Properties

Label 75.14.a.c.1.2
Level $75$
Weight $14$
Character 75.1
Self dual yes
Analytic conductor $80.423$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,14,Mod(1,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-131] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.4231967139\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3121}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 780 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-27.4330\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+18.2989 q^{2} -729.000 q^{3} -7857.15 q^{4} -13339.9 q^{6} -112047. q^{7} -293681. q^{8} +531441. q^{9} +143727. q^{11} +5.72786e6 q^{12} -627845. q^{13} -2.05033e6 q^{14} +5.89918e7 q^{16} -7.51428e7 q^{17} +9.72477e6 q^{18} +3.68418e8 q^{19} +8.16820e7 q^{21} +2.63004e6 q^{22} -2.64060e8 q^{23} +2.14094e8 q^{24} -1.14888e7 q^{26} -3.87420e8 q^{27} +8.80367e8 q^{28} +5.37538e9 q^{29} -1.57044e9 q^{31} +3.48532e9 q^{32} -1.04777e8 q^{33} -1.37503e9 q^{34} -4.17561e9 q^{36} +1.85013e10 q^{37} +6.74163e9 q^{38} +4.57699e8 q^{39} -8.47428e9 q^{41} +1.49469e9 q^{42} -6.20298e9 q^{43} -1.12928e9 q^{44} -4.83201e9 q^{46} -3.77183e9 q^{47} -4.30050e10 q^{48} -8.43346e10 q^{49} +5.47791e10 q^{51} +4.93307e9 q^{52} -2.30272e11 q^{53} -7.08936e9 q^{54} +3.29060e10 q^{56} -2.68577e11 q^{57} +9.83633e10 q^{58} +4.11830e11 q^{59} -4.06580e11 q^{61} -2.87372e10 q^{62} -5.95462e10 q^{63} -4.19483e11 q^{64} -1.91730e9 q^{66} -2.96486e11 q^{67} +5.90409e11 q^{68} +1.92500e11 q^{69} -3.97640e11 q^{71} -1.56074e11 q^{72} +1.37728e12 q^{73} +3.38553e11 q^{74} -2.89472e12 q^{76} -1.61041e10 q^{77} +8.37537e9 q^{78} -4.66466e11 q^{79} +2.82430e11 q^{81} -1.55070e11 q^{82} -4.77278e12 q^{83} -6.41788e11 q^{84} -1.13508e11 q^{86} -3.91865e12 q^{87} -4.22098e10 q^{88} +6.88111e12 q^{89} +7.03479e10 q^{91} +2.07476e12 q^{92} +1.14485e12 q^{93} -6.90203e10 q^{94} -2.54080e12 q^{96} -1.38827e13 q^{97} -1.54323e12 q^{98} +7.63823e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 131 q^{2} - 1458 q^{3} + 6241 q^{4} + 95499 q^{6} - 496272 q^{7} - 1175463 q^{8} + 1062882 q^{9} + 6245888 q^{11} - 4549689 q^{12} - 1761164 q^{13} + 55314084 q^{14} + 75148705 q^{16} - 48151604 q^{17}+ \cdots + 3319320964608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 18.2989 0.202176 0.101088 0.994877i \(-0.467768\pi\)
0.101088 + 0.994877i \(0.467768\pi\)
\(3\) −729.000 −0.577350
\(4\) −7857.15 −0.959125
\(5\) 0 0
\(6\) −13339.9 −0.116726
\(7\) −112047. −0.359966 −0.179983 0.983670i \(-0.557604\pi\)
−0.179983 + 0.983670i \(0.557604\pi\)
\(8\) −293681. −0.396088
\(9\) 531441. 0.333333
\(10\) 0 0
\(11\) 143727. 0.0244616 0.0122308 0.999925i \(-0.496107\pi\)
0.0122308 + 0.999925i \(0.496107\pi\)
\(12\) 5.72786e6 0.553751
\(13\) −627845. −0.0360762 −0.0180381 0.999837i \(-0.505742\pi\)
−0.0180381 + 0.999837i \(0.505742\pi\)
\(14\) −2.05033e6 −0.0727764
\(15\) 0 0
\(16\) 5.89918e7 0.879046
\(17\) −7.51428e7 −0.755039 −0.377520 0.926002i \(-0.623223\pi\)
−0.377520 + 0.926002i \(0.623223\pi\)
\(18\) 9.72477e6 0.0673919
\(19\) 3.68418e8 1.79656 0.898282 0.439420i \(-0.144816\pi\)
0.898282 + 0.439420i \(0.144816\pi\)
\(20\) 0 0
\(21\) 8.16820e7 0.207827
\(22\) 2.63004e6 0.00494555
\(23\) −2.64060e8 −0.371939 −0.185970 0.982555i \(-0.559543\pi\)
−0.185970 + 0.982555i \(0.559543\pi\)
\(24\) 2.14094e8 0.228681
\(25\) 0 0
\(26\) −1.14888e7 −0.00729373
\(27\) −3.87420e8 −0.192450
\(28\) 8.80367e8 0.345252
\(29\) 5.37538e9 1.67812 0.839058 0.544042i \(-0.183107\pi\)
0.839058 + 0.544042i \(0.183107\pi\)
\(30\) 0 0
\(31\) −1.57044e9 −0.317812 −0.158906 0.987294i \(-0.550797\pi\)
−0.158906 + 0.987294i \(0.550797\pi\)
\(32\) 3.48532e9 0.573809
\(33\) −1.04777e8 −0.0141229
\(34\) −1.37503e9 −0.152651
\(35\) 0 0
\(36\) −4.17561e9 −0.319708
