2.34287
\(65\) 0 0
\(66\) 8.00456e11 1.19207
\(67\) 2.29310e11 0.309697 0.154848 0.987938i \(-0.450511\pi\)
0.154848 + 0.987938i \(0.450511\pi\)
\(68\) 2.84515e12 3.48977
\(69\) −9.81042e11 −1.09438
\(70\) 0 0
\(71\) −1.77148e12 −1.64118 −0.820592 0.571515i \(-0.806356\pi\)
−0.820592 + 0.571515i \(0.806356\pi\)
\(72\) −1.18450e12 −1.00201
\(73\) −6.66295e11 −0.515309 −0.257655 0.966237i \(-0.582950\pi\)
−0.257655 + 0.966237i \(0.582950\pi\)
\(74\) 4.52296e12 3.20196
\(75\) 0 0
\(76\) 4.14914e12 2.46984
\(77\) 1.03812e12 0.567620
\(78\) −2.52744e12 −1.27077
\(79\) 1.73192e12 0.801587 0.400793 0.916168i \(-0.368734\pi\)
0.400793 + 0.916168i \(0.368734\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) 3.88988e12 1.41301
\(83\) 1.27600e12 0.428394 0.214197 0.976790i \(-0.431287\pi\)
0.214197 + 0.976790i \(0.431287\pi\)
\(84\) −2.50407e12 −0.777735
\(85\) 0 0
\(86\) −3.01137e11 −0.0802646
\(87\) −3.10537e12 −0.767782
\(88\) −1.42764e13 −3.27704
\(89\) −4.87003e12 −1.03872 −0.519358 0.854557i \(-0.673829\pi\)
−0.519358 + 0.854557i \(0.673829\pi\)
\(90\) 0 0
\(91\) −3.27786e12 −0.605093
\(92\) 2.85215e13 4.90401
\(93\) −4.37011e12 −0.700411
\(94\) −1.57100e13 −2.34880
\(95\) 0 0
\(96\) 1.27394e13 1.66107
\(97\) 4.88961e12 0.596016 0.298008 0.954563i \(-0.403678\pi\)
0.298008 + 0.954563i \(0.403678\pi\)
\(98\) 1.21062e13 1.38051
\(99\) 3.40404e12 0.363384
\(100\) 0 0
\(101\) −3.69993e12 −0.346820 −0.173410 0.984850i \(-0.555479\pi\)
−0.173410 + 0.984850i \(0.555479\pi\)
\(102\) 1.67761e13 1.47499
\(103\) 1.06059e13 0.875196 0.437598 0.899171i \(-0.355829\pi\)
0.437598 + 0.899171i \(0.355829\pi\)
\(104\) 4.50777e13 3.49338
\(105\) 0 0
\(106\) 3.01094e12 0.206165
\(107\) −8.97407e12 −0.578089 −0.289045 0.957316i \(-0.593338\pi\)
−0.289045 + 0.957316i \(0.593338\pi\)
\(108\) −8.21097e12 −0.497898
\(109\) −1.61009e13 −0.919557 −0.459779 0.888034i \(-0.652071\pi\)
−0.459779 + 0.888034i \(0.652071\pi\)
\(110\) 0 0
\(111\) 1.92345e13 0.976069
\(112\) 3.37845e13 1.61734
\(113\) 8.20355e12 0.370674 0.185337 0.982675i \(-0.440662\pi\)
0.185337 + 0.982675i \(0.440662\pi\)
\(114\) 2.44649e13 1.04391
\(115\) 0 0
\(116\) 9.02813e13 3.44049
\(117\) −1.07483e13 −0.387374
\(118\) −5.20483e13 −1.77490
\(119\) 2.17571e13 0.702336
\(120\) 0 0
\(121\) 6.50525e12 0.188434
\(122\) −2.14952e13 −0.590203
\(123\) 1.65422e13 0.430735
\(124\) 1.27051e14 3.13860
\(125\) 0 0
\(126\) −1.47650e13 −0.328718
\(127\) −9.32098e12 −0.197123 −0.0985615 0.995131i \(-0.531424\pi\)
−0.0985615 + 0.995131i \(0.531424\pi\)
\(128\) −7.76374e13 −1.56029
\(129\) −1.28062e12 −0.0244674
\(130\) 0 0
\(131\) −2.79642e13 −0.483436 −0.241718 0.970347i \(-0.577711\pi\)
−0.241718 + 0.970347i \(0.577711\pi\)
\(132\) −9.89645e13 −1.62835
\(133\) 3.17288e13 0.497070
\(134\) −3.93090e13 −0.586558
\(135\) 0 0
\(136\) −2.99207e14 −4.05479
\(137\) −6.65701e13 −0.860193 −0.430096 0.902783i \(-0.641520\pi\)
−0.430096 + 0.902783i \(0.641520\pi\)
\(138\) 1.68173e14 2.07273
\(139\) 9.02944e13 1.06185 0.530927 0.847418i \(-0.321844\pi\)
0.530927 + 0.847418i \(0.321844\pi\)
\(140\) 0 0
\(141\) −6.68089e13 −0.715995
\(142\) 3.03673e14 3.10836
\(143\) −1.29546e14 −1.26689
\(144\) 1.10781e14 1.03540
\(145\) 0 0
\(146\) 1.14219e14 0.975984
\(147\) 5.14832e13 0.420827
\(148\) −5.59196e14 −4.37384
\(149\) 3.93096e13 0.294298 0.147149 0.989114i \(-0.452990\pi\)
0.147149 + 0.989114i \(0.452990\pi\)
\(150\) 0 0
\(151\) −2.49867e14 −1.71538 −0.857688 0.514170i \(-0.828100\pi\)
−0.857688 + 0.514170i \(0.828100\pi\)
\(152\) −4.36339e14 −2.86973
\(153\) 7.13424e13 0.449628
\(154\) −1.77958e14 −1.07506
\(155\) 0 0
\(156\) 3.12481e14 1.73585
\(157\) −1.41333e14 −0.753174 −0.376587 0.926381i \(-0.622902\pi\)
−0.376587 + 0.926381i \(0.622902\pi\)
\(158\) −2.96891e14 −1.51819
\(159\) 1.28044e13 0.0628461
\(160\) 0 0
\(161\) 2.18106e14 0.986959
\(162\) −4.84150e13 −0.210442
\(163\) 4.27510e14 1.78537 0.892683 0.450685i \(-0.148820\pi\)
0.892683 + 0.450685i \(0.148820\pi\)
\(164\) −4.80926e14 −1.93016
\(165\) 0 0
\(166\) −2.18736e14 −0.811369
\(167\) 2.90911e14 1.03777 0.518887 0.854843i \(-0.326346\pi\)
0.518887 + 0.854843i \(0.326346\pi\)
\(168\) 2.63338e14 0.903657
\(169\) 1.06166e14 0.350527
\(170\) 0 0
\(171\) 1.04040e14 0.318219
\(172\) 3.72311e13 0.109641
\(173\) 6.63985e14 1.88304 0.941518 0.336964i \(-0.109400\pi\)
0.941518 + 0.336964i \(0.109400\pi\)
\(174\) 5.32333e14 1.45416
