Properties

Label 75.14.a.g.1.4
Level $75$
Weight $14$
Character 75.1
Self dual yes
Analytic conductor $80.423$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,14,Mod(1,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.4231967139\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1651x^{2} + 4960x + 346125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 3\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-38.8667\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+143.467 q^{2} -729.000 q^{3} +12390.7 q^{4} -104587. q^{6} +115746. q^{7} +602380. q^{8} +531441. q^{9} -1.68912e6 q^{11} -9.03285e6 q^{12} -8.38266e6 q^{13} +1.66058e7 q^{14} -1.50834e7 q^{16} -1.18185e8 q^{17} +7.62442e7 q^{18} +2.93887e6 q^{19} -8.43791e7 q^{21} -2.42333e8 q^{22} +1.14328e9 q^{23} -4.39135e8 q^{24} -1.20263e9 q^{26} -3.87420e8 q^{27} +1.43418e9 q^{28} -2.58117e9 q^{29} -5.28510e9 q^{31} -7.09866e9 q^{32} +1.23137e9 q^{33} -1.69556e10 q^{34} +6.58495e9 q^{36} -2.25904e9 q^{37} +4.21631e8 q^{38} +6.11096e9 q^{39} +3.08318e10 q^{41} -1.21056e10 q^{42} -1.84280e10 q^{43} -2.09294e10 q^{44} +1.64023e11 q^{46} -8.91497e10 q^{47} +1.09958e10 q^{48} -8.34918e10 q^{49} +8.61570e10 q^{51} -1.03867e11 q^{52} -2.29652e11 q^{53} -5.55820e10 q^{54} +6.97232e10 q^{56} -2.14244e9 q^{57} -3.70312e11 q^{58} -1.48583e11 q^{59} -8.88553e10 q^{61} -7.58237e11 q^{62} +6.15124e10 q^{63} -8.94860e11 q^{64} +1.76661e11 q^{66} -1.15668e12 q^{67} -1.46440e12 q^{68} -8.33451e11 q^{69} -1.39371e12 q^{71} +3.20129e11 q^{72} +2.23868e12 q^{73} -3.24097e11 q^{74} +3.64148e10 q^{76} -1.95509e11 q^{77} +8.76720e11 q^{78} +4.29509e11 q^{79} +2.82430e11 q^{81} +4.42335e12 q^{82} -4.77368e12 q^{83} -1.04552e12 q^{84} -2.64380e12 q^{86} +1.88167e12 q^{87} -1.01749e12 q^{88} +4.52557e12 q^{89} -9.70262e11 q^{91} +1.41661e13 q^{92} +3.85284e12 q^{93} -1.27900e13 q^{94} +5.17493e12 q^{96} +1.54548e13 q^{97} -1.19783e13 q^{98} -8.97667e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 52 q^{2} - 2916 q^{3} + 20752 q^{4} + 37908 q^{6} + 298996 q^{7} - 423936 q^{8} + 2125764 q^{9} - 5874104 q^{11} - 15128208 q^{12} + 32044972 q^{13} - 64322292 q^{14} + 6196480 q^{16} - 67409368 q^{17}+ \cdots - 3121739703864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 143.467 1.58510 0.792550 0.609807i \(-0.208753\pi\)
0.792550 + 0.609807i \(0.208753\pi\)
\(3\) −729.000 −0.577350
\(4\) 12390.7 1.51254
\(5\) 0 0
\(6\) −104587. −0.915158
\(7\) 115746. 0.371852 0.185926 0.982564i \(-0.440472\pi\)
0.185926 + 0.982564i \(0.440472\pi\)
\(8\) 602380. 0.812429
\(9\) 531441. 0.333333
\(10\) 0 0
\(11\) −1.68912e6 −0.287480 −0.143740 0.989615i \(-0.545913\pi\)
−0.143740 + 0.989615i \(0.545913\pi\)
\(12\) −9.03285e6 −0.873266
\(13\) −8.38266e6 −0.481670 −0.240835 0.970566i \(-0.577421\pi\)
−0.240835 + 0.970566i \(0.577421\pi\)
\(14\) 1.66058e7 0.589422
\(15\) 0 0
\(16\) −1.50834e7 −0.224760
\(17\) −1.18185e8 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(18\) 7.62442e7 0.528367
\(19\) 2.93887e6 0.0143312 0.00716560 0.999974i \(-0.497719\pi\)
0.00716560 + 0.999974i \(0.497719\pi\)
\(20\) 0 0
\(21\) −8.43791e7 −0.214689
\(22\) −2.42333e8 −0.455685
\(23\) 1.14328e9 1.61036 0.805178 0.593033i \(-0.202070\pi\)
0.805178 + 0.593033i \(0.202070\pi\)
\(24\) −4.39135e8 −0.469056
\(25\) 0 0
\(26\) −1.20263e9 −0.763496
\(27\) −3.87420e8 −0.192450
\(28\) 1.43418e9 0.562441
\(29\) −2.58117e9 −0.805804 −0.402902 0.915243i \(-0.631998\pi\)
−0.402902 + 0.915243i \(0.631998\pi\)
\(30\) 0 0
\(31\) −5.28510e9 −1.06955 −0.534776 0.844994i \(-0.679604\pi\)
−0.534776 + 0.844994i \(0.679604\pi\)
\(32\) −7.09866e9 −1.16870
\(33\) 1.23137e9 0.165977
\(34\) −1.69556e10 −1.88235
\(35\) 0 0
\(36\) 6.58495e9 0.504180
\(37\) −2.25904e9 −0.144748 −0.0723740 0.997378i \(-0.523058\pi\)
−0.0723740 + 0.997378i \(0.523058\pi\)
\(38\) 4.21631e8 0.0227164
\(39\) 6.11096e9 0.278093
\(40\) 0 0
\(41\) 3.08318e10 1.01369 0.506844 0.862038i \(-0.330812\pi\)
0.506844 + 0.862038i \(0.330812\pi\)
\(42\) −1.21056e10 −0.340303
\(43\) −1.84280e10 −0.444562 −0.222281 0.974983i \(-0.571350\pi\)
−0.222281 + 0.974983i \(0.571350\pi\)
\(44\) −2.09294e10 −0.434826
\(45\) 0 0
\(46\) 1.64023e11 2.55257
\(47\) −8.91497e10 −1.20638 −0.603190 0.797598i \(-0.706104\pi\)
−0.603190 + 0.797598i \(0.706104\pi\)
\(48\) 1.09958e10 0.129765
\(49\) −8.34918e10 −0.861726
\(50\) 0 0
\(51\) 8.61570e10 0.685621
\(52\) −1.03867e11 −0.728546
\(53\) −2.29652e11 −1.42324 −0.711618 0.702567i \(-0.752037\pi\)
−0.711618 + 0.702567i \(0.752037\pi\)
\(54\) −5.55820e10 −0.305053
\(55\) 0 0
\(56\) 6.97232e10 0.302103
\(57\) −2.14244e9 −0.00827412
\(58\) −3.70312e11 −1.27728
\(59\) −1.48583e11 −0.458596 −0.229298 0.973356i \(-0.573643\pi\)
−0.229298 + 0.973356i \(0.573643\pi\)
\(60\) 0 0
\(61\) −8.88553e10 −0.220821 −0.110410 0.993886i \(-0.535216\pi\)
−0.110410 + 0.993886i \(0.535216\pi\)
\(62\) −7.58237e11 −1.69535
\(63\) 6.15124e10 0.123951
\(64\) −8.94860e11 −1.62774
\(65\) 0 0
\(66\) 1.76661e11 0.263090
\(67\) −1.15668e12 −1.56217 −0.781085 0.624425i \(-0.785333\pi\)