\(37\) 1.85013e10 1.18547 0.592735 0.805397i \(-0.298048\pi\)
0.592735 + 0.805397i \(0.298048\pi\)
\(38\) 6.74163e9 0.363222
\(39\) 4.57699e8 0.0208286
\(40\) 0 0
\(41\) −8.47428e9 −0.278617 −0.139309 0.990249i \(-0.544488\pi\)
−0.139309 + 0.990249i \(0.544488\pi\)
\(42\) 1.49469e9 0.0420175
\(43\) −6.20298e9 −0.149643 −0.0748214 0.997197i \(-0.523839\pi\)
−0.0748214 + 0.997197i \(0.523839\pi\)
\(44\) −1.12928e9 −0.0234617
\(45\) 0 0
\(46\) −4.83201e9 −0.0751972
\(47\) −3.77183e9 −0.0510407 −0.0255203 0.999674i \(-0.508124\pi\)
−0.0255203 + 0.999674i \(0.508124\pi\)
\(48\) −4.30050e10 −0.507517
\(49\) −8.43346e10 −0.870424
\(50\) 0 0
\(51\) 5.47791e10 0.435922
\(52\) 4.93307e9 0.0346016
\(53\) −2.30272e11 −1.42708 −0.713540 0.700614i \(-0.752909\pi\)
−0.713540 + 0.700614i \(0.752909\pi\)
\(54\) −7.08936e9 −0.0389088
\(55\) 0 0
\(56\) 3.29060e10 0.142578
\(57\) −2.68577e11 −1.03725
\(58\) 9.83633e10 0.339275
\(59\) 4.11830e11 1.27110 0.635551 0.772059i \(-0.280773\pi\)
0.635551 + 0.772059i \(0.280773\pi\)
\(60\) 0 0
\(61\) −4.06580e11 −1.01042 −0.505210 0.862996i \(-0.668585\pi\)
−0.505210 + 0.862996i \(0.668585\pi\)
\(62\) −2.87372e10 −0.0642538
\(63\) −5.95462e10 −0.119989
\(64\) −4.19483e11 −0.763035
\(65\) 0 0
\(66\) −1.91730e9 −0.00285531
\(67\) −2.96486e11 −0.400423 −0.200211 0.979753i \(-0.564163\pi\)
−0.200211 + 0.979753i \(0.564163\pi\)
\(68\) 5.90409e11 0.724177
\(69\) 1.92500e11 0.214739
\(70\) 0 0
\(71\) −3.97640e11 −0.368393 −0.184196 0.982889i \(-0.558968\pi\)
−0.184196 + 0.982889i \(0.558968\pi\)
\(72\) −1.56074e11 −0.132029
\(73\) 1.37728e12 1.06518 0.532591 0.846373i \(-0.321219\pi\)
0.532591 + 0.846373i \(0.321219\pi\)
\(74\) 3.38553e11 0.239673
\(75\) 0 0
\(76\) −2.89472e12 −1.72313
\(77\) −1.61041e10 −0.00880535
\(78\) 8.37537e9 0.00421104
\(79\) −4.66466e11 −0.215896 −0.107948 0.994157i \(-0.534428\pi\)
−0.107948 + 0.994157i \(0.534428\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) −1.55070e11 −0.0563297
\(83\) −4.77278e12 −1.60237 −0.801186 0.598415i \(-0.795797\pi\)
−0.801186 + 0.598415i \(0.795797\pi\)
\(84\) −6.41788e11 −0.199332
\(85\) 0 0
\(86\) −1.13508e11 −0.0302541
\(87\) −3.91865e12 −0.968861
\(88\) −4.22098e10 −0.00968894
\(89\) 6.88111e12 1.46765 0.733827 0.679336i \(-0.237732\pi\)
0.733827 + 0.679336i \(0.237732\pi\)
\(90\) 0 0
\(91\) 7.03479e10 0.0129862
\(92\) 2.07476e12 0.356736
\(93\) 1.14485e12 0.183489
\(94\) −6.90203e10 −0.0103192
\(95\) 0 0
\(96\) −2.54080e12 −0.331289
\(97\) −1.38827e13 −1.69223 −0.846113 0.533004i \(-0.821063\pi\)
−0.846113 + 0.533004i \(0.821063\pi\)
\(98\) −1.54323e12 −0.175979
\(99\) 7.63823e10 0.00815387
\(100\) 0 0
\(101\) −1.02752e13 −0.963162 −0.481581 0.876402i \(-0.659937\pi\)
−0.481581 + 0.876402i \(0.659937\pi\)
\(102\) 1.00240e12 0.0881329
\(103\) −1.05918e13 −0.874036 −0.437018 0.899453i \(-0.643965\pi\)
−0.437018 + 0.899453i \(0.643965\pi\)
\(104\) 1.84386e11 0.0142893
\(105\) 0 0
\(106\) −4.21372e12 −0.288521
\(107\) −1.26172e13 −0.812774 −0.406387 0.913701i \(-0.633211\pi\)
−0.406387 + 0.913701i \(0.633211\pi\)
\(108\) 3.04402e12 0.184584
\(109\) 1.49988e13 0.856612 0.428306 0.903634i \(-0.359110\pi\)
0.428306 + 0.903634i \(0.359110\pi\)
\(110\) 0 0
\(111\) −1.34874e13 −0.684432
\(112\) −6.60983e12 −0.316427
\(113\) 3.11837e13 1.40902 0.704512 0.709693i \(-0.251166\pi\)
0.704512 + 0.709693i \(0.251166\pi\)
\(114\) −4.91465e12 −0.209706
\(115\) 0 0
\(116\) −4.22352e13 −1.60952
\(117\) −3.33662e11 −0.0120254
\(118\) 7.53603e12 0.256986
\(119\) 8.41950e12 0.271789
\(120\) 0 0
\(121\) −3.45021e13 −0.999402
\(122\) −7.43996e12 −0.204283
\(123\) 6.17775e12 0.160860
\(124\) 1.23392e13 0.304821
\(125\) 0 0
\(126\) −1.08963e12 −0.0242588
\(127\) −6.92694e13 −1.46493 −0.732466 0.680804i \(-0.761631\pi\)
−0.732466 + 0.680804i \(0.761631\pi\)