\(175\) 0 0
\(176\) 1.33521e15 3.38624
\(177\) −2.21342e14 −0.541051
\(178\) 8.34837e14 1.96730
\(179\) 5.30658e14 1.20579 0.602893 0.797822i \(-0.294015\pi\)
0.602893 + 0.797822i \(0.294015\pi\)
\(180\) 0 0
\(181\) −6.50123e14 −1.37431 −0.687156 0.726510i \(-0.741141\pi\)
−0.687156 + 0.726510i \(0.741141\pi\)
\(182\) 5.61903e14 1.14603
\(183\) −9.14109e13 −0.179914
\(184\) −2.99943e15 −5.69800
\(185\) 0 0
\(186\) 7.49138e14 1.32656
\(187\) 8.59870e14 1.47049
\(188\) 1.94231e15 3.20843
\(189\) −6.27900e13 −0.100205
\(190\) 0 0
\(191\) −4.78551e14 −0.713200 −0.356600 0.934257i \(-0.616064\pi\)
−0.356600 + 0.934257i \(0.616064\pi\)
\(192\) −9.38957e14 −1.35266
\(193\) −1.31043e15 −1.82511 −0.912556 0.408951i \(-0.865895\pi\)
−0.912556 + 0.408951i \(0.865895\pi\)
\(194\) −8.38194e14 −1.12884
\(195\) 0 0
\(196\) −1.49675e15 −1.88576
\(197\) −1.50108e14 −0.182967 −0.0914834 0.995807i \(-0.529161\pi\)
−0.0914834 + 0.995807i \(0.529161\pi\)
\(198\) −5.83532e14 −0.688242
\(199\) 4.64828e13 0.0530576 0.0265288 0.999648i \(-0.491555\pi\)
0.0265288 + 0.999648i \(0.491555\pi\)
\(200\) 0 0
\(201\) −1.67167e14 −0.178803
\(202\) 6.34254e14 0.656869
\(203\) 6.90388e14 0.692419
\(204\) −2.07411e15 −2.01482
\(205\) 0 0
\(206\) −1.81810e15 −1.65760
\(207\) 7.15179e14 0.631841
\(208\) −4.21593e15 −3.60979
\(209\) 1.25397e15 1.04072
\(210\) 0 0
\(211\) 6.63210e14 0.517386 0.258693 0.965960i \(-0.416708\pi\)
0.258693 + 0.965960i \(0.416708\pi\)
\(212\) −3.72258e14 −0.281619
\(213\) 1.29141e15 0.947538
\(214\) 1.53836e15 1.09489
\(215\) 0 0
\(216\) 8.63498e14 0.578511
\(217\) 9.71566e14 0.631661
\(218\) 2.76008e15 1.74162
\(219\) 4.85729e14 0.297514
\(220\) 0 0
\(221\) −2.71504e15 −1.56757
\(222\) −3.29723e15 −1.84865
\(223\) 2.43567e15 1.32629 0.663143 0.748492i \(-0.269222\pi\)
0.663143 + 0.748492i \(0.269222\pi\)
\(224\) −2.83224e15 −1.49802
\(225\) 0 0
\(226\) −1.40628e15 −0.702048
\(227\) 2.90501e14 0.140922 0.0704611 0.997515i \(-0.477553\pi\)
0.0704611 + 0.997515i \(0.477553\pi\)
\(228\) −3.02472e15 −1.42596
\(229\) 2.27636e15 1.04306 0.521531 0.853233i \(-0.325361\pi\)
0.521531 + 0.853233i \(0.325361\pi\)
\(230\) 0 0
\(231\) −7.56790e14 −0.327716
\(232\) −9.49433e15 −3.99754
\(233\) 3.97697e15 1.62831 0.814157 0.580644i \(-0.197199\pi\)
0.814157 + 0.580644i \(0.197199\pi\)
\(234\) 1.84250e15 0.733678
\(235\) 0 0
\(236\) 6.43501e15 2.42449
\(237\) −1.26257e15 −0.462796
\(238\) −3.72967e15 −1.33021
\(239\) 1.67198e15 0.580290 0.290145 0.956983i \(-0.406296\pi\)
0.290145 + 0.956983i \(0.406296\pi\)
\(240\) 0 0
\(241\) 1.34014e15 0.440594 0.220297 0.975433i \(-0.429297\pi\)
0.220297 + 0.975433i \(0.429297\pi\)
\(242\) −1.11515e15 −0.356890
\(243\) −2.05891e14 −0.0641500
\(244\) 2.65756e15 0.806211
\(245\) 0 0
\(246\) −2.83572e15 −0.815803
\(247\) −3.95940e15 −1.10943
\(248\) −1.33611e16 −3.64676
\(249\) −9.30205e14 −0.247334
\(250\) 0 0
\(251\) 3.02079e15 0.762501 0.381251 0.924472i \(-0.375493\pi\)
0.381251 + 0.924472i \(0.375493\pi\)
\(252\) 1.82547e15 0.449026
\(253\) 8.61985e15 2.06641
\(254\) 1.59783e15 0.373347
\(255\) 0 0
\(256\) 2.75750e15 0.612289
\(257\) 3.33335e15 0.721632 0.360816 0.932637i \(-0.382498\pi\)
0.360816 + 0.932637i \(0.382498\pi\)
\(258\) 2.19529e14 0.0463408
\(259\) −4.27622e15 −0.880261
\(260\) 0 0
\(261\) 2.26381e15 0.443279
\(262\) 4.79371e15 0.915616
\(263\) −3.46253e15 −0.645181 −0.322591 0.946539i \(-0.604554\pi\)
−0.322591 + 0.946539i \(0.604554\pi\)
\(264\) 1.04075e16 1.89200
\(265\) 0 0
\(266\) −5.43905e15 −0.941440
\(267\) 3.55025e15 0.599703
\(268\) 4.85998e15 0.801232
\(269\) 6.87853e15 1.10689 0.553447 0.832884i \(-0.313312\pi\)
0.553447 + 0.832884i \(0.313312\pi\)
\(270\) 0 0
\(271\) −2.62602e15 −0.402714 −0.201357 0.979518i \(-0.564535\pi\)
−0.201357 + 0.979518i \(0.564535\pi\)
\(272\) 2.79836e16 4.18991
\(273\) 2.38956e15 0.349351
\(274\) 1.14117e16 1.62919
\(275\) 0 0
\(276\) −2.07921e16 −2.83133
\(277\) 9.79892e15 1.30335 0.651673 0.758500i \(-0.274067\pi\)
0.651673 + 0.758500i \(0.274067\pi\)
\(278\) −1.54786e16 −2.01113
\(279\) 3.18581e15 0.404382
\(280\) 0 0
\(281\) −4.26310e15 −0.516577 −0.258288 0.966068i \(-0.583158\pi\)
−0.258288 + 0.966068i \(0.583158\pi\)
\(282\) 1.14526e16 1.35608
\(283\) 1.39703e16 1.61657 0.808284 0.588793i \(-0.200397\pi\)
0.808284 + 0.588793i \(0.200397\pi\)
\(284\) −3.75447e16 −4.24599
\(285\) 0 0
\(286\) 2.22072e16 2.39946
\(287\) −3.67768e15 −0.388456