−0.781085 + 0.624425i \(0.785333\pi\)
\(68\) −1.46440e12 −1.79619
\(69\) −8.33451e11 −0.929739
\(70\) 0 0
\(71\) −1.39371e12 −1.29120 −0.645601 0.763675i \(-0.723393\pi\)
−0.645601 + 0.763675i \(0.723393\pi\)
\(72\) 3.20129e11 0.270810
\(73\) 2.23868e12 1.73138 0.865691 0.500578i \(-0.166879\pi\)
0.865691 + 0.500578i \(0.166879\pi\)
\(74\) −3.24097e11 −0.229440
\(75\) 0 0
\(76\) 3.64148e10 0.0216765
\(77\) −1.95509e11 −0.106900
\(78\) 8.76720e11 0.440804
\(79\) 4.29509e11 0.198791 0.0993953 0.995048i \(-0.468309\pi\)
0.0993953 + 0.995048i \(0.468309\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) 4.42335e12 1.60680
\(83\) −4.77368e12 −1.60267 −0.801337 0.598213i \(-0.795878\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(84\) −1.04552e12 −0.324726
\(85\) 0 0
\(86\) −2.64380e12 −0.704676
\(87\) 1.88167e12 0.465231
\(88\) −1.01749e12 −0.233557
\(89\) 4.52557e12 0.965246 0.482623 0.875828i \(-0.339684\pi\)
0.482623 + 0.875828i \(0.339684\pi\)
\(90\) 0 0
\(91\) −9.70262e11 −0.179110
\(92\) 1.41661e13 2.43573
\(93\) 3.85284e12 0.617507
\(94\) −1.27900e13 −1.91223
\(95\) 0 0
\(96\) 5.17493e12 0.674747
\(97\) 1.54548e13 1.88385 0.941925 0.335822i \(-0.109014\pi\)
0.941925 + 0.335822i \(0.109014\pi\)
\(98\) −1.19783e13 −1.36592
\(99\) −8.97667e11 −0.0958267
\(100\) 0 0
\(101\) −4.38671e12 −0.411197 −0.205599 0.978636i \(-0.565914\pi\)
−0.205599 + 0.978636i \(0.565914\pi\)
\(102\) 1.23607e13 1.08678
\(103\) 9.72298e12 0.802338 0.401169 0.916004i \(-0.368604\pi\)
0.401169 + 0.916004i \(0.368604\pi\)
\(104\) −5.04954e12 −0.391323
\(105\) 0 0
\(106\) −3.29474e13 −2.25597
\(107\) 7.70349e12 0.496241 0.248121 0.968729i \(-0.420187\pi\)
0.248121 + 0.968729i \(0.420187\pi\)
\(108\) −4.80043e12 −0.291089
\(109\) −1.04685e13 −0.597877 −0.298938 0.954272i \(-0.596633\pi\)
−0.298938 + 0.954272i \(0.596633\pi\)
\(110\) 0 0
\(111\) 1.64684e12 0.0835703
\(112\) −1.74585e12 −0.0835776
\(113\) 5.48831e12 0.247987 0.123993 0.992283i \(-0.460430\pi\)
0.123993 + 0.992283i \(0.460430\pi\)
\(114\) −3.07369e11 −0.0131153
\(115\) 0 0
\(116\) −3.19826e13 −1.21881
\(117\) −4.45489e12 −0.160557
\(118\) −2.13167e13 −0.726920
\(119\) −1.36795e13 −0.441586
\(120\) 0 0
\(121\) −3.16696e13 −0.917355
\(122\) −1.27478e13 −0.350023
\(123\) −2.24764e13 −0.585253
\(124\) −6.54863e13 −1.61774
\(125\) 0 0
\(126\) 8.82498e12 0.196474
\(127\) −3.76054e13 −0.795291 −0.397645 0.917539i \(-0.630173\pi\)
−0.397645 + 0.917539i \(0.630173\pi\)
\(128\) −7.02304e13 −1.41143
\(129\) 1.34340e13 0.256668
\(130\) 0 0
\(131\) 9.13894e13 1.57991 0.789955 0.613165i \(-0.210104\pi\)
0.789955 + 0.613165i \(0.210104\pi\)
\(132\) 1.52576e13 0.251047
\(133\) 3.40164e11 0.00532909
\(134\) −1.65946e14 −2.47620
\(135\) 0 0
\(136\) −7.11923e13 −0.964784
\(137\) 8.99178e13 1.16188 0.580941 0.813946i \(-0.302685\pi\)
0.580941 + 0.813946i \(0.302685\pi\)
\(138\) −1.19573e14 −1.47373
\(139\) −3.27383e13 −0.384999 −0.192499 0.981297i \(-0.561659\pi\)
−0.192499 + 0.981297i \(0.561659\pi\)
\(140\) 0 0
\(141\) 6.49901e13 0.696503
\(142\) −1.99952e14 −2.04668
\(143\) 1.41593e13 0.138471
\(144\) −8.01595e12 −0.0749201
\(145\) 0 0
\(146\) 3.21176e14 2.74441
\(147\) 6.08655e13 0.497518
\(148\) −2.79912e13 −0.218937
\(149\) −5.86656e13 −0.439211 −0.219605 0.975589i \(-0.570477\pi\)
−0.219605 + 0.975589i \(0.570477\pi\)
\(150\) 0 0
\(151\) −9.17724e13 −0.630031 −0.315015 0.949087i \(-0.602010\pi\)
−0.315015 + 0.949087i \(0.602010\pi\)
\(152\) 1.77032e12 0.0116431
\(153\) −6.28084e13 −0.395844
\(154\) −2.80491e13 −0.169447
\(155\) 0 0
\(156\) 7.57193e13 0.420626
\(157\) −9.62156e13 −0.512741 −0.256370 0.966579i \(-0.582527\pi\)
−0.256370 + 0.966579i \(0.582527\pi\)
\(158\) 6.16202e13 0.315103
\(159\) 1.67416e14 0.821705
\(160\) 0 0
\(161\) 1.32331e14 0.598814
\(162\) 4.05193e13 0.176122
\(163\) 3.61390e14 1.50923 0.754617 0.656166i \(-0.227823\pi\)
0.754617 + 0.656166i \(0.227823\pi\)
\(164\) 3.82029e14 1.53324
\(165\) 0 0
\(166\) −6.84864e14 −2.54040
\(167\) 1.39666e14 0.498234 0.249117 0.968473i \(-0.419860\pi\)
0.249117 + 0.968473i \(0.419860\pi\)
\(168\) −5.08282e13 −0.174419
\(169\) −2.32606e14 −0.767994
\(170\) 0 0
\(171\) 1.56184e12 0.00477707
\(172\) −2.28336e14 −0.672419
\(173\) 4.50349e14 1.27717 0.638586 0.769551i \(-0.279520\pi\)
0.638586 + 0.769551i \(0.279520\pi\)
\(174\) 2.69958e14 0.737438
\(175\) 0 0
\(176\) 2.54777e13 0.0646142
\(177\) 1.08317e14 0.264770
\(178\) 6.49269e14 1.53001
\(179\) −4.63543e13 −0.105328 −0.0526642 0.998612i \(-0.516771\pi\)
−0.0526642 + 0.998612i \(0.516771\pi\)
\(180\) 0 0
\(181\) −5.73683e14 −1.21272 −0.606361 0.795189i \(-0.707371\pi\)
−0.606361 + 0.795189i \(0.707371\pi\)
\(182\) −1.39200e14 −0.283907
\(183\) 6.47755e13 0.127491
\(184\) 6.88689e14 1.30830
\(185\) 0 0
\(186\) 5.52755e14 0.978810
\(187\) 1.99629e14 0.341392
\(188\) −1.10463e15 −1.82470
\(189\) −4.48425e13 −0.0715629
\(190\) 0 0
\(191\) −2.45056e14 −0.365214 −0.182607 0.983186i \(-0.558454\pi\)
−0.182607 + 0.983186i \(0.558454\pi\)
\(192\) 6.52353e14 0.939776
\(193\) 1.07891e15 1.50267 0.751335 0.659921i \(-0.229410\pi\)