\(128\) −3.62278e13 −0.728077
\(129\) 4.52198e12 0.0863963
\(130\) 0 0
\(131\) −3.60740e13 −0.623636 −0.311818 0.950142i \(-0.600938\pi\)
−0.311818 + 0.950142i \(0.600938\pi\)
\(132\) 8.23247e11 0.0135456
\(133\) −4.12800e13 −0.646702
\(134\) −5.42537e12 −0.0809558
\(135\) 0 0
\(136\) 2.20680e13 0.299062
\(137\) −8.46431e13 −1.09372 −0.546862 0.837223i \(-0.684178\pi\)
−0.546862 + 0.837223i \(0.684178\pi\)
\(138\) 3.52253e12 0.0434151
\(139\) 1.23811e13 0.145600 0.0728002 0.997347i \(-0.476806\pi\)
0.0728002 + 0.997347i \(0.476806\pi\)
\(140\) 0 0
\(141\) 2.74967e12 0.0294683
\(142\) −7.27637e12 −0.0744801
\(143\) −9.02380e10 −0.000882481 0
\(144\) 3.13506e13 0.293015
\(145\) 0 0
\(146\) 2.52027e13 0.215354
\(147\) 6.14799e13 0.502540
\(148\) −1.45367e14 −1.13701
\(149\) −1.01554e14 −0.760303 −0.380152 0.924924i \(-0.624128\pi\)
−0.380152 + 0.924924i \(0.624128\pi\)
\(150\) 0 0
\(151\) −6.26055e13 −0.429796 −0.214898 0.976636i \(-0.568942\pi\)
−0.214898 + 0.976636i \(0.568942\pi\)
\(152\) −1.08198e14 −0.711597
\(153\) −3.99340e13 −0.251680
\(154\) −2.94687e11 −0.00178023
\(155\) 0 0
\(156\) −3.59621e12 −0.0199772
\(157\) 3.46935e14 1.84885 0.924423 0.381368i \(-0.124547\pi\)
0.924423 + 0.381368i \(0.124547\pi\)
\(158\) −8.53580e12 −0.0436489
\(159\) 1.67868e14 0.823925
\(160\) 0 0
\(161\) 2.95871e13 0.133886
\(162\) 5.16814e12 0.0224640
\(163\) 4.29452e14 1.79347 0.896736 0.442565i \(-0.145931\pi\)
0.896736 + 0.442565i \(0.145931\pi\)
\(164\) 6.65837e13 0.267229
\(165\) 0 0
\(166\) −8.73364e13 −0.323961
\(167\) 3.09663e14 1.10467 0.552334 0.833623i \(-0.313737\pi\)
0.552334 + 0.833623i \(0.313737\pi\)
\(168\) −2.39885e13 −0.0823175
\(169\) −3.02481e14 −0.998699
\(170\) 0 0
\(171\) 1.95793e14 0.598855
\(172\) 4.87378e13 0.143526
\(173\) −4.50613e13 −0.127792 −0.0638960 0.997957i \(-0.520353\pi\)
−0.0638960 + 0.997957i \(0.520353\pi\)
\(174\) −7.17069e13 −0.195880
\(175\) 0 0
\(176\) 8.47869e12 0.0215029
\(177\) −3.00224e14 −0.733871
\(178\) 1.25917e14 0.296724
\(179\) 1.74245e14 0.395926 0.197963 0.980209i \(-0.436567\pi\)
0.197963 + 0.980209i \(0.436567\pi\)
\(180\) 0 0
\(181\) 6.89956e14 1.45851 0.729257 0.684240i \(-0.239866\pi\)
0.729257 + 0.684240i \(0.239866\pi\)
\(182\) 1.28729e12 0.00262549
\(183\) 2.96397e14 0.583367
\(184\) 7.75496e13 0.147321
\(185\) 0 0
\(186\) 2.09494e13 0.0370970
\(187\) −1.08000e13 −0.0184695
\(188\) 2.96359e13 0.0489544
\(189\) 4.34092e13 0.0692755
\(190\) 0 0
\(191\) 7.52391e14 1.12131 0.560656 0.828049i \(-0.310549\pi\)
0.560656 + 0.828049i \(0.310549\pi\)
\(192\) 3.05803e14 0.440539
\(193\) −4.18449e14 −0.582801 −0.291400 0.956601i \(-0.594121\pi\)
−0.291400 + 0.956601i \(0.594121\pi\)
\(194\) −2.54038e14 −0.342127
\(195\) 0 0
\(196\) 6.62629e14 0.834846
\(197\) 5.04365e14 0.614772 0.307386 0.951585i \(-0.400546\pi\)
0.307386 + 0.951585i \(0.400546\pi\)
\(198\) 1.39771e12 0.00164852
\(199\) −1.01359e15 −1.15696 −0.578479 0.815697i \(-0.696354\pi\)
−0.578479 + 0.815697i \(0.696354\pi\)
\(200\) 0 0
\(201\) 2.16139e14 0.231184
\(202\) −1.88024e14 −0.194728
\(203\) −6.02293e14 −0.604065
\(204\) −4.30408e14 −0.418104
\(205\) 0 0
\(206\) −1.93819e14 −0.176709
\(207\) −1.40333e14 −0.123980
\(208\) −3.70377e13 −0.0317126
\(209\) 5.29515e13 0.0439468
\(210\) 0 0
\(211\) 6.68511e14 0.521522 0.260761 0.965403i \(-0.416027\pi\)
0.260761 + 0.965403i \(0.416027\pi\)
\(212\) 1.80928e15 1.36875
\(213\) 2.89880e14 0.212692
\(214\) −2.30881e14 −0.164323
\(215\) 0 0
\(216\) 1.13778e14 0.0762271
\(217\) 1.75962e14 0.114401
\(218\) 2.74461e14 0.173186
\(219\) −1.00404e15 −0.614983
\(220\) 0 0
\(221\) 4.71780e13 0.0272389
\(222\) −2.46805e14 −0.138376
\(223\) 6.64343e14 0.361752 0.180876 0.983506i \(-0.442107\pi\)
0.180876 + 0.983506i \(0.442107\pi\)
\(224\) −3.90518e14 −0.206552
\(225\) 0 0