\(288\) −9.28706e15 −0.959018
\(289\) 8.11668e15 0.819488
\(290\) 0 0
\(291\) −3.56453e15 −0.344110
\(292\) −1.41214e16 −1.33318
\(293\) −6.22813e14 −0.0575067 −0.0287533 0.999587i \(-0.509154\pi\)
−0.0287533 + 0.999587i \(0.509154\pi\)
\(294\) −8.82543e15 −0.797036
\(295\) 0 0
\(296\) 5.88073e16 5.08200
\(297\) −2.48155e15 −0.209800
\(298\) −6.73858e15 −0.557395
\(299\) −2.72172e16 −2.20283
\(300\) 0 0
\(301\) 2.84709e14 0.0220658
\(302\) 4.28331e16 3.24888
\(303\) 2.69725e15 0.200237
\(304\) 4.08090e16 2.96536
\(305\) 0 0
\(306\) −1.22297e16 −0.851586
\(307\) −4.30448e14 −0.0293441 −0.0146721 0.999892i \(-0.504670\pi\)
−0.0146721 + 0.999892i \(0.504670\pi\)
\(308\) 2.20019e16 1.46852
\(309\) −7.73169e15 −0.505294
\(310\) 0 0
\(311\) −5.15074e15 −0.322795 −0.161398 0.986889i \(-0.551600\pi\)
−0.161398 + 0.986889i \(0.551600\pi\)
\(312\) −3.28617e16 −2.01690
\(313\) −2.72712e16 −1.63933 −0.819664 0.572845i \(-0.805840\pi\)
−0.819664 + 0.572845i \(0.805840\pi\)
\(314\) 2.42277e16 1.42650
\(315\) 0 0
\(316\) 3.67061e16 2.07383
\(317\) −2.61056e16 −1.44494 −0.722469 0.691403i \(-0.756993\pi\)
−0.722469 + 0.691403i \(0.756993\pi\)
\(318\) −2.19498e15 −0.119029
\(319\) 2.72851e16 1.44973
\(320\) 0 0
\(321\) 6.54209e15 0.333760
\(322\) −3.73884e16 −1.86928
\(323\) 2.62808e16 1.28772
\(324\) 5.98580e15 0.287461
\(325\) 0 0
\(326\) −7.32853e16 −3.38144
\(327\) 1.17376e16 0.530907
\(328\) 5.05760e16 2.24267
\(329\) 1.48530e16 0.645715
\(330\) 0 0
\(331\) 3.46176e16 1.44682 0.723412 0.690417i \(-0.242573\pi\)
0.723412 + 0.690417i \(0.242573\pi\)
\(332\) 2.70435e16 1.10832
\(333\) −1.40219e16 −0.563534
\(334\) −4.98689e16 −1.96552
\(335\) 0 0
\(336\) −2.46289e16 −0.933770
\(337\) −1.10574e16 −0.411207 −0.205603 0.978635i \(-0.565916\pi\)
−0.205603 + 0.978635i \(0.565916\pi\)
\(338\) −1.81993e16 −0.663890
\(339\) −5.98039e15 −0.214009
\(340\) 0 0
\(341\) 3.83976e16 1.32252
\(342\) −1.78349e16 −0.602700
\(343\) −2.71488e16 −0.900199
\(344\) −3.91537e15 −0.127392
\(345\) 0 0
\(346\) −1.13822e17 −3.56643
\(347\) 4.80581e15 0.147783 0.0738916 0.997266i \(-0.476458\pi\)
0.0738916 + 0.997266i \(0.476458\pi\)
\(348\) −6.58151e16 −1.98637
\(349\) −4.47644e16 −1.32607 −0.663036 0.748587i \(-0.730733\pi\)
−0.663036 + 0.748587i \(0.730733\pi\)
\(350\) 0 0
\(351\) 7.83549e15 0.223650
\(352\) −1.11934e17 −3.13643
\(353\) −2.63962e16 −0.726117 −0.363058 0.931766i \(-0.618267\pi\)
−0.363058 + 0.931766i \(0.618267\pi\)
\(354\) 3.79432e16 1.02474
\(355\) 0 0
\(356\) −1.03215e17 −2.68732
\(357\) −1.58609e16 −0.405494
\(358\) −9.09672e16 −2.28373
\(359\) 1.93311e16 0.476588 0.238294 0.971193i \(-0.423412\pi\)
0.238294 + 0.971193i \(0.423412\pi\)
\(360\) 0 0
\(361\) −3.72715e15 −0.0886299
\(362\) 1.11446e17 2.60292
\(363\) −4.74233e15 −0.108792
\(364\) −6.94709e16 −1.56547
\(365\) 0 0
\(366\) 1.56700e16 0.340754
\(367\) −5.50709e16 −1.17650 −0.588251 0.808678i \(-0.700183\pi\)
−0.588251 + 0.808678i \(0.700183\pi\)
\(368\) 2.80524e17 5.88788
\(369\) −1.20593e16 −0.248685
\(370\) 0 0
\(371\) −2.84669e15 −0.0566773
\(372\) −9.26198e16 −1.81207
\(373\) 4.45131e16 0.855817 0.427908 0.903822i \(-0.359251\pi\)
0.427908 + 0.903822i \(0.359251\pi\)
\(374\) −1.47402e17 −2.78508
\(375\) 0 0
\(376\) −2.04261e17 −3.72790
\(377\) −8.61528e16 −1.54543
\(378\) 1.07637e16 0.189786
\(379\) 5.75094e16 0.996744 0.498372 0.866963i \(-0.333931\pi\)
0.498372 + 0.866963i \(0.333931\pi\)
\(380\) 0 0
\(381\) 6.79500e15 0.113809
\(382\) 8.20348e16 1.35079
\(383\) −5.35837e16 −0.867443 −0.433722 0.901047i \(-0.642800\pi\)
−0.433722 + 0.901047i \(0.642800\pi\)
\(384\) 5.65977e16 0.900835
\(385\) 0 0
\(386\) 2.24637e17 3.45672
\(387\) 9.33574e14 0.0141263
\(388\) 1.03630e17 1.54199
\(389\) 7.60860e16 1.11335 0.556676 0.830730i \(-0.312077\pi\)
0.556676 + 0.830730i \(0.312077\pi\)
\(390\) 0 0
\(391\) 1.80656e17 2.55684
\(392\) 1.57404e17 2.19108
\(393\) 2.03859e16 0.279112
\(394\) 2.57320e16 0.346535
\(395\) 0 0
\(396\) 7.21451e16 0.940131
\(397\) 6.28610e16 0.805829 0.402915 0.915238i \(-0.367997\pi\)
0.402915 + 0.915238i \(0.367997\pi\)
\(398\) −7.96824e15 −0.100490
\(399\) −2.31303e16 −0.286984
\(400\) 0 0
\(401\) 6.07087e16 0.729143 0.364572 0.931175i \(-0.381215\pi\)
0.364572 + 0.931175i \(0.381215\pi\)
\(402\) 2.86563e16 0.338650
\(403\) −1.21241e17 −1.40982
\(404\) −7.84161e16 −0.897276
\(405\) 0 0
\(406\) −1.18349e17 −1.31143
\(407\) −1.69002e17 −1.84301