0.751335 + 0.659921i \(0.229410\pi\)
\(194\) 2.21725e15 2.98609
\(195\) 0 0
\(196\) −1.03452e15 −1.30340
\(197\) 5.37451e14 0.655101 0.327550 0.944834i \(-0.393777\pi\)
0.327550 + 0.944834i \(0.393777\pi\)
\(198\) −1.28786e14 −0.151895
\(199\) 4.43570e14 0.506310 0.253155 0.967426i \(-0.418532\pi\)
0.253155 + 0.967426i \(0.418532\pi\)
\(200\) 0 0
\(201\) 8.43222e14 0.901919
\(202\) −6.29348e14 −0.651789
\(203\) −2.98761e14 −0.299640
\(204\) 1.06755e15 1.03703
\(205\) 0 0
\(206\) 1.39492e15 1.27179
\(207\) 6.07586e14 0.536785
\(208\) 1.26439e14 0.108260
\(209\) −4.96411e12 −0.00411994
\(210\) 0 0
\(211\) 1.83905e15 1.43469 0.717345 0.696718i \(-0.245357\pi\)
0.717345 + 0.696718i \(0.245357\pi\)
\(212\) −2.84555e15 −2.15270
\(213\) 1.01602e15 0.745475
\(214\) 1.10519e15 0.786592
\(215\) 0 0
\(216\) −2.33374e14 −0.156352
\(217\) −6.11731e14 −0.397715
\(218\) −1.50188e15 −0.947695
\(219\) −1.63200e15 −0.999614
\(220\) 0 0
\(221\) 9.90706e14 0.571999
\(222\) 2.36267e14 0.132467
\(223\) 2.71677e15 1.47935 0.739676 0.672963i \(-0.234979\pi\)
0.739676 + 0.672963i \(0.234979\pi\)
\(224\) −8.21644e14 −0.434582
\(225\) 0 0
\(226\) 7.87390e14 0.393084
\(227\) −1.47916e15 −0.717542 −0.358771 0.933426i \(-0.616804\pi\)
−0.358771 + 0.933426i \(0.616804\pi\)
\(228\) −2.65464e13 −0.0125150
\(229\) −3.13274e15 −1.43547 −0.717735 0.696316i \(-0.754821\pi\)
−0.717735 + 0.696316i \(0.754821\pi\)
\(230\) 0 0
\(231\) 1.42526e14 0.0617188
\(232\) −1.55484e15 −0.654658
\(233\) 2.51709e14 0.103059 0.0515294 0.998671i \(-0.483590\pi\)
0.0515294 + 0.998671i \(0.483590\pi\)
\(234\) −6.39129e14 −0.254499
\(235\) 0 0
\(236\) −1.84105e15 −0.693645
\(237\) −3.13112e14 −0.114772
\(238\) −1.96255e15 −0.699957
\(239\) −4.54846e15 −1.57862 −0.789311 0.613993i \(-0.789562\pi\)
−0.789311 + 0.613993i \(0.789562\pi\)
\(240\) 0 0
\(241\) −9.11615e14 −0.299710 −0.149855 0.988708i \(-0.547881\pi\)
−0.149855 + 0.988708i \(0.547881\pi\)
\(242\) −4.54354e15 −1.45410
\(243\) −2.05891e14 −0.0641500
\(244\) −1.10098e15 −0.334000
\(245\) 0 0
\(246\) −3.22462e15 −0.927685
\(247\) −2.46356e13 −0.00690292
\(248\) −3.18364e15 −0.868936
\(249\) 3.48001e15 0.925305
\(250\) 0 0
\(251\) 5.57048e15 1.40609 0.703046 0.711145i \(-0.251823\pi\)
0.703046 + 0.711145i \(0.251823\pi\)
\(252\) 7.62183e14 0.187480
\(253\) −1.93114e15 −0.462945
\(254\) −5.39513e15 −1.26062
\(255\) 0 0
\(256\) −2.74505e15 −0.609523
\(257\) −4.51207e14 −0.0976811 −0.0488405 0.998807i \(-0.515553\pi\)
−0.0488405 + 0.998807i \(0.515553\pi\)
\(258\) 1.92733e15 0.406845
\(259\) −2.61475e14 −0.0538248
\(260\) 0 0
\(261\) −1.37174e15 −0.268601
\(262\) 1.31113e16 2.50431
\(263\) 7.11310e15 1.32540 0.662700 0.748885i \(-0.269411\pi\)
0.662700 + 0.748885i \(0.269411\pi\)
\(264\) 7.41751e14 0.134844
\(265\) 0 0
\(266\) 4.88023e13 0.00844713
\(267\) −3.29914e15 −0.557285
\(268\) −1.43322e16 −2.36285
\(269\) −1.34023e15 −0.215671 −0.107835 0.994169i \(-0.534392\pi\)
−0.107835 + 0.994169i \(0.534392\pi\)
\(270\) 0 0
\(271\) 6.00564e15 0.920998 0.460499 0.887660i \(-0.347670\pi\)
0.460499 + 0.887660i \(0.347670\pi\)
\(272\) 1.78264e15 0.266910
\(273\) 7.07321e14 0.103409
\(274\) 1.29002e16 1.84170
\(275\) 0 0
\(276\) −1.03271e16 −1.40627
\(277\) 1.09407e16 1.45521 0.727607 0.685994i \(-0.240632\pi\)
0.727607 + 0.685994i \(0.240632\pi\)
\(278\) −4.69686e15 −0.610262
\(279\) −2.80872e15 −0.356518
\(280\) 0 0
\(281\) −2.82786e15 −0.342662 −0.171331 0.985213i \(-0.554807\pi\)
−0.171331 + 0.985213i \(0.554807\pi\)
\(282\) 9.32393e15 1.10403
\(283\) −5.47390e15 −0.633410 −0.316705 0.948524i \(-0.602576\pi\)
−0.316705 + 0.948524i \(0.602576\pi\)
\(284\) −1.72691e16 −1.95300
\(285\) 0 0
\(286\) 2.03139e15 0.219490
\(287\) 3.56867e15 0.376942
\(288\) −3.77252e15 −0.389566
\(289\) 4.06315e15 0.410229
\(290\) 0 0
\(291\) −1.12665e16 −1.08764
\(292\) 2.77389e16 2.61879
\(293\) 1.00494e16 0.927897 0.463948 0.885862i \(-0.346432\pi\)
0.463948 + 0.885862i \(0.346432\pi\)
\(294\) 8.73218e15 0.788615
\(295\) 0 0
\(296\) −1.36080e15 −0.117597
\(297\) 6.54400e14 0.0553256
\(298\) −8.41657e15 −0.696193
\(299\) −9.58373e15 −0.775661
\(300\) 0 0
\(301\) −2.13297e15 −0.165311
\(302\) −1.31663e16 −0.998662
\(303\) 3.19791e15 0.237405
\(304\) −4.43283e13 −0.00322109
\(305\) 0 0
\(306\) −9.01093e15 −0.627452
\(307\) −4.72392e15 −0.322035 −0.161018 0.986952i \(-0.551478\pi\)
−0.161018 + 0.986952i \(0.551478\pi\)
\(308\) −2.42251e15 −0.161691
\(309\) −7.08805e15 −0.463230
\(310\) 0 0
\(311\) −3.07381e16 −1.92635 −0.963174 0.268878i \(-0.913347\pi\)
−0.963174 + 0.268878i \(0.913347\pi\)
\(312\) 3.68112e15 0.225930
\(313\) 1.74281e16 1.04764 0.523819 0.851829i \(-0.324507\pi\)
0.523819 + 0.851829i \(0.324507\pi\)
\(314\) −1.38038e16 −0.812745
\(315\) 0 0
\(316\) 5.32193e15 0.300679
\(317\) −2.05312e16 −1.13639 −0.568197 0.822892i \(-0.692359\pi\)
−0.568197 + 0.822892i \(0.692359\pi\)
\(318\) 2.40187e16 1.30248
\(319\) 4.35990e15 0.231653
\(320\) 0 0
\(321\) −5.61584e15 −0.286505
\(322\) 1.89850e16 0.949180
\(323\) −3.47331e14 −0.0170187