\(226\) 5.70627e14 0.284870
\(227\) 2.74872e15 1.33341 0.666703 0.745324i \(-0.267705\pi\)
0.666703 + 0.745324i \(0.267705\pi\)
\(228\) 2.11025e15 0.994849
\(229\) 1.93108e15 0.884851 0.442426 0.896805i \(-0.354118\pi\)
0.442426 + 0.896805i \(0.354118\pi\)
\(230\) 0 0
\(231\) 1.17399e13 0.00508377
\(232\) −1.57865e15 −0.664681
\(233\) −3.04503e15 −1.24674 −0.623372 0.781925i \(-0.714238\pi\)
−0.623372 + 0.781925i \(0.714238\pi\)
\(234\) −6.10564e12 −0.00243124
\(235\) 0 0
\(236\) −3.23581e15 −1.21914
\(237\) 3.40054e14 0.124647
\(238\) 1.54067e14 0.0549491
\(239\) 1.63875e15 0.568756 0.284378 0.958712i \(-0.408213\pi\)
0.284378 + 0.958712i \(0.408213\pi\)
\(240\) 0 0
\(241\) −2.33624e14 −0.0768081 −0.0384041 0.999262i \(-0.512227\pi\)
−0.0384041 + 0.999262i \(0.512227\pi\)
\(242\) −6.31348e14 −0.202055
\(243\) −2.05891e14 −0.0641500
\(244\) 3.19456e15 0.969120
\(245\) 0 0
\(246\) 1.13046e14 0.0325219
\(247\) −2.31309e14 −0.0648131
\(248\) 4.61208e14 0.125881
\(249\) 3.47935e15 0.925130
\(250\) 0 0
\(251\) −3.58149e15 −0.904033 −0.452016 0.892010i \(-0.649295\pi\)
−0.452016 + 0.892010i \(0.649295\pi\)
\(252\) 4.67863e14 0.115084
\(253\) −3.79525e13 −0.00909824
\(254\) −1.26755e15 −0.296174
\(255\) 0 0
\(256\) 2.77348e15 0.615836
\(257\) −7.60591e15 −1.64659 −0.823296 0.567612i \(-0.807867\pi\)
−0.823296 + 0.567612i \(0.807867\pi\)
\(258\) 8.27470e13 0.0174672
\(259\) −2.07301e15 −0.426729
\(260\) 0 0
\(261\) 2.85670e15 0.559372
\(262\) −6.60113e14 −0.126084
\(263\) −7.86154e15 −1.46486 −0.732428 0.680844i \(-0.761613\pi\)
−0.732428 + 0.680844i \(0.761613\pi\)
\(264\) 3.07710e13 0.00559391
\(265\) 0 0
\(266\) −7.55378e14 −0.130748
\(267\) −5.01633e15 −0.847350
\(268\) 2.32954e15 0.384055
\(269\) −6.04452e15 −0.972685 −0.486343 0.873768i \(-0.661669\pi\)
−0.486343 + 0.873768i \(0.661669\pi\)
\(270\) 0 0
\(271\) −1.14219e16 −1.75162 −0.875809 0.482658i \(-0.839672\pi\)
−0.875809 + 0.482658i \(0.839672\pi\)
\(272\) −4.43281e15 −0.663714
\(273\) −5.12836e13 −0.00749758
\(274\) −1.54887e15 −0.221125
\(275\) 0 0
\(276\) −1.51250e15 −0.205962
\(277\) 1.65973e15 0.220760 0.110380 0.993889i \(-0.464793\pi\)
0.110380 + 0.993889i \(0.464793\pi\)
\(278\) 2.26560e14 0.0294369
\(279\) −8.34595e14 −0.105937
\(280\) 0 0
\(281\) −1.28234e16 −1.55386 −0.776930 0.629587i \(-0.783224\pi\)
−0.776930 + 0.629587i \(0.783224\pi\)
\(282\) 5.03158e13 0.00595779
\(283\) 1.55354e16 1.79767 0.898837 0.438283i \(-0.144413\pi\)
0.898837 + 0.438283i \(0.144413\pi\)
\(284\) 3.12432e15 0.353335
\(285\) 0 0
\(286\) −1.65125e12 −0.000178416 0
\(287\) 9.49515e14 0.100293
\(288\) 1.85224e15 0.191270
\(289\) −4.25813e15 −0.429916
\(290\) 0 0
\(291\) 1.01205e16 0.977007
\(292\) −1.08215e16 −1.02164
\(293\) −1.56366e16 −1.44378 −0.721891 0.692007i \(-0.756727\pi\)
−0.721891 + 0.692007i \(0.756727\pi\)
\(294\) 1.12501e15 0.101601
\(295\) 0 0
\(296\) −5.43348e15 −0.469550
\(297\) −5.56827e13 −0.00470764
\(298\) −1.85833e15 −0.153715
\(299\) 1.65789e14 0.0134182
\(300\) 0 0
\(301\) 6.95024e14 0.0538663
\(302\) −1.14561e15 −0.0868944
\(303\) 7.49059e15 0.556082
\(304\) 2.17336e16 1.57926
\(305\) 0 0
\(306\) −7.30747e14 −0.0508836
\(307\) 4.73925e15 0.323080 0.161540 0.986866i \(-0.448354\pi\)
0.161540 + 0.986866i \(0.448354\pi\)
\(308\) 1.26532e14 0.00844543
\(309\) 7.72145e15 0.504625
\(310\) 0 0
\(311\) −2.24003e16 −1.40382 −0.701911 0.712265i \(-0.747670\pi\)
−0.701911 + 0.712265i \(0.747670\pi\)
\(312\) −1.34418e14 −0.00824995
\(313\) 2.48799e15 0.149558 0.0747791 0.997200i \(-0.476175\pi\)
0.0747791 + 0.997200i \(0.476175\pi\)
\(314\) 6.34852e15 0.373792
\(315\) 0 0
\(316\) 3.66510e15 0.207071
\(317\) 7.02646e14 0.0388912 0.0194456 0.999811i \(-0.493810\pi\)
0.0194456 + 0.999811i \(0.493810\pi\)
\(318\) 3.07180e15 0.166578
\(319\) 7.72585e14 0.0410494