\(408\) 2.18122e17 2.34103
\(409\) −1.10708e17 −1.16944 −0.584718 0.811236i \(-0.698795\pi\)
−0.584718 + 0.811236i \(0.698795\pi\)
\(410\) 0 0
\(411\) 4.85296e16 0.496633
\(412\) 2.24781e17 2.26426
\(413\) 4.92090e16 0.487943
\(414\) −1.22598e17 −1.19669
\(415\) 0 0
\(416\) 3.53432e17 3.34349
\(417\) −6.58247e16 −0.613062
\(418\) −2.14959e17 −1.97111
\(419\) −1.92248e17 −1.73568 −0.867840 0.496843i \(-0.834492\pi\)
−0.867840 + 0.496843i \(0.834492\pi\)
\(420\) 0 0
\(421\) 3.40528e16 0.298071 0.149035 0.988832i \(-0.452383\pi\)
0.149035 + 0.988832i \(0.452383\pi\)
\(422\) −1.13690e17 −0.979918
\(423\) 4.87037e16 0.413380
\(424\) 3.91481e16 0.327215
\(425\) 0 0
\(426\) −2.21378e17 −1.79462
\(427\) 2.03226e16 0.162255
\(428\) −1.90196e17 −1.49560
\(429\) 9.44389e16 0.731440
\(430\) 0 0
\(431\) 1.29097e17 0.970098 0.485049 0.874487i \(-0.338802\pi\)
0.485049 + 0.874487i \(0.338802\pi\)
\(432\) −8.07593e16 −0.597790
\(433\) −2.87818e16 −0.209868 −0.104934 0.994479i \(-0.533463\pi\)
−0.104934 + 0.994479i \(0.533463\pi\)
\(434\) −1.66549e17 −1.19635
\(435\) 0 0
\(436\) −3.41242e17 −2.37904
\(437\) 2.63455e17 1.80957
\(438\) −8.32653e16 −0.563485
\(439\) 1.71993e17 1.14681 0.573405 0.819272i \(-0.305622\pi\)
0.573405 + 0.819272i \(0.305622\pi\)
\(440\) 0 0
\(441\) −3.75313e16 −0.242964
\(442\) 4.65421e17 2.96894
\(443\) −2.30800e16 −0.145081 −0.0725406 0.997365i \(-0.523111\pi\)
−0.0725406 + 0.997365i \(0.523111\pi\)
\(444\) 4.07654e17 2.52524
\(445\) 0 0
\(446\) −4.17531e17 −2.51196
\(447\) −2.86567e16 −0.169913
\(448\) 2.08750e17 1.21989
\(449\) −8.02803e16 −0.462389 −0.231195 0.972908i \(-0.574263\pi\)
−0.231195 + 0.972908i \(0.574263\pi\)
\(450\) 0 0
\(451\) −1.45347e17 −0.813315
\(452\) 1.73866e17 0.958990
\(453\) 1.82153e17 0.990373
\(454\) −4.97986e16 −0.266904
\(455\) 0 0
\(456\) 3.18091e17 1.65684
\(457\) −1.74637e17 −0.896769 −0.448384 0.893841i \(-0.648000\pi\)
−0.448384 + 0.893841i \(0.648000\pi\)
\(458\) −3.90221e17 −1.97554
\(459\) −5.20086e16 −0.259593
\(460\) 0 0
\(461\) 1.27387e17 0.618113 0.309057 0.951044i \(-0.399987\pi\)
0.309057 + 0.951044i \(0.399987\pi\)
\(462\) 1.29731e17 0.620686
\(463\) −1.45811e17 −0.687880 −0.343940 0.938992i \(-0.611762\pi\)
−0.343940 + 0.938992i \(0.611762\pi\)
\(464\) 8.87965e17 4.13075
\(465\) 0 0
\(466\) −6.81745e17 −3.08399
\(467\) −3.09767e17 −1.38190 −0.690949 0.722903i \(-0.742807\pi\)
−0.690949 + 0.722903i \(0.742807\pi\)
\(468\) −2.27798e17 −1.00220
\(469\) 3.71647e16 0.161253
\(470\) 0 0
\(471\) 1.03032e17 0.434845
\(472\) −6.76730e17 −2.81704
\(473\) 1.12521e16 0.0461994
\(474\) 2.16433e17 0.876526
\(475\) 0 0
\(476\) 4.61118e17 1.81705
\(477\) −9.33442e15 −0.0362842
\(478\) −2.86617e17 −1.09906
\(479\) 5.21405e16 0.197240 0.0986199 0.995125i \(-0.468557\pi\)
0.0986199 + 0.995125i \(0.468557\pi\)
\(480\) 0 0
\(481\) 5.33624e17 1.96468
\(482\) −2.29731e17 −0.834476
\(483\) −1.58999e17 −0.569821
\(484\) 1.37872e17 0.487507
\(485\) 0 0
\(486\) 3.52945e16 0.121499
\(487\) 1.16892e16 0.0397052 0.0198526 0.999803i \(-0.493680\pi\)
0.0198526 + 0.999803i \(0.493680\pi\)
\(488\) −2.79479e17 −0.936743
\(489\) −3.11655e17 −1.03078
\(490\) 0 0
\(491\) −1.09561e17 −0.352878 −0.176439 0.984312i \(-0.556458\pi\)
−0.176439 + 0.984312i \(0.556458\pi\)
\(492\) 3.50595e17 1.11438
\(493\) 5.71845e17 1.79380
\(494\) 6.78733e17 2.10123
\(495\) 0 0
\(496\) 1.24961e18 3.76829
\(497\) −2.87107e17 −0.854530
\(498\) 1.59459e17 0.468444
\(499\) 3.19995e17 0.927876 0.463938 0.885868i \(-0.346436\pi\)
0.463938 + 0.885868i \(0.346436\pi\)
\(500\) 0 0
\(501\) −2.12074e17 −0.599160
\(502\) −5.17833e17 −1.44416
\(503\) 6.67305e17 1.83710 0.918549 0.395308i \(-0.129362\pi\)
0.918549 + 0.395308i \(0.129362\pi\)
\(504\) −1.91974e17 −0.521726
\(505\) 0 0
\(506\) −1.47764e18 −3.91373
\(507\) −7.73949e16 −0.202377
\(508\) −1.97548e17 −0.509987
\(509\) 3.20815e17 0.817690 0.408845 0.912604i \(-0.365932\pi\)
0.408845 + 0.912604i \(0.365932\pi\)
\(510\) 0 0
\(511\) −1.07988e17 −0.268311
\(512\) 1.63305e17 0.400632
\(513\) −7.58452e16 −0.183724
\(514\) −5.71415e17 −1.36676
\(515\) 0 0
\(516\) −2.71415e16 −0.0633010
\(517\) 5.87012e17 1.35194
\(518\) 7.33044e17 1.66720
\(519\) −4.84045e17 −1.08717
\(520\) 0 0
\(521\) −3.17985e17 −0.696565 −0.348283 0.937390i \(-0.613235\pi\)
−0.348283 + 0.937390i \(0.613235\pi\)
\(522\) −3.88071e17 −0.839561
\(523\) −4.44725e16 −0.0950234 −0.0475117 0.998871i \(-0.515129\pi\)