\(324\) 3.49951e15 0.168060
\(325\) 0 0
\(326\) 5.18475e16 2.39229
\(327\) 7.63153e15 0.345184
\(328\) 1.85725e16 0.823549
\(329\) −1.03188e16 −0.448594
\(330\) 0 0
\(331\) 1.08020e16 0.451463 0.225731 0.974190i \(-0.427523\pi\)
0.225731 + 0.974190i \(0.427523\pi\)
\(332\) −5.91494e16 −2.42411
\(333\) −1.20055e15 −0.0482493
\(334\) 2.00374e16 0.789750
\(335\) 0 0
\(336\) 1.27272e15 0.0482535
\(337\) −2.49305e16 −0.927120 −0.463560 0.886065i \(-0.653428\pi\)
−0.463560 + 0.886065i \(0.653428\pi\)
\(338\) −3.33713e16 −1.21735
\(339\) −4.00098e15 −0.143175
\(340\) 0 0
\(341\) 8.92717e15 0.307475
\(342\) 2.24072e14 0.00757213
\(343\) −2.08784e16 −0.692286
\(344\) −1.11006e16 −0.361175
\(345\) 0 0
\(346\) 6.46101e16 2.02444
\(347\) −4.84184e16 −1.48891 −0.744455 0.667672i \(-0.767291\pi\)
−0.744455 + 0.667672i \(0.767291\pi\)
\(348\) 2.33153e16 0.703681
\(349\) 3.58064e15 0.106071 0.0530353 0.998593i \(-0.483110\pi\)
0.0530353 + 0.998593i \(0.483110\pi\)
\(350\) 0 0
\(351\) 3.24761e15 0.0926975
\(352\) 1.19905e16 0.335977
\(353\) −6.71086e16 −1.84605 −0.923023 0.384744i \(-0.874290\pi\)
−0.923023 + 0.384744i \(0.874290\pi\)
\(354\) 1.55399e16 0.419687
\(355\) 0 0
\(356\) 5.60751e16 1.45997
\(357\) 9.97235e15 0.254950
\(358\) −6.65031e15 −0.166956
\(359\) 6.13471e16 1.51245 0.756224 0.654313i \(-0.227042\pi\)
0.756224 + 0.654313i \(0.227042\pi\)
\(360\) 0 0
\(361\) −4.20443e16 −0.999795
\(362\) −8.23045e16 −1.92229
\(363\) 2.30871e16 0.529635
\(364\) −1.20223e16 −0.270911
\(365\) 0 0
\(366\) 9.29314e15 0.202086
\(367\) 1.34842e16 0.288067 0.144034 0.989573i \(-0.453993\pi\)
0.144034 + 0.989573i \(0.453993\pi\)
\(368\) −1.72446e16 −0.361944
\(369\) 1.63853e16 0.337896
\(370\) 0 0
\(371\) −2.65814e16 −0.529233
\(372\) 4.77395e16 0.934004
\(373\) 3.69623e16 0.710643 0.355322 0.934744i \(-0.384371\pi\)
0.355322 + 0.934744i \(0.384371\pi\)
\(374\) 2.86401e16 0.541140
\(375\) 0 0
\(376\) −5.37020e16 −0.980097
\(377\) 2.16371e16 0.388132
\(378\) −6.43341e15 −0.113434
\(379\) −6.08164e14 −0.0105406 −0.00527031 0.999986i \(-0.501678\pi\)
−0.00527031 + 0.999986i \(0.501678\pi\)
\(380\) 0 0
\(381\) 2.74143e16 0.459161
\(382\) −3.51573e16 −0.578901
\(383\) 2.22248e16 0.359788 0.179894 0.983686i \(-0.442425\pi\)
0.179894 + 0.983686i \(0.442425\pi\)
\(384\) 5.11980e16 0.814892
\(385\) 0 0
\(386\) 1.54788e17 2.38188
\(387\) −9.79338e15 −0.148187
\(388\) 1.91496e17 2.84940
\(389\) −1.28354e15 −0.0187818 −0.00939088 0.999956i \(-0.502989\pi\)
−0.00939088 + 0.999956i \(0.502989\pi\)
\(390\) 0 0
\(391\) −1.35119e17 −1.91235
\(392\) −5.02938e16 −0.700091
\(393\) −6.66228e16 −0.912161
\(394\) 7.71064e16 1.03840
\(395\) 0 0
\(396\) −1.11228e16 −0.144942
\(397\) −9.82778e16 −1.25985 −0.629923 0.776658i \(-0.716913\pi\)
−0.629923 + 0.776658i \(0.716913\pi\)
\(398\) 6.36375e16 0.802552
\(399\) −2.47980e14 −0.00307675
\(400\) 0 0
\(401\) −1.22578e17 −1.47222 −0.736110 0.676862i \(-0.763339\pi\)
−0.736110 + 0.676862i \(0.763339\pi\)
\(402\) 1.20974e17 1.42963
\(403\) 4.43032e16 0.515172
\(404\) −5.43546e16 −0.621953
\(405\) 0 0
\(406\) −4.28623e16 −0.474959
\(407\) 3.81579e15 0.0416122
\(408\) 5.18992e16 0.557018
\(409\) 1.53819e17 1.62483 0.812417 0.583077i \(-0.198151\pi\)
0.812417 + 0.583077i \(0.198151\pi\)
\(410\) 0 0
\(411\) −6.55501e16 −0.670813
\(412\) 1.20475e17 1.21357
\(413\) −1.71979e16 −0.170530
\(414\) 8.71685e16 0.850858
\(415\) 0 0
\(416\) 5.95057e16 0.562927
\(417\) 2.38662e16 0.222279
\(418\) −7.12185e14 −0.00653051
\(419\) −6.70532e16 −0.605381 −0.302690 0.953089i \(-0.597885\pi\)
−0.302690 + 0.953089i \(0.597885\pi\)
\(420\) 0 0
\(421\) −1.75428e17 −1.53555 −0.767776 0.640719i \(-0.778636\pi\)
−0.767776 + 0.640719i \(0.778636\pi\)
\(422\) 2.63843e17 2.27413
\(423\) −4.73778e16 −0.402126
\(424\) −1.38338e17 −1.15628
\(425\) 0 0
\(426\) 1.45765e17 1.18165
\(427\) −1.02847e16 −0.0821125
\(428\) 9.54519e16 0.750585
\(429\) −1.03221e16 −0.0799461
\(430\) 0 0
\(431\) 1.32859e17 0.998360 0.499180 0.866498i \(-0.333635\pi\)
0.499180 + 0.866498i \(0.333635\pi\)
\(432\) 5.84362e15 0.0432552
\(433\) −7.83879e16 −0.571581 −0.285790 0.958292i \(-0.592256\pi\)
−0.285790 + 0.958292i \(0.592256\pi\)
\(434\) −8.77631e16 −0.630418
\(435\) 0 0
\(436\) −1.29712e17 −0.904314
\(437\) 3.35996e15 0.0230783
\(438\) −2.34137e17 −1.58449
\(439\) −5.39578e16 −0.359778 −0.179889 0.983687i \(-0.557574\pi\)
−0.179889 + 0.983687i \(0.557574\pi\)
\(440\) 0 0
\(441\) −4.43710e16 −0.287242
\(442\) 1.42133e17 0.906675
\(443\) 3.24769e16 0.204150 0.102075 0.994777i \(-0.467452\pi\)
0.102075 + 0.994777i \(0.467452\pi\)
\(444\) 2.04056e16 0.126403
\(445\) 0 0
\(446\) 3.89767e17 2.34492
\(447\) 4.27672e16 0.253578
\(448\) −1.03577e17 −0.605278
\(449\) −1.12233e17 −0.646424 −0.323212 0.946327i \(-0.604763\pi\)
−0.323212 + 0.946327i \(0.604763\pi\)
\(450\) 0 0
\(451\) −5.20787e16 −0.291415
\(452\) 6.80042e16 0.375090
\(453\) 6.69021e16 0.363748
\(454\) −2.12211e17 −1.13738
\(455\) 0 0
\(456\) −1.29056e15 −0.00672214
\(457\) −2.41097e17 −1.23805 −0.619024 0.785372i \(-0.712471\pi\)