\(320\) 0 0
\(321\) 9.19797e15 0.469255
\(322\) 5.41410e14 0.0270684
\(323\) −2.76840e16 −1.35648
\(324\) −2.21909e15 −0.106569
\(325\) 0 0
\(326\) 7.85848e15 0.362597
\(327\) −1.09341e16 −0.494565
\(328\) 2.48874e15 0.110357
\(329\) 4.22621e14 0.0183729
\(330\) 0 0
\(331\) 2.99883e16 1.25334 0.626672 0.779283i \(-0.284417\pi\)
0.626672 + 0.779283i \(0.284417\pi\)
\(332\) 3.75004e16 1.53688
\(333\) 9.83234e15 0.395157
\(334\) 5.66648e15 0.223337
\(335\) 0 0
\(336\) 4.81856e15 0.182689
\(337\) −2.60291e16 −0.967975 −0.483987 0.875075i \(-0.660812\pi\)
−0.483987 + 0.875075i \(0.660812\pi\)
\(338\) −5.53506e15 −0.201913
\(339\) −2.27329e16 −0.813500
\(340\) 0 0
\(341\) −2.25714e14 −0.00777419
\(342\) 3.58278e15 0.121074
\(343\) 2.03055e16 0.673289
\(344\) 1.82170e15 0.0592717
\(345\) 0 0
\(346\) −8.24570e14 −0.0258365
\(347\) 5.96465e16 1.83419 0.917093 0.398674i \(-0.130530\pi\)
0.917093 + 0.398674i \(0.130530\pi\)
\(348\) 3.07894e16 0.929259
\(349\) −2.72283e16 −0.806595 −0.403298 0.915069i \(-0.632136\pi\)
−0.403298 + 0.915069i \(0.632136\pi\)
\(350\) 0 0
\(351\) 2.43240e14 0.00694286
\(352\) 5.00933e14 0.0140363
\(353\) −5.67802e16 −1.56193 −0.780964 0.624576i \(-0.785272\pi\)
−0.780964 + 0.624576i \(0.785272\pi\)
\(354\) −5.49376e15 −0.148371
\(355\) 0 0
\(356\) −5.40659e16 −1.40766
\(357\) −6.13782e15 −0.156917
\(358\) 3.18848e15 0.0800467
\(359\) −7.02312e16 −1.73147 −0.865737 0.500499i \(-0.833150\pi\)
−0.865737 + 0.500499i \(0.833150\pi\)
\(360\) 0 0
\(361\) 9.36790e16 2.22764
\(362\) 1.26254e16 0.294876
\(363\) 2.51520e16 0.577005
\(364\) −5.52734e14 −0.0124554
\(365\) 0 0
\(366\) 5.42373e15 0.117943
\(367\) 2.11880e16 0.452649 0.226324 0.974052i \(-0.427329\pi\)
0.226324 + 0.974052i \(0.427329\pi\)
\(368\) −1.55774e16 −0.326952
\(369\) −4.50358e15 −0.0928724
\(370\) 0 0
\(371\) 2.58012e16 0.513700
\(372\) −8.99526e15 −0.175989
\(373\) −2.26994e16 −0.436421 −0.218211 0.975902i \(-0.570022\pi\)
−0.218211 + 0.975902i \(0.570022\pi\)
\(374\) −1.97628e14 −0.00373408
\(375\) 0 0
\(376\) 1.10772e15 0.0202166
\(377\) −3.37490e15 −0.0605400
\(378\) 7.94338e14 0.0140058
\(379\) −3.61052e16 −0.625770 −0.312885 0.949791i \(-0.601296\pi\)
−0.312885 + 0.949791i \(0.601296\pi\)
\(380\) 0 0
\(381\) 5.04974e16 0.845779
\(382\) 1.37679e16 0.226702
\(383\) −2.14417e16 −0.347110 −0.173555 0.984824i \(-0.555525\pi\)
−0.173555 + 0.984824i \(0.555525\pi\)
\(384\) 2.64101e16 0.420355
\(385\) 0 0
\(386\) −7.65714e15 −0.117828
\(387\) −3.29652e15 −0.0498809
\(388\) 1.09079e17 1.62306
\(389\) 6.52962e16 0.955466 0.477733 0.878505i \(-0.341459\pi\)
0.477733 + 0.878505i \(0.341459\pi\)
\(390\) 0 0
\(391\) 1.98422e16 0.280829
\(392\) 2.47675e16 0.344764
\(393\) 2.62980e16 0.360056
\(394\) 9.22930e15 0.124292
\(395\) 0 0
\(396\) −6.00147e14 −0.00782058
\(397\) −3.27384e16 −0.419680 −0.209840 0.977736i \(-0.567294\pi\)
−0.209840 + 0.977736i \(0.567294\pi\)
\(398\) −1.85476e16 −0.233909
\(399\) 3.00931e16 0.373374
\(400\) 0 0
\(401\) 3.67179e16 0.441001 0.220501 0.975387i \(-0.429231\pi\)
0.220501 + 0.975387i \(0.429231\pi\)
\(402\) 3.95509e15 0.0467398
\(403\) 9.85991e14 0.0114654
\(404\) 8.07334e16 0.923793
\(405\) 0 0
\(406\) −1.10213e16 −0.122127
\(407\) 2.65913e15 0.0289985
\(408\) −1.60876e16 −0.172663
\(409\) 2.37728e14 0.00251119 0.00125559 0.999999i \(-0.499600\pi\)
0.00125559 + 0.999999i \(0.499600\pi\)
\(410\) 0 0
\(411\) 6.17048e16 0.631462
\(412\) 8.32217e16 0.838310
\(413\) −4.61442e16 −0.457553
\(414\) −2.56793e15 −0.0250657
\(415\) 0 0
\(416\) −2.18824e15 −0.0207008
\(417\) −9.02581e15 −0.0840624
\(418\) 9.68953e14 0.00888499
\(419\) −1.07748e17 −0.972785 −0.486392 0.873741i \(-0.661687\pi\)
−0.486392 + 0.873741i \(0.661687\pi\)
\(420\) 0 0
\(421\) −4.46846e15 −0.0391133 −0.0195566 0.999809i \(-0.506225\pi\)