−0.0475117 + 0.998871i \(0.515129\pi\)
\(524\) −5.92672e17 −1.25072
\(525\) 0 0
\(526\) 5.93559e17 1.22196
\(527\) 8.04743e17 1.63639
\(528\) −9.73369e17 −1.95505
\(529\) 1.30697e18 2.59301
\(530\) 0 0
\(531\) 1.61359e17 0.312376
\(532\) 6.72458e17 1.28600
\(533\) 4.58933e17 0.867007
\(534\) −6.08596e17 −1.13582
\(535\) 0 0
\(536\) −5.11094e17 −0.930958
\(537\) −3.86850e17 −0.696161
\(538\) −1.17914e18 −2.09643
\(539\) −4.52354e17 −0.794605
\(540\) 0 0
\(541\) 2.56768e17 0.440310 0.220155 0.975465i \(-0.429344\pi\)
0.220155 + 0.975465i \(0.429344\pi\)
\(542\) 4.50160e17 0.762732
\(543\) 4.73940e17 0.793459
\(544\) −2.34593e18 −3.88081
\(545\) 0 0
\(546\) −4.09627e17 −0.661662
\(547\) −1.95784e17 −0.312507 −0.156253 0.987717i \(-0.549942\pi\)
−0.156253 + 0.987717i \(0.549942\pi\)
\(548\) −1.41088e18 −2.22545
\(549\) 6.66386e16 0.103874
\(550\) 0 0
\(551\) 8.33934e17 1.26954
\(552\) 2.18658e18 3.28974
\(553\) 2.80695e17 0.417370
\(554\) −1.67976e18 −2.46851
\(555\) 0 0
\(556\) 1.91370e18 2.74718
\(557\) −4.15036e17 −0.588881 −0.294440 0.955670i \(-0.595133\pi\)
−0.294440 + 0.955670i \(0.595133\pi\)
\(558\) −5.46122e17 −0.765891
\(559\) −3.55285e16 −0.0492494
\(560\) 0 0
\(561\) −6.26845e17 −0.848988
\(562\) 7.30795e17 0.978385
\(563\) 8.31196e17 1.10002 0.550008 0.835160i \(-0.314625\pi\)
0.550008 + 0.835160i \(0.314625\pi\)
\(564\) −1.41594e18 −1.85239
\(565\) 0 0
\(566\) −2.39484e18 −3.06174
\(567\) 4.57739e16 0.0578533
\(568\) 3.94834e18 4.93345
\(569\) 8.66409e17 1.07027 0.535135 0.844767i \(-0.320261\pi\)
0.535135 + 0.844767i \(0.320261\pi\)
\(570\) 0 0
\(571\) 1.71702e17 0.207320 0.103660 0.994613i \(-0.466945\pi\)
0.103660 + 0.994613i \(0.466945\pi\)
\(572\) −2.74559e18 −3.27764
\(573\) 3.48864e17 0.411766
\(574\) 6.30440e17 0.735727
\(575\) 0 0
\(576\) 6.84500e17 0.780957
\(577\) 1.30809e18 1.47569 0.737844 0.674972i \(-0.235844\pi\)
0.737844 + 0.674972i \(0.235844\pi\)
\(578\) −1.39139e18 −1.55209
\(579\) 9.55300e17 1.05373
\(580\) 0 0
\(581\) 2.06804e17 0.223056
\(582\) 6.11043e17 0.651737
\(583\) −1.12505e17 −0.118666
\(584\) 1.48506e18 1.54904
\(585\) 0 0
\(586\) 1.06765e17 0.108916
\(587\) 5.55292e16 0.0560239 0.0280120 0.999608i \(-0.491082\pi\)
0.0280120 + 0.999608i \(0.491082\pi\)
\(588\) 1.09113e18 1.08874
\(589\) 1.17357e18 1.15814
\(590\) 0 0
\(591\) 1.09428e17 0.105636
\(592\) −5.50000e18 −5.25136
\(593\) 8.89526e17 0.840046 0.420023 0.907513i \(-0.362022\pi\)
0.420023 + 0.907513i \(0.362022\pi\)
\(594\) 4.25395e17 0.397357
\(595\) 0 0
\(596\) 8.33126e17 0.761395
\(597\) −3.38860e16 −0.0306328
\(598\) 4.66566e18 4.17211
\(599\) −1.14465e17 −0.101251 −0.0506256 0.998718i \(-0.516122\pi\)
−0.0506256 + 0.998718i \(0.516122\pi\)
\(600\) 0 0
\(601\) −1.39928e17 −0.121122 −0.0605609 0.998165i \(-0.519289\pi\)
−0.0605609 + 0.998165i \(0.519289\pi\)
\(602\) −4.88058e16 −0.0417921
\(603\) 1.21865e17 0.103232
\(604\) −5.29568e18 −4.43794
\(605\) 0 0
\(606\) −4.62371e17 −0.379244
\(607\) −1.78906e18 −1.45178 −0.725888 0.687813i \(-0.758571\pi\)
−0.725888 + 0.687813i \(0.758571\pi\)
\(608\) −3.42112e18 −2.74660
\(609\) −5.03293e17 −0.399768
\(610\) 0 0
\(611\) −1.85349e18 −1.44119
\(612\) 1.51203e18 1.16326
\(613\) −1.34925e18 −1.02707 −0.513534 0.858069i \(-0.671664\pi\)
−0.513534 + 0.858069i \(0.671664\pi\)
\(614\) 7.37888e16 0.0555771
\(615\) 0 0
\(616\) −2.31380e18 −1.70629
\(617\) −8.71819e17 −0.636169 −0.318085 0.948062i \(-0.603040\pi\)
−0.318085 + 0.948062i \(0.603040\pi\)
\(618\) 1.32539e18 0.957016
\(619\) 1.54715e18 1.10546 0.552728 0.833361i \(-0.313587\pi\)
0.552728 + 0.833361i \(0.313587\pi\)
\(620\) 0 0
\(621\) −5.21366e17 −0.364793
\(622\) 8.82956e17 0.611367
\(623\) −7.89295e17 −0.540838
\(624\) 3.07341e18 2.08411
\(625\) 0 0
\(626\) 4.67492e18 3.10485
\(627\) −9.14141e17 −0.600861
\(628\) −2.99540e18 −1.94858
\(629\) −3.54197e18 −2.28042
\(630\) 0 0
\(631\) 1.22843e18 0.774746 0.387373 0.921923i \(-0.373383\pi\)
0.387373 + 0.921923i \(0.373383\pi\)
\(632\) −3.86016e18 −2.40960
\(633\) −4.83480e17 −0.298713
\(634\) 4.47512e18 2.73668
\(635\) 0 0
\(636\) 2.71376e17 0.162593
\(637\) 1.42831e18 0.847062
\(638\) −4.67730e18 −2.74575
\(639\) −9.41437e17 −0.547061
\(640\) 0 0
\(641\) −2.84548e18 −1.62023 −0.810117 0.586268i \(-0.800596\pi\)
−0.810117 + 0.586268i \(0.800596\pi\)
\(642\) −1.12147e18 −0.632134
\(643\) −1.63945e18 −0.914800 −0.457400 0.889261i \(-0.651219\pi\)