−0.619024 + 0.785372i \(0.712471\pi\)
\(458\) −4.49445e17 −2.27536
\(459\) 4.57873e16 0.228540
\(460\) 0 0
\(461\) −9.87829e16 −0.479320 −0.239660 0.970857i \(-0.577036\pi\)
−0.239660 + 0.970857i \(0.577036\pi\)
\(462\) 2.04478e16 0.0978304
\(463\) 2.02766e17 0.956576 0.478288 0.878203i \(-0.341258\pi\)
0.478288 + 0.878203i \(0.341258\pi\)
\(464\) 3.89328e16 0.181113
\(465\) 0 0
\(466\) 3.61119e16 0.163358
\(467\) −1.35876e17 −0.606152 −0.303076 0.952966i \(-0.598014\pi\)
−0.303076 + 0.952966i \(0.598014\pi\)
\(468\) −5.51994e16 −0.242849
\(469\) −1.33882e17 −0.580896
\(470\) 0 0
\(471\) 7.01412e16 0.296031
\(472\) −8.95032e16 −0.372576
\(473\) 3.11271e16 0.127803
\(474\) −4.49212e16 −0.181925
\(475\) 0 0
\(476\) −1.69499e17 −0.667916
\(477\) −1.22046e17 −0.474412
\(478\) −6.52554e17 −2.50227
\(479\) −1.81495e17 −0.686568 −0.343284 0.939232i \(-0.611539\pi\)
−0.343284 + 0.939232i \(0.611539\pi\)
\(480\) 0 0
\(481\) 1.89368e16 0.0697208
\(482\) −1.30787e17 −0.475070
\(483\) −9.64689e16 −0.345725
\(484\) −3.92410e17 −1.38754
\(485\) 0 0
\(486\) −2.95386e16 −0.101684
\(487\) −5.39647e17 −1.83304 −0.916518 0.399992i \(-0.869013\pi\)
−0.916518 + 0.399992i \(0.869013\pi\)
\(488\) −5.35246e16 −0.179401
\(489\) −2.63453e17 −0.871356
\(490\) 0 0
\(491\) −3.53623e17 −1.13897 −0.569483 0.822003i \(-0.692857\pi\)
−0.569483 + 0.822003i \(0.692857\pi\)
\(492\) −2.78499e17 −0.885219
\(493\) 3.05056e17 0.956917
\(494\) −3.53439e15 −0.0109418
\(495\) 0 0
\(496\) 7.97174e16 0.240393
\(497\) −1.61317e17 −0.480136
\(498\) 4.99266e17 1.46670
\(499\) −1.25995e17 −0.365344 −0.182672 0.983174i \(-0.558475\pi\)
−0.182672 + 0.983174i \(0.558475\pi\)
\(500\) 0 0
\(501\) −1.01816e17 −0.287655
\(502\) 7.99179e17 2.22879
\(503\) 1.25319e16 0.0345006 0.0172503 0.999851i \(-0.494509\pi\)
0.0172503 + 0.999851i \(0.494509\pi\)
\(504\) 3.70538e16 0.100701
\(505\) 0 0
\(506\) −2.77054e17 −0.733815
\(507\) 1.69570e17 0.443401
\(508\) −4.65959e17 −1.20291
\(509\) −3.72187e17 −0.948628 −0.474314 0.880356i \(-0.657304\pi\)
−0.474314 + 0.880356i \(0.657304\pi\)
\(510\) 0 0
\(511\) 2.59119e17 0.643818
\(512\) 1.81504e17 0.445279
\(513\) −1.13858e15 −0.00275804
\(514\) −6.47332e16 −0.154834
\(515\) 0 0
\(516\) 1.66457e17 0.388221
\(517\) 1.50585e17 0.346810
\(518\) −3.75131e16 −0.0853177
\(519\) −3.28304e17 −0.737375
\(520\) 0 0
\(521\) −4.42287e17 −0.968855 −0.484428 0.874831i \(-0.660972\pi\)
−0.484428 + 0.874831i \(0.660972\pi\)
\(522\) −1.96799e17 −0.425760
\(523\) 7.13084e17 1.52363 0.761816 0.647794i \(-0.224308\pi\)
0.761816 + 0.647794i \(0.224308\pi\)
\(524\) 1.13238e18 2.38968
\(525\) 0 0
\(526\) 1.02049e18 2.10089
\(527\) 6.24620e17 1.27013
\(528\) −1.85732e16 −0.0373050
\(529\) 8.03054e17 1.59325
\(530\) 0 0
\(531\) −7.89629e16 −0.152865
\(532\) 4.21488e15 0.00806046
\(533\) −2.58453e17 −0.488264
\(534\) −4.73317e17 −0.883352
\(535\) 0 0
\(536\) −6.96762e17 −1.26915
\(537\) 3.37923e16 0.0608114
\(538\) −1.92279e17 −0.341859
\(539\) 1.41028e17 0.247729
\(540\) 0 0
\(541\) 1.13125e18 1.93988 0.969941 0.243342i \(-0.0782437\pi\)
0.969941 + 0.243342i \(0.0782437\pi\)
\(542\) 8.61610e17 1.45987
\(543\) 4.18215e17 0.700166
\(544\) 8.38957e17 1.38786
\(545\) 0 0
\(546\) 1.01477e17 0.163914
\(547\) 7.05433e17 1.12600 0.563000 0.826457i \(-0.309647\pi\)
0.563000 + 0.826457i \(0.309647\pi\)
\(548\) 1.11415e18 1.75739
\(549\) −4.72214e16 −0.0736069
\(550\) 0 0
\(551\) −7.58573e15 −0.0115481
\(552\) −5.02054e17 −0.755347
\(553\) 4.97140e16 0.0739206
\(554\) 1.56963e18 2.30666
\(555\) 0 0
\(556\) −4.05651e17 −0.582327
\(557\) −6.45619e17 −0.916047 −0.458023 0.888940i \(-0.651442\pi\)
−0.458023 + 0.888940i \(0.651442\pi\)
\(558\) −4.02958e17 −0.565116
\(559\) 1.54475e17 0.214133
\(560\) 0 0
\(561\) −1.45529e17 −0.197103
\(562\) −4.05704e17 −0.543154
\(563\) 7.17316e17 0.949306 0.474653 0.880173i \(-0.342574\pi\)
0.474653 + 0.880173i \(0.342574\pi\)
\(564\) 8.05276e17 1.05349
\(565\) 0 0
\(566\) −7.85323e17 −1.00402
\(567\) 3.26902e16 0.0413169
\(568\) −8.39544e17 −1.04901
\(569\) −1.04468e17 −0.129048 −0.0645241 0.997916i \(-0.520553\pi\)
−0.0645241 + 0.997916i \(0.520553\pi\)
\(570\) 0 0
\(571\) 5.56964e17 0.672500 0.336250 0.941773i \(-0.390841\pi\)
0.336250 + 0.941773i \(0.390841\pi\)
\(572\) 1.75444e17 0.209443
\(573\) 1.78645e17 0.210856
\(574\) 5.11986e17 0.597490
\(575\) 0 0
\(576\) −4.75565e17 −0.542580
\(577\) 3.32481e17 0.375080 0.187540 0.982257i \(-0.439949\pi\)
0.187540 + 0.982257i \(0.439949\pi\)
\(578\) 5.82927e17 0.650254
\(579\) −7.86527e17 −0.867566
\(580\) 0 0
\(581\) −5.52536e17 −0.595958
\(582\) −1.61637e18 −1.72402
\(583\) 3.87909e17 0.409152
\(584\) 1.34853e18 1.40663
\(585\) 0 0
\(586\) 1.44175e18 1.47081
\(587\) 8.00524e17 0.807657 0.403828 0.914835i \(-0.367679\pi\)
0.403828 + 0.914835i \(0.367679\pi\)
\(588\) 7.54169e17 0.752516
\(589\) −1.55322e16 −0.0153280
\(590\) 0 0
\(591\) −3.91802e17 −0.378223
\(592\) 3.40740e16 0.0325336
\(593\) 1.73961e18 1.64284 0.821421 0.570322i \(-0.193182\pi\)
0.821421 + 0.570322i \(0.193182\pi\)
\(594\) 9.38846e16 0.0876966