−0.0195566 + 0.999809i \(0.506225\pi\)
\(422\) 1.22330e16 0.105439
\(423\) −2.00451e15 −0.0170136
\(424\) 6.76266e16 0.565249
\(425\) 0 0
\(426\) 5.30447e15 0.0430011
\(427\) 4.55559e16 0.363717
\(428\) 9.91356e16 0.779552
\(429\) 6.57835e13 0.000509501 0
\(430\) 0 0
\(431\) −2.38034e17 −1.78869 −0.894347 0.447373i \(-0.852360\pi\)
−0.894347 + 0.447373i \(0.852360\pi\)
\(432\) −2.28546e16 −0.169172
\(433\) −1.52333e16 −0.111077 −0.0555384 0.998457i \(-0.517688\pi\)
−0.0555384 + 0.998457i \(0.517688\pi\)
\(434\) 3.21991e15 0.0231292
\(435\) 0 0
\(436\) −1.17848e17 −0.821598
\(437\) −9.72846e16 −0.668213
\(438\) −1.83727e16 −0.124335
\(439\) −1.46731e17 −0.978370 −0.489185 0.872180i \(-0.662706\pi\)
−0.489185 + 0.872180i \(0.662706\pi\)
\(440\) 0 0
\(441\) −4.48188e16 −0.290141
\(442\) 8.63304e14 0.00550705
\(443\) −1.80890e17 −1.13708 −0.568540 0.822656i \(-0.692492\pi\)
−0.568540 + 0.822656i \(0.692492\pi\)
\(444\) 1.05973e17 0.656455
\(445\) 0 0
\(446\) 1.21567e16 0.0731375
\(447\) 7.40330e16 0.438961
\(448\) 4.70017e16 0.274667
\(449\) −2.86599e17 −1.65072 −0.825360 0.564607i \(-0.809028\pi\)
−0.825360 + 0.564607i \(0.809028\pi\)
\(450\) 0 0
\(451\) −1.21798e15 −0.00681542
\(452\) −2.45015e17 −1.35143
\(453\) 4.56394e16 0.248143
\(454\) 5.02984e16 0.269582
\(455\) 0 0
\(456\) 7.88760e16 0.410841
\(457\) −2.00560e17 −1.02989 −0.514943 0.857224i \(-0.672187\pi\)
−0.514943 + 0.857224i \(0.672187\pi\)
\(458\) 3.53366e16 0.178895
\(459\) 2.91119e16 0.145307
\(460\) 0 0
\(461\) −7.03451e16 −0.341332 −0.170666 0.985329i \(-0.554592\pi\)
−0.170666 + 0.985329i \(0.554592\pi\)
\(462\) 2.14827e14 0.00102782
\(463\) −1.71885e17 −0.810891 −0.405446 0.914119i \(-0.632884\pi\)
−0.405446 + 0.914119i \(0.632884\pi\)
\(464\) 3.17103e17 1.47514
\(465\) 0 0
\(466\) −5.57205e16 −0.252062
\(467\) −5.37684e16 −0.239865 −0.119933 0.992782i \(-0.538268\pi\)
−0.119933 + 0.992782i \(0.538268\pi\)
\(468\) 2.62164e15 0.0115339
\(469\) 3.32203e16 0.144139
\(470\) 0 0
\(471\) −2.52916e17 −1.06743
\(472\) −1.20947e17 −0.503467
\(473\) −8.91535e14 −0.00366050
\(474\) 6.22260e15 0.0252007
\(475\) 0 0
\(476\) −6.61533e16 −0.260679
\(477\) −1.22376e17 −0.475693
\(478\) 2.99872e16 0.114989
\(479\) 1.45707e17 0.551188 0.275594 0.961274i \(-0.411125\pi\)
0.275594 + 0.961274i \(0.411125\pi\)
\(480\) 0 0
\(481\) −1.16159e16 −0.0427672
\(482\) −4.27506e15 −0.0155287
\(483\) −2.15690e16 −0.0772989
\(484\) 2.71088e17 0.958551
\(485\) 0 0
\(486\) −3.76757e15 −0.0129696
\(487\) −2.20545e17 −0.749132 −0.374566 0.927200i \(-0.622208\pi\)
−0.374566 + 0.927200i \(0.622208\pi\)
\(488\) 1.19405e17 0.400215
\(489\) −3.13070e17 −1.03546
\(490\) 0 0
\(491\) −2.43820e16 −0.0785309 −0.0392654 0.999229i \(-0.512502\pi\)
−0.0392654 + 0.999229i \(0.512502\pi\)
\(492\) −4.85395e16 −0.154285
\(493\) −4.03921e17 −1.26704
\(494\) −4.23270e15 −0.0131036
\(495\) 0 0
\(496\) −9.26429e16 −0.279371
\(497\) 4.45543e16 0.132609
\(498\) 6.36682e16 0.187039
\(499\) 2.54719e17 0.738599 0.369299 0.929311i \(-0.379598\pi\)
0.369299 + 0.929311i \(0.379598\pi\)
\(500\) 0 0
\(501\) −2.25744e17 −0.637781
\(502\) −6.55371e16 −0.182774
\(503\) 3.72489e17 1.02547 0.512733 0.858548i \(-0.328633\pi\)
0.512733 + 0.858548i \(0.328633\pi\)
\(504\) 1.74876e16 0.0475260
\(505\) 0 0
\(506\) −6.94488e14 −0.00183944
\(507\) 2.20509e17 0.576599
\(508\) 5.44260e17 1.40505
\(509\) −1.62073e17 −0.413091 −0.206546 0.978437i \(-0.566222\pi\)
−0.206546 + 0.978437i \(0.566222\pi\)
\(510\) 0 0
\(511\) −1.54320e17 −0.383429
\(512\) 3.47530e17 0.852584
\(513\) −1.42733e17 −0.345749
\(514\) −1.39180e17 −0.332901
\(515\) 0 0
\(516\) −3.55298e16 −0.0828648
\(517\) −5.42113e14 −0.00124854
\(518\) −3.79337e16 −0.0862743
\(519\) 3.28497e16 0.0737808
\(520\) 0 0
\(521\) 1.71142e17 0.374896 0.187448 0.982275i \(-0.439978\pi\)