−0.457400 + 0.889261i \(0.651219\pi\)
\(644\) 4.62253e18 2.55341
\(645\) 0 0
\(646\) −4.50514e18 −2.43892
\(647\) 1.77607e17 0.0951879 0.0475940 0.998867i \(-0.484845\pi\)
0.0475940 + 0.998867i \(0.484845\pi\)
\(648\) −6.29490e17 −0.334004
\(649\) 1.94481e18 1.02161
\(650\) 0 0
\(651\) −7.08271e17 −0.364690
\(652\) 9.06064e18 4.61901
\(653\) 7.71684e17 0.389497 0.194748 0.980853i \(-0.437611\pi\)
0.194748 + 0.980853i \(0.437611\pi\)
\(654\) −2.01210e18 −1.00553
\(655\) 0 0
\(656\) −4.73017e18 −2.31740
\(657\) −3.54096e17 −0.171770
\(658\) −2.54615e18 −1.22297
\(659\) −1.20269e18 −0.572004 −0.286002 0.958229i \(-0.592326\pi\)
−0.286002 + 0.958229i \(0.592326\pi\)
\(660\) 0 0
\(661\) −5.97449e17 −0.278607 −0.139303 0.990250i \(-0.544486\pi\)
−0.139303 + 0.990250i \(0.544486\pi\)
\(662\) −5.93427e18 −2.74025
\(663\) 1.97926e18 0.905035
\(664\) −2.84400e18 −1.28777
\(665\) 0 0
\(666\) 2.40368e18 1.06732
\(667\) 5.73252e18 2.52074
\(668\) 6.16555e18 2.68488
\(669\) −1.77561e18 −0.765732
\(670\) 0 0
\(671\) 8.03176e17 0.339715
\(672\) 2.06471e18 0.864884
\(673\) −1.39299e18 −0.577896 −0.288948 0.957345i \(-0.593305\pi\)
−0.288948 + 0.957345i \(0.593305\pi\)
\(674\) 1.89550e18 0.778817
\(675\) 0 0
\(676\) 2.25007e18 0.906866
\(677\) −4.30164e17 −0.171715 −0.0858573 0.996307i \(-0.527363\pi\)
−0.0858573 + 0.996307i \(0.527363\pi\)
\(678\) 1.02518e18 0.405328
\(679\) 7.92469e17 0.310333
\(680\) 0 0
\(681\) −2.11775e17 −0.0813615
\(682\) −6.58225e18 −2.50482
\(683\) −4.26023e18 −1.60583 −0.802913 0.596096i \(-0.796718\pi\)
−0.802913 + 0.596096i \(0.796718\pi\)
\(684\) 2.20502e18 0.823281
\(685\) 0 0
\(686\) 4.65393e18 1.70496
\(687\) −1.65946e18 −0.602212
\(688\) 3.66188e17 0.131637
\(689\) 3.55235e17 0.126500
\(690\) 0 0
\(691\) 3.41734e17 0.119421 0.0597105 0.998216i \(-0.480982\pi\)
0.0597105 + 0.998216i \(0.480982\pi\)
\(692\) 1.40725e19 4.87170
\(693\) 5.51700e17 0.189207
\(694\) −8.23828e17 −0.279898
\(695\) 0 0
\(696\) 6.92137e18 2.30798
\(697\) −3.04620e18 −1.00634
\(698\) 7.67366e18 2.51155
\(699\) −2.89921e18 −0.940108
\(700\) 0 0
\(701\) 2.89335e18 0.920945 0.460472 0.887674i \(-0.347680\pi\)
0.460472 + 0.887674i \(0.347680\pi\)
\(702\) −1.34319e18 −0.423589
\(703\) −5.16533e18 −1.61394
\(704\) 8.25008e18 2.55409
\(705\) 0 0
\(706\) 4.52493e18 1.37525
\(707\) −5.99654e17 −0.180582
\(708\) −4.69112e18 −1.39978
\(709\) 1.11626e18 0.330038 0.165019 0.986290i \(-0.447231\pi\)
0.165019 + 0.986290i \(0.447231\pi\)
\(710\) 0 0
\(711\) 9.20411e17 0.267196
\(712\) 1.08545e19 3.12241
\(713\) 8.06723e18 2.29955
\(714\) 2.71893e18 0.767997
\(715\) 0 0
\(716\) 1.12467e19 3.11955
\(717\) −1.21887e18 −0.335031
\(718\) −3.31380e18 −0.902646
\(719\) −2.24400e18 −0.605738 −0.302869 0.953032i \(-0.597945\pi\)
−0.302869 + 0.953032i \(0.597945\pi\)
\(720\) 0 0
\(721\) 1.71892e18 0.455696
\(722\) 6.38921e17 0.167863
\(723\) −9.76961e17 −0.254377
\(724\) −1.37787e19 −3.55555
\(725\) 0 0
\(726\) 8.12946e17 0.206050
\(727\) −2.69899e18 −0.677997 −0.338999 0.940787i \(-0.610088\pi\)
−0.338999 + 0.940787i \(0.610088\pi\)
\(728\) 7.30583e18 1.81893
\(729\) 1.50095e17 0.0370370
\(730\) 0 0
\(731\) 2.35823e17 0.0571641
\(732\) −1.93736e18 −0.465466
\(733\) −6.95930e18 −1.65726 −0.828628 0.559800i \(-0.810878\pi\)
−0.828628 + 0.559800i \(0.810878\pi\)
\(734\) 9.44044e18 2.22827
\(735\) 0 0
\(736\) −2.35170e19 −5.45352
\(737\) 1.46880e18 0.337617
\(738\) 2.06724e18 0.471004
\(739\) −2.95895e18 −0.668266 −0.334133 0.942526i \(-0.608443\pi\)
−0.334133 + 0.942526i \(0.608443\pi\)
\(740\) 0 0
\(741\) 2.88640e18 0.640528
\(742\) 4.87989e17 0.107346
\(743\) −1.75250e18 −0.382147 −0.191074 0.981576i \(-0.561197\pi\)
−0.191074 + 0.981576i \(0.561197\pi\)
\(744\) 9.74026e18 2.10546
\(745\) 0 0
\(746\) −7.63059e18 −1.62090
\(747\) 6.78120e17 0.142798
\(748\) 1.82240e19 3.80438
\(749\) −1.45444e18 −0.300999
\(750\) 0 0
\(751\) 3.37899e18 0.687269 0.343635 0.939103i \(-0.388342\pi\)
0.343635 + 0.939103i \(0.388342\pi\)
\(752\) 1.91037e19 3.85213
\(753\) −2.20215e18 −0.440230
\(754\) 1.47686e19 2.92702
\(755\) 0 0
\(756\) −1.33077e18 −0.259245
\(757\) 8.54187e18 1.64979 0.824897 0.565284i \(-0.191233\pi\)
0.824897 + 0.565284i \(0.191233\pi\)
\(758\) −9.85845e18 −1.88781
\(759\) −6.28387e18 −1.19304
\(760\) 0 0
\(761\) −7.91490e18 −1.47722 −0.738610 0.674133i \(-0.764518\pi\)
−0.738610 + 0.674133i \(0.764518\pi\)
\(762\) −1.16482e18 −0.215552