\(595\) 0 0
\(596\) −7.26910e17 −0.664324
\(597\) −3.23362e17 −0.292318
\(598\) −1.37495e18 −1.22950
\(599\) −1.43596e18 −1.27019 −0.635095 0.772434i \(-0.719039\pi\)
−0.635095 + 0.772434i \(0.719039\pi\)
\(600\) 0 0
\(601\) −1.23937e18 −1.07279 −0.536396 0.843966i \(-0.680215\pi\)
−0.536396 + 0.843966i \(0.680215\pi\)
\(602\) −3.06011e17 −0.262035
\(603\) −6.14709e17 −0.520723
\(604\) −1.13713e18 −0.952948
\(605\) 0 0
\(606\) 4.58795e17 0.376310
\(607\) −2.40600e18 −1.95240 −0.976199 0.216875i \(-0.930414\pi\)
−0.976199 + 0.216875i \(0.930414\pi\)
\(608\) −2.08621e16 −0.0167488
\(609\) 2.17797e17 0.172997
\(610\) 0 0
\(611\) 7.47312e17 0.581077
\(612\) −7.78243e17 −0.598730
\(613\) −7.71007e17 −0.586902 −0.293451 0.955974i \(-0.594804\pi\)
−0.293451 + 0.955974i \(0.594804\pi\)
\(614\) −6.77726e17 −0.510458
\(615\) 0 0
\(616\) −1.17771e17 −0.0868487
\(617\) 6.35119e17 0.463449 0.231724 0.972781i \(-0.425563\pi\)
0.231724 + 0.972781i \(0.425563\pi\)
\(618\) −1.01690e18 −0.734266
\(619\) 1.75343e18 1.25285 0.626426 0.779481i \(-0.284517\pi\)
0.626426 + 0.779481i \(0.284517\pi\)
\(620\) 0 0
\(621\) −4.42930e17 −0.309913
\(622\) −4.40990e18 −3.05345
\(623\) 5.23818e17 0.358928
\(624\) −9.21741e16 −0.0625042
\(625\) 0 0
\(626\) 2.50035e18 1.66061
\(627\) 3.61884e15 0.00237865
\(628\) −1.19218e18 −0.775541
\(629\) 2.66985e17 0.171893
\(630\) 0 0
\(631\) 1.21896e18 0.768775 0.384387 0.923172i \(-0.374413\pi\)
0.384387 + 0.923172i \(0.374413\pi\)
\(632\) 2.58727e17 0.161503
\(633\) −1.34067e18 −0.828318
\(634\) −2.94555e18 −1.80130
\(635\) 0 0
\(636\) 2.07441e18 1.24286
\(637\) 6.99883e17 0.415068
\(638\) 6.25501e17 0.367193
\(639\) −7.40676e17 −0.430400
\(640\) 0 0
\(641\) 1.09626e18 0.624216 0.312108 0.950047i \(-0.398965\pi\)
0.312108 + 0.950047i \(0.398965\pi\)
\(642\) −8.05687e17 −0.454139
\(643\) 2.51721e18 1.40459 0.702293 0.711888i \(-0.252160\pi\)
0.702293 + 0.711888i \(0.252160\pi\)
\(644\) 1.63967e18 0.905731
\(645\) 0 0
\(646\) −4.98305e16 −0.0269764
\(647\) 6.31684e17 0.338549 0.169275 0.985569i \(-0.445858\pi\)
0.169275 + 0.985569i \(0.445858\pi\)
\(648\) 1.70130e17 0.0902699
\(649\) 2.50974e17 0.131837
\(650\) 0 0
\(651\) 4.45952e17 0.229621
\(652\) 4.47789e18 2.28278
\(653\) −2.66002e18 −1.34261 −0.671303 0.741183i \(-0.734265\pi\)
−0.671303 + 0.741183i \(0.734265\pi\)
\(654\) 1.09487e18 0.547152
\(655\) 0 0
\(656\) −4.65049e17 −0.227837
\(657\) 1.18973e18 0.577128
\(658\) −1.48040e18 −0.711067
\(659\) −1.04314e18 −0.496121 −0.248061 0.968745i \(-0.579793\pi\)
−0.248061 + 0.968745i \(0.579793\pi\)
\(660\) 0 0
\(661\) 8.68858e17 0.405172 0.202586 0.979264i \(-0.435065\pi\)
0.202586 + 0.979264i \(0.435065\pi\)
\(662\) 1.54973e18 0.715613
\(663\) −7.22224e17 −0.330243
\(664\) −2.87557e18 −1.30206
\(665\) 0 0
\(666\) −1.72239e17 −0.0764800
\(667\) −2.95100e18 −1.29763
\(668\) 1.73056e18 0.753599
\(669\) −1.98053e18 −0.854105
\(670\) 0 0
\(671\) 1.50087e17 0.0634815
\(672\) 5.98979e17 0.250906
\(673\) 2.71903e18 1.12802 0.564009 0.825769i \(-0.309258\pi\)
0.564009 + 0.825769i \(0.309258\pi\)
\(674\) −3.57670e18 −1.46958
\(675\) 0 0
\(676\) −2.88216e18 −1.16162
\(677\) 2.17548e18 0.868418 0.434209 0.900812i \(-0.357028\pi\)
0.434209 + 0.900812i \(0.357028\pi\)
\(678\) −5.74007e17 −0.226947
\(679\) 1.78883e18 0.700514
\(680\) 0 0
\(681\) 1.07831e18 0.414273
\(682\) 1.28075e18 0.487379
\(683\) −4.67971e18 −1.76394 −0.881970 0.471305i \(-0.843783\pi\)
−0.881970 + 0.471305i \(0.843783\pi\)
\(684\) 1.93523e16 0.00722551
\(685\) 0 0
\(686\) −2.99536e18 −1.09734
\(687\) 2.28377e18 0.828769
\(688\) 2.77957e17 0.0999200
\(689\) 1.92509e18 0.685530
\(690\) 0 0
\(691\) −3.58472e18 −1.25270 −0.626352 0.779541i \(-0.715453\pi\)
−0.626352 + 0.779541i \(0.715453\pi\)
\(692\) 5.58015e18 1.93177
\(693\) −1.03902e17 −0.0356334
\(694\) −6.94643e18 −2.36007
\(695\) 0 0
\(696\) 1.13348e18 0.377967
\(697\) −3.64386e18 −1.20379
\(698\) 5.13703e17 0.168132
\(699\) −1.83496e17 −0.0595010
\(700\) 0 0
\(701\) −5.81898e18 −1.85217 −0.926083 0.377321i \(-0.876845\pi\)
−0.926083 + 0.377321i \(0.876845\pi\)
\(702\) 4.65925e17 0.146935
\(703\) −6.63903e15 −0.00207441
\(704\) 1.51152e18 0.467943
\(705\) 0 0
\(706\) −9.62786e18 −2.92617
\(707\) −5.07746e17 −0.152905
\(708\) 1.34212e18 0.400476
\(709\) 6.35434e18 1.87876 0.939378 0.342884i \(-0.111404\pi\)
0.939378 + 0.342884i \(0.111404\pi\)
\(710\) 0 0
\(711\) 2.28258e17 0.0662635
\(712\) 2.72611e18 0.784193
\(713\) −6.04235e18 −1.72236
\(714\) 1.43070e18 0.404120
\(715\) 0 0
\(716\) −5.74364e17 −0.159313
\(717\) 3.31583e18 0.911418
\(718\) 8.80128e18 2.39738
\(719\) 2.59269e18 0.699863 0.349932 0.936775i \(-0.386205\pi\)
0.349932 + 0.936775i \(0.386205\pi\)
\(720\) 0 0
\(721\) 1.12540e18 0.298351
\(722\) −6.03197e18 −1.58477
\(723\) 6.64568e17 0.173038
\(724\) −7.10836e18 −1.83429
\(725\) 0 0
\(726\) 3.31224e18 0.839525
\(727\) 7.34447e18 1.84496 0.922479 0.386046i \(-0.126160\pi\)
0.922479 + 0.386046i \(0.126160\pi\)
\(728\) −5.84466e17 −0.145514
\(729\) 1.50095e17 0.0370370
\(730\) 0 0
\(731\) 2.17791e18 0.527932