0.187448 + 0.982275i \(0.439978\pi\)
\(522\) 5.22743e16 0.113092
\(523\) −4.86625e17 −1.03976 −0.519880 0.854239i \(-0.674023\pi\)
−0.519880 + 0.854239i \(0.674023\pi\)
\(524\) 2.83439e17 0.598145
\(525\) 0 0
\(526\) −1.43857e17 −0.296159
\(527\) 1.18007e17 0.239960
\(528\) −6.18096e15 −0.0124147
\(529\) −4.34308e17 −0.861661
\(530\) 0 0
\(531\) 2.18863e17 0.423700
\(532\) 3.24343e17 0.620268
\(533\) 5.32053e15 0.0100514
\(534\) −9.17932e16 −0.171314
\(535\) 0 0
\(536\) 8.70725e16 0.158602
\(537\) −1.27024e17 −0.228588
\(538\) −1.10608e17 −0.196653
\(539\) −1.21211e16 −0.0212920
\(540\) 0 0
\(541\) 2.80840e17 0.481589 0.240795 0.970576i \(-0.422592\pi\)
0.240795 + 0.970576i \(0.422592\pi\)
\(542\) −2.09009e17 −0.354135
\(543\) −5.02978e17 −0.842073
\(544\) −2.61897e17 −0.433249
\(545\) 0 0
\(546\) −9.38432e14 −0.00151583
\(547\) 6.77006e17 1.08062 0.540312 0.841464i \(-0.318306\pi\)
0.540312 + 0.841464i \(0.318306\pi\)
\(548\) 6.65054e17 1.04902
\(549\) −2.16073e17 −0.336807
\(550\) 0 0
\(551\) 1.98039e18 3.01484
\(552\) −5.65336e16 −0.0850556
\(553\) 5.22660e16 0.0777152
\(554\) 3.03713e16 0.0446323
\(555\) 0 0
\(556\) −9.72800e16 −0.139649
\(557\) 4.76254e17 0.675740 0.337870 0.941193i \(-0.390294\pi\)
0.337870 + 0.941193i \(0.390294\pi\)
\(558\) −1.52721e16 −0.0214179
\(559\) 3.89451e15 0.00539854
\(560\) 0 0
\(561\) 7.87322e15 0.0106634
\(562\) −2.34654e17 −0.314153
\(563\) 1.40153e17 0.185480 0.0927400 0.995690i \(-0.470437\pi\)
0.0927400 + 0.995690i \(0.470437\pi\)
\(564\) −2.16045e16 −0.0282638
\(565\) 0 0
\(566\) 2.84280e17 0.363446
\(567\) −3.16453e16 −0.0399962
\(568\) 1.16780e17 0.145916
\(569\) 4.19192e17 0.517825 0.258912 0.965901i \(-0.416636\pi\)
0.258912 + 0.965901i \(0.416636\pi\)
\(570\) 0 0
\(571\) 4.21896e17 0.509414 0.254707 0.967018i \(-0.418021\pi\)
0.254707 + 0.967018i \(0.418021\pi\)
\(572\) 7.09014e14 0.000846410 0
\(573\) −5.48493e17 −0.647390
\(574\) 1.73750e16 0.0202768
\(575\) 0 0
\(576\) −2.22930e17 −0.254345
\(577\) 2.42814e17 0.273924 0.136962 0.990576i \(-0.456266\pi\)
0.136962 + 0.990576i \(0.456266\pi\)
\(578\) −7.79190e16 −0.0869185
\(579\) 3.05049e17 0.336480
\(580\) 0 0
\(581\) 5.34774e17 0.576800
\(582\) 1.85194e17 0.197527
\(583\) −3.30963e16 −0.0349087
\(584\) −4.04481e17 −0.421905
\(585\) 0 0
\(586\) −2.86131e17 −0.291898
\(587\) −1.71527e18 −1.73055 −0.865274 0.501299i \(-0.832856\pi\)
−0.865274 + 0.501299i \(0.832856\pi\)
\(588\) −4.83057e17 −0.481998
\(589\) −5.78578e17 −0.570969
\(590\) 0 0
\(591\) −3.67682e17 −0.354939
\(592\) 1.09142e18 1.04208
\(593\) 1.76024e18 1.66232 0.831161 0.556031i \(-0.187676\pi\)
0.831161 + 0.556031i \(0.187676\pi\)
\(594\) −1.01893e15 −0.000951771 0
\(595\) 0 0
\(596\) 7.97926e17 0.729226
\(597\) 7.38908e17 0.667970
\(598\) 3.03375e15 0.00271283
\(599\) −1.01218e18 −0.895328 −0.447664 0.894202i \(-0.647744\pi\)
−0.447664 + 0.894202i \(0.647744\pi\)
\(600\) 0 0
\(601\) −1.00124e18 −0.866669 −0.433335 0.901233i \(-0.642663\pi\)
−0.433335 + 0.901233i \(0.642663\pi\)
\(602\) 1.27181e16 0.0108905
\(603\) −1.57565e17 −0.133474
\(604\) 4.91901e17 0.412228
\(605\) 0 0
\(606\) 1.37069e17 0.112426
\(607\) 1.81791e18 1.47518 0.737590 0.675249i \(-0.235964\pi\)
0.737590 + 0.675249i \(0.235964\pi\)
\(608\) 1.28405e18 1.03089
\(609\) 4.39072e17 0.348757
\(610\) 0 0
\(611\) 2.36812e15 0.00184135
\(612\) 3.13767e17 0.241392
\(613\) 1.45199e18 1.10527 0.552637 0.833422i \(-0.313622\pi\)
0.552637 + 0.833422i \(0.313622\pi\)
\(614\) 8.67229e16 0.0653190
\(615\) 0 0
\(616\) 4.72947e15 0.00348769
\(617\) −7.36777e17 −0.537629 −0.268814 0.963192i \(-0.586632\pi\)
−0.268814 + 0.963192i \(0.586632\pi\)
\(618\) 1.41294e17 0.102023
\(619\) 3.78289e16 0.0270293 0.0135147 0.999909i \(-0.495698\pi\)
0.0135147 + 0.999909i \(0.495698\pi\)