\(763\) −2.60951e18 −0.478795
\(764\) −1.01424e19 −1.84516
\(765\) 0 0
\(766\) 9.18550e18 1.64292
\(767\) −6.14074e18 −1.08906
\(768\) −2.01022e18 −0.353505
\(769\) −4.76586e18 −0.831036 −0.415518 0.909585i \(-0.636400\pi\)
−0.415518 + 0.909585i \(0.636400\pi\)
\(770\) 0 0
\(771\) −2.43001e18 −0.416635
\(772\) −2.77731e19 −4.72185
\(773\) −5.28988e18 −0.891824 −0.445912 0.895077i \(-0.647121\pi\)
−0.445912 + 0.895077i \(0.647121\pi\)
\(774\) −1.60036e17 −0.0267549
\(775\) 0 0
\(776\) −1.08982e19 −1.79164
\(777\) 3.11736e18 0.508219
\(778\) −1.30429e19 −2.10866
\(779\) −4.44234e18 −0.712227
\(780\) 0 0
\(781\) −1.13469e19 −1.78914
\(782\) −3.09687e19 −4.84260
\(783\) −1.65032e18 −0.255927
\(784\) −1.47214e19 −2.26409
\(785\) 0 0
\(786\) −3.49462e18 −0.528631
\(787\) 1.03442e19 1.55189 0.775947 0.630798i \(-0.217272\pi\)
0.775947 + 0.630798i \(0.217272\pi\)
\(788\) −3.18138e18 −0.473363
\(789\) 2.52419e18 0.372496
\(790\) 0 0
\(791\) 1.32957e18 0.193002
\(792\) −7.58706e18 −1.09235
\(793\) −2.53603e18 −0.362141
\(794\) −1.07758e19 −1.52622
\(795\) 0 0
\(796\) 9.85155e17 0.137268
\(797\) −1.34315e18 −0.185629 −0.0928147 0.995683i \(-0.529586\pi\)
−0.0928147 + 0.995683i \(0.529586\pi\)
\(798\) 3.96507e18 0.543541
\(799\) 1.23027e19 1.67280
\(800\) 0 0
\(801\) −2.58813e18 −0.346238
\(802\) −1.04069e19 −1.38098
\(803\) −4.26782e18 −0.561766
\(804\) −3.54293e18 −0.462592
\(805\) 0 0
\(806\) 2.07835e19 2.67018
\(807\) −5.01445e18 −0.639065
\(808\) 8.24654e18 1.04255
\(809\) −3.20015e18 −0.401333 −0.200667 0.979660i \(-0.564311\pi\)
−0.200667 + 0.979660i \(0.564311\pi\)
\(810\) 0 0
\(811\) 8.85553e18 1.09290 0.546448 0.837493i \(-0.315980\pi\)
0.546448 + 0.837493i \(0.315980\pi\)
\(812\) 1.46321e19 1.79139
\(813\) 1.91437e18 0.232507
\(814\) 2.89709e19 3.49063
\(815\) 0 0
\(816\) −2.04000e19 −2.41905
\(817\) 3.43906e17 0.0404572
\(818\) 1.89779e19 2.21489
\(819\) −1.74199e18 −0.201698
\(820\) 0 0
\(821\) 1.03933e19 1.18446 0.592232 0.805767i \(-0.298247\pi\)
0.592232 + 0.805767i \(0.298247\pi\)
\(822\) −8.31911e18 −0.940611
\(823\) 4.86493e18 0.545730 0.272865 0.962052i \(-0.412029\pi\)
0.272865 + 0.962052i \(0.412029\pi\)
\(824\) −2.36388e19 −2.63087
\(825\) 0 0
\(826\) −8.43557e18 −0.924154
\(827\) 8.76105e18 0.952292 0.476146 0.879366i \(-0.342033\pi\)
0.476146 + 0.879366i \(0.342033\pi\)
\(828\) 1.51575e19 1.63467
\(829\) 9.26848e18 0.991754 0.495877 0.868393i \(-0.334847\pi\)
0.495877 + 0.868393i \(0.334847\pi\)
\(830\) 0 0
\(831\) −7.14341e18 −0.752487
\(832\) −2.60496e19 −2.72270
\(833\) −9.48049e18 −0.983192
\(834\) 1.12839e19 1.16113
\(835\) 0 0
\(836\) 2.65765e19 2.69251
\(837\) −2.32245e18 −0.233470
\(838\) 3.29557e19 3.28734
\(839\) −3.96926e18 −0.392877 −0.196439 0.980516i \(-0.562938\pi\)
−0.196439 + 0.980516i \(0.562938\pi\)
\(840\) 0 0
\(841\) 7.88498e18 0.768469
\(842\) −5.83744e18 −0.564539
\(843\) 3.10780e18 0.298246
\(844\) 1.40560e19 1.33856
\(845\) 0 0
\(846\) −8.34895e18 −0.782933
\(847\) 1.05432e18 0.0981137
\(848\) −3.66136e18 −0.338119
\(849\) −1.01844e19 −0.933326
\(850\) 0 0
\(851\) −3.55069e19 −3.20457
\(852\) 2.73701e19 2.45142
\(853\) −1.77925e19 −1.58150 −0.790750 0.612140i \(-0.790309\pi\)
−0.790750 + 0.612140i \(0.790309\pi\)
\(854\) −3.48376e18 −0.307307
\(855\) 0 0
\(856\) 2.00017e19 1.73775
\(857\) 3.27576e18 0.282446 0.141223 0.989978i \(-0.454896\pi\)
0.141223 + 0.989978i \(0.454896\pi\)
\(858\) −1.61890e19 −1.38533
\(859\) −1.16115e19 −0.986124 −0.493062 0.869994i \(-0.664122\pi\)
−0.493062 + 0.869994i \(0.664122\pi\)
\(860\) 0 0
\(861\) 2.68103e18 0.224275
\(862\) −2.21303e19 −1.83734
\(863\) 3.08418e18 0.254138 0.127069 0.991894i \(-0.459443\pi\)
0.127069 + 0.991894i \(0.459443\pi\)
\(864\) 6.77026e18 0.553689
\(865\) 0 0
\(866\) 4.93387e18 0.397485
\(867\) −5.91706e18 −0.473132
\(868\) 2.05913e19 1.63420
\(869\) 1.10935e19 0.873853
\(870\) 0 0
\(871\) −4.63773e18 −0.359905
\(872\) 3.58864e19 2.76422
\(873\) 2.59854e18 0.198672
\(874\) −4.51622e19 −3.42729
\(875\) 0 0
\(876\) 1.02945e19 0.769714
\(877\) 5.99187e18 0.444698 0.222349 0.974967i \(-0.428628\pi\)
0.222349 + 0.974967i \(0.428628\pi\)
\(878\) −2.94836e19 −2.17203
\(879\) 4.54031e17 0.0332015
\(880\) 0 0
\(881\) 3.90778e18 0.281570 0.140785 0.990040i \(-0.455037\pi\)
0.140785 + 0.990040i \(0.455037\pi\)
\(882\) 6.43374e18 0.460169
\(883\) 1.78814e19 1.26957 0.634786 0.772688i \(-0.281088\pi\)
0.634786 + 0.772688i \(0.281088\pi\)