\(732\) 8.02617e17 0.192835
\(733\) −4.76931e18 −1.13574 −0.567871 0.823118i \(-0.692233\pi\)
−0.567871 + 0.823118i \(0.692233\pi\)
\(734\) 1.93453e18 0.456616
\(735\) 0 0
\(736\) −8.11576e18 −1.88202
\(737\) 1.95378e18 0.449093
\(738\) 2.35075e18 0.535599
\(739\) −2.70323e18 −0.610513 −0.305256 0.952270i \(-0.598742\pi\)
−0.305256 + 0.952270i \(0.598742\pi\)
\(740\) 0 0
\(741\) 1.79593e16 0.00398540
\(742\) −3.81354e18 −0.838887
\(743\) −1.89279e18 −0.412738 −0.206369 0.978474i \(-0.566165\pi\)
−0.206369 + 0.978474i \(0.566165\pi\)
\(744\) 2.32087e18 0.501680
\(745\) 0 0
\(746\) 5.30287e18 1.12644
\(747\) −2.53693e18 −0.534225
\(748\) 2.47355e18 0.516369
\(749\) 8.91650e17 0.184528
\(750\) 0 0
\(751\) 7.31039e18 1.48690 0.743448 0.668793i \(-0.233189\pi\)
0.743448 + 0.668793i \(0.233189\pi\)
\(752\) 1.34468e18 0.271146
\(753\) −4.06088e18 −0.811807
\(754\) 3.10420e18 0.615228
\(755\) 0 0
\(756\) −5.55632e17 −0.108242
\(757\) −7.31767e18 −1.41335 −0.706675 0.707539i \(-0.749805\pi\)
−0.706675 + 0.707539i \(0.749805\pi\)
\(758\) −8.72514e16 −0.0167079
\(759\) 1.40780e18 0.267282
\(760\) 0 0
\(761\) 4.77770e18 0.891700 0.445850 0.895108i \(-0.352901\pi\)
0.445850 + 0.895108i \(0.352901\pi\)
\(762\) 3.93305e18 0.727817
\(763\) −1.21169e18 −0.222322
\(764\) −3.03642e18 −0.552401
\(765\) 0 0
\(766\) 3.18852e18 0.570299
\(767\) 1.24552e18 0.220892
\(768\) 2.00114e18 0.351908
\(769\) 2.59264e18 0.452086 0.226043 0.974117i \(-0.427421\pi\)
0.226043 + 0.974117i \(0.427421\pi\)
\(770\) 0 0
\(771\) 3.28930e17 0.0563962
\(772\) 1.33685e19 2.27285
\(773\) −5.76567e18 −0.972038 −0.486019 0.873948i \(-0.661551\pi\)
−0.486019 + 0.873948i \(0.661551\pi\)
\(774\) −1.40503e18 −0.234892
\(775\) 0 0
\(776\) 9.30964e18 1.53049
\(777\) 1.90616e17 0.0310758
\(778\) −1.84145e17 −0.0297710
\(779\) 9.06109e16 0.0145274
\(780\) 0 0
\(781\) 2.35415e18 0.371195
\(782\) −1.93851e19 −3.03126
\(783\) 9.99998e17 0.155077
\(784\) 1.25934e18 0.193682
\(785\) 0 0
\(786\) −9.55817e18 −1.44587
\(787\) −1.72894e18 −0.259385 −0.129692 0.991554i \(-0.541399\pi\)
−0.129692 + 0.991554i \(0.541399\pi\)
\(788\) 6.65941e18 0.990867
\(789\) −5.18545e18 −0.765220
\(790\) 0 0
\(791\) 6.35251e17 0.0922143
\(792\) −5.40737e17 −0.0778524
\(793\) 7.44844e17 0.106363
\(794\) −1.40996e19 −1.99698
\(795\) 0 0
\(796\) 5.49615e18 0.765815
\(797\) −1.06264e19 −1.46861 −0.734305 0.678820i \(-0.762492\pi\)
−0.734305 + 0.678820i \(0.762492\pi\)
\(798\) −3.55768e16 −0.00487695
\(799\) 1.05362e19 1.43261
\(800\) 0 0
\(801\) 2.40507e18 0.321749
\(802\) −1.75858e19 −2.33361
\(803\) −3.78139e18 −0.497738
\(804\) 1.04481e19 1.36419
\(805\) 0 0
\(806\) 6.35604e18 0.816599
\(807\) 9.77031e17 0.124517
\(808\) −2.64247e18 −0.334069
\(809\) −8.95164e18 −1.12263 −0.561316 0.827602i \(-0.689705\pi\)
−0.561316 + 0.827602i \(0.689705\pi\)
\(810\) 0 0
\(811\) 5.95858e18 0.735373 0.367686 0.929950i \(-0.380150\pi\)
0.367686 + 0.929950i \(0.380150\pi\)
\(812\) −3.70187e18 −0.453217
\(813\) −4.37811e18 −0.531739
\(814\) 5.47439e17 0.0659595
\(815\) 0 0
\(816\) −1.29954e18 −0.154101
\(817\) −5.41575e16 −0.00637111
\(818\) 2.20680e19 2.57552
\(819\) −5.15637e17 −0.0597034
\(820\) 0 0
\(821\) 2.78763e18 0.317691 0.158846 0.987303i \(-0.449223\pi\)
0.158846 + 0.987303i \(0.449223\pi\)
\(822\) −9.40426e18 −1.06331
\(823\) 3.20816e18 0.359880 0.179940 0.983678i \(-0.442410\pi\)
0.179940 + 0.983678i \(0.442410\pi\)
\(824\) 5.85692e18 0.651842
\(825\) 0 0
\(826\) −2.46733e18 −0.270307
\(827\) 1.18081e18 0.128349 0.0641747 0.997939i \(-0.479559\pi\)
0.0641747 + 0.997939i \(0.479559\pi\)
\(828\) 7.52844e18 0.811910
\(829\) 3.64568e18 0.390099 0.195049 0.980793i \(-0.437513\pi\)
0.195049 + 0.980793i \(0.437513\pi\)
\(830\) 0 0
\(831\) −7.97578e18 −0.840169
\(832\) 7.50130e18 0.784034
\(833\) 9.86749e18 1.02333
\(834\) 3.42401e18 0.352335
\(835\) 0 0
\(836\) −6.15090e16 −0.00623157
\(837\) 2.04756e18 0.205836
\(838\) −9.61992e18 −0.959589
\(839\) −6.16574e18 −0.610285 −0.305142 0.952307i \(-0.598704\pi\)
−0.305142 + 0.952307i \(0.598704\pi\)
\(840\) 0 0
\(841\) −3.59820e18 −0.350680
\(842\) −2.51680e19 −2.43400
\(843\) 2.06151e18 0.197836
\(844\) 2.27872e19 2.17003
\(845\) 0 0
\(846\) −6.79715e18 −0.637411
\(847\) −3.66564e18 −0.341120
\(848\) 3.46393e18 0.319887
\(849\) 3.99047e18 0.365699
\(850\) 0 0
\(851\) −2.58271e18 −0.233096
\(852\) 1.25892e19 1.12756
\(853\) 8.43377e18 0.749640 0.374820 0.927098i \(-0.377704\pi\)
0.374820 + 0.927098i \(0.377704\pi\)
\(854\) −1.47551e18 −0.130157
\(855\) 0 0
\(856\) 4.64042e18 0.403161
\(857\) 9.57885e18 0.825920 0.412960 0.910749i \(-0.364495\pi\)
0.412960 + 0.910749i \(0.364495\pi\)
\(858\) −1.48088e18 −0.126723
\(859\) 1.27645e19 1.08404 0.542022 0.840364i \(-0.317659\pi\)
0.542022 + 0.840364i \(0.317659\pi\)
\(860\) 0 0
\(861\) −2.60156e18 −0.217627
\(862\) 1.90608e19 1.58250
\(863\) −6.90133e18 −0.568673 −0.284337 0.958725i \(-0.591773\pi\)
−0.284337 + 0.958725i \(0.591773\pi\)
\(864\) 2.75017e18 0.224916
\(865\) 0 0
\(866\) −1.12461e19 −0.906013
\(867\) −2.96204e18 −0.236846
\(868\) −7.57980e18 −0.601561
\(869\) −7.25491e17 −0.0571483
\(870\) 0 0
\(871\) 9.69608e18 0.752451
\(872\) −6.30601e18 −0.485733
\(873\) 8.21330e18 0.627950
\(874\) 4.82043e17 0.0365815
\(875\) 0 0
\(876\) −2.02216e19 −1.51196
\(877\) 2.53540e19 1.88169 0.940846 0.338835i \(-0.110033\pi\)
0.940846 + 0.338835i \(0.110033\pi\)
\(878\) −7.74115e18 −0.570284
\(879\) −7.32600e18 −0.535721
\(880\) 0 0
\(881\) 2.27879e18 0.164195 0.0820976 0.996624i \(-0.473838\pi\)
0.0820976 + 0.996624i \(0.473838\pi\)
\(882\) −6.36576e18 −0.455307
\(883\) −1.55074e19 −1.10102 −0.550508 0.834830i \(-0.685566\pi\)
−0.550508 + 0.834830i \(0.685566\pi\)
\(884\) 1.22756e19 0.865171
\(885\) 0 0
\(886\) 4.65936e18 0.323599
\(887\) 5.37007e18 0.370234 0.185117 0.982716i \(-0.440734\pi\)
0.185117 + 0.982716i \(0.440734\pi\)
\(888\) 9.92022e17 0.0678949
\(889\) −4.35269e18 −0.295730
\(890\) 0 0
\(891\) −4.77057e17 −0.0319422
\(892\) 3.36628e19 2.23758
\(893\) −2.62000e17 −0.0172889
\(894\) 6.13568e18 0.401947
\(895\) 0 0
\(896\) −8.12892e18 −0.524844
\(897\) 6.98654e18 0.447828
\(898\) −1.61016e19 −1.02465
\(899\) 1.36417e19 0.861850
\(900\) 0 0
\(901\) 2.71414e19 1.69014
\(902\) −7.47156e18 −0.461922
\(903\) 1.55494e18 0.0954426
\(904\) 3.30604e18 0.201472
\(905\) 0 0
\(906\) 9.59823e18 0.576578
\(907\) 2.21370e19 1.32029 0.660147 0.751136i \(-0.270494\pi\)
0.660147 + 0.751136i \(0.270494\pi\)
\(908\) −1.83279e19 −1.08531
\(909\) −2.33128e18 −0.137066
\(910\) 0 0
\(911\) −5.15063e18 −0.298532 −0.149266 0.988797i \(-0.547691\pi\)
−0.149266 + 0.988797i \(0.547691\pi\)
\(912\) 3.23153e16 0.00185970
\(913\) 8.06331e18 0.460737
\(914\) −3.45895e19 −1.96243
\(915\) 0 0
\(916\) −3.88170e19 −2.17121
\(917\) 1.05780e19 0.587492
\(918\) 6.56897e18 0.362259
\(919\) −1.11627e19 −0.611247 −0.305624 0.952152i \(-0.598865\pi\)
−0.305624 + 0.952152i \(0.598865\pi\)
\(920\) 0 0
\(921\) 3.44374e18 0.185927
\(922\) −1.41721e19 −0.759770
\(923\) 1.16830e19 0.621934
\(924\) 1.76601e18 0.0933522
\(925\) 0 0
\(926\) 2.90902e19 1.51627
\(927\) 5.16719e18 0.267446
\(928\) 1.83228e19 0.941740
\(929\) 4.48353e18 0.228833 0.114416 0.993433i \(-0.463500\pi\)
0.114416 + 0.993433i \(0.463500\pi\)
\(930\) 0 0
\(931\) −2.45372e17 −0.0123496
\(932\) 3.11886e18 0.155881
\(933\) 2.24081e19 1.11218
\(934\) −1.94936e19 −0.960812
\(935\) 0 0
\(936\) −2.68353e18 −0.130441
\(937\) −1.27997e19 −0.617864 −0.308932 0.951084i \(-0.599972\pi\)
−0.308932 + 0.951084i \(0.599972\pi\)
\(938\) −1.92076e19 −0.920778
\(939\) −1.27051e19 −0.604855
\(940\) 0 0
\(941\) −2.16104e19 −1.01468 −0.507342 0.861745i \(-0.669372\pi\)
−0.507342 + 0.861745i \(0.669372\pi\)
\(942\) 1.00629e19 0.469239
\(943\) 3.52494e19 1.63240
\(944\) 2.24113e18 0.103074
\(945\) 0 0
\(946\) 4.46570e18 0.202580
\(947\) −1.44301e19 −0.650120 −0.325060 0.945693i \(-0.605384\pi\)
−0.325060 + 0.945693i \(0.605384\pi\)
\(948\) −3.87969e18 −0.173597
\(949\) −1.87661e19 −0.833956
\(950\) 0 0
\(951\) 1.49672e19 0.656098
\(952\) −8.24025e18 −0.358757
\(953\) −2.49670e19 −1.07960 −0.539799 0.841794i \(-0.681500\pi\)
−0.539799 + 0.841794i \(0.681500\pi\)
\(954\) −1.75096e19 −0.751990
\(955\) 0 0
\(956\) −5.63588e19 −2.38773
\(957\) −3.17837e18 −0.133745
\(958\) −2.60385e19 −1.08828
\(959\) 1.04077e19 0.432048
\(960\) 0 0
\(961\) 3.51474e18 0.143943
\(962\) 2.71680e18 0.110514
\(963\) 4.09395e18 0.165414
\(964\) −1.12956e19 −0.453323
\(965\) 0 0
\(966\) −1.38401e19 −0.548009
\(967\) −2.66065e19 −1.04644 −0.523222 0.852196i \(-0.675270\pi\)
−0.523222 + 0.852196i \(0.675270\pi\)
\(968\) −1.90771e19 −0.745286
\(969\) 2.53205e17 0.00982578
\(970\) 0 0
\(971\) 1.94068e19 0.743069 0.371534 0.928419i \(-0.378832\pi\)
0.371534 + 0.928419i \(0.378832\pi\)
\(972\) −2.55114e18 −0.0970296
\(973\) −3.78934e18 −0.143163
\(974\) −7.74214e19 −2.90555
\(975\) 0 0
\(976\) 1.34024e18 0.0496317
\(977\) −3.01511e19 −1.10915 −0.554573 0.832135i \(-0.687118\pi\)
−0.554573 + 0.832135i \(0.687118\pi\)
\(978\) −3.77968e19 −1.38119
\(979\) −7.64422e18 −0.277489
\(980\) 0 0
\(981\) −5.56339e18 −0.199292
\(982\) −5.07332e19 −1.80538
\(983\) −1.32822e19 −0.469540 −0.234770 0.972051i \(-0.575434\pi\)
−0.234770 + 0.972051i \(0.575434\pi\)
\(984\) −1.35393e19 −0.475476
\(985\) 0 0
\(986\) 4.37654e19 1.51681
\(987\) 7.52237e18 0.258996
\(988\) −3.05253e17 −0.0104409
\(989\) −2.10683e19 −0.715904
\(990\) 0 0
\(991\) −2.75507e19 −0.923960 −0.461980 0.886890i \(-0.652861\pi\)
−0.461980 + 0.886890i \(0.652861\pi\)
\(992\) 3.75172e19 1.24998
\(993\) −7.87465e18 −0.260652
\(994\) −2.31437e19 −0.761063
\(995\) 0 0
\(996\) 4.31199e19 1.39956
\(997\) 3.62751e19 1.16974 0.584870 0.811127i \(-0.301145\pi\)
0.584870 + 0.811127i \(0.301145\pi\)
\(998\) −1.80762e19 −0.579106
\(999\) 8.75198e17 0.0278568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.14.a.g.1.4 4
5.2 odd 4 75.14.b.g.49.7 8
5.3 odd 4 75.14.b.g.49.2 8
5.4 even 2 75.14.a.h.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.14.a.g.1.4 4 1.1 even 1 trivial
75.14.a.h.1.1 yes 4 5.4 even 2
75.14.b.g.49.2 8 5.3 odd 4
75.14.b.g.49.7 8 5.2 odd 4