\(884\) −5.75424e19 −4.05554
\(885\) 0 0
\(886\) 3.95645e18 0.274781
\(887\) 7.56032e18 0.521238 0.260619 0.965442i \(-0.416073\pi\)
0.260619 + 0.965442i \(0.416073\pi\)
\(888\) −4.28705e19 −2.93410
\(889\) −1.51067e18 −0.102638
\(890\) 0 0
\(891\) 1.80905e18 0.121128
\(892\) 5.16216e19 3.43131
\(893\) 1.79412e19 1.18391
\(894\) 4.91243e18 0.321812
\(895\) 0 0
\(896\) −1.25828e19 −0.812412
\(897\) 1.98413e19 1.27180
\(898\) 1.37619e19 0.875755
\(899\) 2.55358e19 1.61329
\(900\) 0 0
\(901\) −2.35790e18 −0.146830
\(902\) 2.49159e19 1.54040
\(903\) −2.07553e17 −0.0127397
\(904\) −1.82844e19 −1.11426
\(905\) 0 0
\(906\) −3.12253e19 −1.87574
\(907\) −1.88109e19 −1.12192 −0.560961 0.827842i \(-0.689568\pi\)
−0.560961 + 0.827842i \(0.689568\pi\)
\(908\) 6.15686e18 0.364587
\(909\) −1.96629e18 −0.115607
\(910\) 0 0
\(911\) −3.05113e19 −1.76844 −0.884221 0.467070i \(-0.845310\pi\)
−0.884221 + 0.467070i \(0.845310\pi\)
\(912\) −2.97498e19 −1.71205
\(913\) 8.17318e18 0.467015
\(914\) 2.99368e19 1.69846
\(915\) 0 0
\(916\) 4.82450e19 2.69856
\(917\) −4.53221e18 −0.251715
\(918\) 8.91549e18 0.491663
\(919\) 1.14631e19 0.627697 0.313849 0.949473i \(-0.398382\pi\)
0.313849 + 0.949473i \(0.398382\pi\)
\(920\) 0 0
\(921\) 3.13797e17 0.0169418
\(922\) −2.18370e19 −1.17069
\(923\) 3.58278e19 1.90725
\(924\) −1.60394e19 −0.847851
\(925\) 0 0
\(926\) 2.49953e19 1.30283
\(927\) 5.63640e18 0.291732
\(928\) −7.44404e19 −3.82602
\(929\) 5.19474e18 0.265132 0.132566 0.991174i \(-0.457678\pi\)
0.132566 + 0.991174i \(0.457678\pi\)
\(930\) 0 0
\(931\) −1.38256e19 −0.695843
\(932\) 8.42876e19 4.21270
\(933\) 3.75489e18 0.186366
\(934\) 5.31014e19 2.61729
\(935\) 0 0
\(936\) 2.39562e19 1.16446
\(937\) 2.77238e18 0.133828 0.0669138 0.997759i \(-0.478685\pi\)
0.0669138 + 0.997759i \(0.478685\pi\)
\(938\) −6.37089e18 −0.305409
\(939\) 1.98807e19 0.946466
\(940\) 0 0
\(941\) −7.87387e18 −0.369705 −0.184853 0.982766i \(-0.559181\pi\)
−0.184853 + 0.982766i \(0.559181\pi\)
\(942\) −1.76620e19 −0.823587
\(943\) −3.05370e19 −1.41416
\(944\) 6.32918e19 2.91091
\(945\) 0 0
\(946\) −1.92887e18 −0.0875007
\(947\) −8.23534e18 −0.371028 −0.185514 0.982642i \(-0.559395\pi\)
−0.185514 + 0.982642i \(0.559395\pi\)
\(948\) −2.67588e19 −1.19733
\(949\) 1.34757e19 0.598852
\(950\) 0 0
\(951\) 1.90310e19 0.834235
\(952\) −4.84930e19 −2.11125
\(953\) 2.33839e19 1.01114 0.505572 0.862784i \(-0.331281\pi\)
0.505572 + 0.862784i \(0.331281\pi\)
\(954\) 1.60014e18 0.0687215
\(955\) 0 0
\(956\) 3.54359e19 1.50130
\(957\) −1.98908e19 −0.837000
\(958\) −8.93810e18 −0.373568
\(959\) −1.07891e19 −0.447885
\(960\) 0 0
\(961\) 1.15184e19 0.471726
\(962\) −9.14757e19 −3.72107
\(963\) −4.76919e18 −0.192696
\(964\) 2.84028e19 1.13988
\(965\) 0 0
\(966\) 2.72562e19 1.07923
\(967\) 2.07067e19 0.814401 0.407201 0.913339i \(-0.366505\pi\)
0.407201 + 0.913339i \(0.366505\pi\)
\(968\) −1.44992e19 −0.566438
\(969\) −1.91587e19 −0.743466
\(970\) 0 0
\(971\) 2.54963e19 0.976229 0.488115 0.872780i \(-0.337685\pi\)
0.488115 + 0.872780i \(0.337685\pi\)
\(972\) −4.36365e18 −0.165966
\(973\) 1.46342e19 0.552886
\(974\) −2.00381e18 −0.0752008
\(975\) 0 0
\(976\) 2.61385e19 0.967959
\(977\) 7.01123e18 0.257917 0.128958 0.991650i \(-0.458837\pi\)
0.128958 + 0.991650i \(0.458837\pi\)
\(978\) 5.34250e19 1.95228
\(979\) −3.11940e19 −1.13236
\(980\) 0 0
\(981\) −8.55670e18 −0.306519
\(982\) 1.87812e19 0.668343
\(983\) 2.52036e19 0.890973 0.445486 0.895289i \(-0.353031\pi\)
0.445486 + 0.895289i \(0.353031\pi\)
\(984\) −3.68699e19 −1.29480
\(985\) 0 0
\(986\) −9.80276e19 −3.39741
\(987\) −1.08278e19 −0.372804
\(988\) −8.39153e19 −2.87026
\(989\) 2.36403e18 0.0803300
\(990\) 0 0
\(991\) 8.95430e18 0.300298 0.150149 0.988663i \(-0.452025\pi\)
0.150149 + 0.988663i \(0.452025\pi\)
\(992\) −1.04758e20 −3.49029
\(993\) −2.52363e19 −0.835324
\(994\) 4.92169e19 1.61846
\(995\) 0 0
\(996\) −1.97147e19 −0.639890
\(997\) −3.47606e19 −1.12091 −0.560453 0.828186i \(-0.689373\pi\)
−0.560453 + 0.828186i \(0.689373\pi\)
\(998\) −5.48546e19 −1.75738
\(999\) 1.02220e19 0.325356
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.14.a.i.1.1 5
5.2 odd 4 75.14.b.h.49.1 10
5.3 odd 4 75.14.b.h.49.10 10
5.4 even 2 75.14.a.j.1.5 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.14.a.i.1.1 5 1.1 even 1 trivial
75.14.a.j.1.5 yes 5 5.4 even 2
75.14.b.h.49.1 10 5.2 odd 4
75.14.b.h.49.10 10 5.3 odd 4