\(620\) 0 0
\(621\) 1.02302e17 0.0715798
\(622\) −4.09901e17 −0.283819
\(623\) −7.71006e17 −0.528306
\(624\) 2.70004e16 0.0183093
\(625\) 0 0
\(626\) 4.55273e16 0.0302370
\(627\) −3.86017e16 −0.0253727
\(628\) −2.72592e18 −1.77327
\(629\) −1.39024e18 −0.895077
\(630\) 0 0
\(631\) 1.18325e18 0.746253 0.373127 0.927780i \(-0.378286\pi\)
0.373127 + 0.927780i \(0.378286\pi\)
\(632\) 1.36992e17 0.0855137
\(633\) −4.87344e17 −0.301101
\(634\) 1.28576e16 0.00786286
\(635\) 0 0
\(636\) −1.31897e18 −0.790247
\(637\) 5.29490e16 0.0314016
\(638\) 1.41374e16 0.00829920
\(639\) −2.11322e17 −0.122798
\(640\) 0 0
\(641\) 2.00244e17 0.114020 0.0570102 0.998374i \(-0.481843\pi\)
0.0570102 + 0.998374i \(0.481843\pi\)
\(642\) 1.68312e17 0.0948721
\(643\) −2.12199e18 −1.18406 −0.592028 0.805917i \(-0.701673\pi\)
−0.592028 + 0.805917i \(0.701673\pi\)
\(644\) −2.32470e17 −0.128413
\(645\) 0 0
\(646\) −5.06586e17 −0.274247
\(647\) 1.12704e18 0.604032 0.302016 0.953303i \(-0.402340\pi\)
0.302016 + 0.953303i \(0.402340\pi\)
\(648\) −8.29443e16 −0.0440097
\(649\) 5.91910e16 0.0310932
\(650\) 0 0
\(651\) −1.28277e17 −0.0660497
\(652\) −3.37427e18 −1.72016
\(653\) 2.48373e18 1.25363 0.626813 0.779169i \(-0.284359\pi\)
0.626813 + 0.779169i \(0.284359\pi\)
\(654\) −2.00082e17 −0.0999891
\(655\) 0 0
\(656\) −4.99913e17 −0.244917
\(657\) 7.31943e17 0.355060
\(658\) 7.73349e15 0.00371456
\(659\) 3.56057e18 1.69342 0.846709 0.532056i \(-0.178580\pi\)
0.846709 + 0.532056i \(0.178580\pi\)
\(660\) 0 0
\(661\) −1.25090e18 −0.583329 −0.291664 0.956521i \(-0.594209\pi\)
−0.291664 + 0.956521i \(0.594209\pi\)
\(662\) 5.48752e17 0.253396
\(663\) −3.43928e16 −0.0157264
\(664\) 1.40167e18 0.634680
\(665\) 0 0
\(666\) 1.79921e17 0.0798911
\(667\) −1.41942e18 −0.624158
\(668\) −2.43307e18 −1.05952
\(669\) −4.84306e17 −0.208858
\(670\) 0 0
\(671\) −5.84364e16 −0.0247165
\(672\) 2.84688e17 0.119253
\(673\) −2.74283e18 −1.13789 −0.568946 0.822375i \(-0.692648\pi\)
−0.568946 + 0.822375i \(0.692648\pi\)
\(674\) −4.76302e17 −0.195701
\(675\) 0 0
\(676\) 2.37664e18 0.957877
\(677\) −4.19537e18 −1.67473 −0.837364 0.546646i \(-0.815905\pi\)
−0.837364 + 0.546646i \(0.815905\pi\)
\(678\) −4.15987e17 −0.164470
\(679\) 1.55551e18 0.609144
\(680\) 0 0
\(681\) −2.00382e18 −0.769842
\(682\) −4.13031e15 −0.00157175
\(683\) 2.74346e18 1.03410 0.517052 0.855954i \(-0.327029\pi\)
0.517052 + 0.855954i \(0.327029\pi\)
\(684\) −1.53837e18 −0.574376
\(685\) 0 0
\(686\) 3.71567e17 0.136123
\(687\) −1.40776e18 −0.510869
\(688\) −3.65925e17 −0.131543
\(689\) 1.44575e17 0.0514836
\(690\) 0 0
\(691\) −5.46424e18 −1.90951 −0.954756 0.297390i \(-0.903884\pi\)
−0.954756 + 0.297390i \(0.903884\pi\)
\(692\) 3.54053e17 0.122569
\(693\) −8.55838e15 −0.00293512
\(694\) 1.09146e18 0.370828
\(695\) 0 0
\(696\) 1.15083e18 0.383754
\(697\) 6.36782e17 0.210367
\(698\) −4.98248e17 −0.163074
\(699\) 2.21982e18 0.719808
\(700\) 0 0
\(701\) −5.09836e18 −1.62279 −0.811397 0.584495i \(-0.801293\pi\)
−0.811397 + 0.584495i \(0.801293\pi\)
\(702\) 4.45101e15 0.00140368
\(703\) 6.81621e18 2.12977
\(704\) −6.02909e16 −0.0186651
\(705\) 0 0
\(706\) −1.03901e18 −0.315784
\(707\) 1.15130e18 0.346706
\(708\) 2.35891e18 0.703874
\(709\) −2.21731e18 −0.655580 −0.327790 0.944751i \(-0.606304\pi\)
−0.327790 + 0.944751i \(0.606304\pi\)
\(710\) 0 0
\(711\) −2.47899e17 −0.0719653
\(712\) −2.02085e18 −0.581320
\(713\) 4.14691e17 0.118207
\(714\) −1.12315e17 −0.0317249
\(715\) 0 0
\(716\) −1.36907e18 −0.379743
\(717\) −1.19465e18 −0.328371
\(718\) −1.28515e18 −0.350062
\(719\) 5.05135e18 1.36355 0.681773 0.731563i \(-0.261209\pi\)
0.681773 + 0.731563i \(0.261209\pi\)
\(720\) 0 0
\(721\) 1.18678e18 0.314623
\(722\) 1.71422e18 0.450375
\(723\) 1.70312e17 0.0443452
\(724\) −5.42109e18 −1.39890
\(725\) 0 0
\(726\) 4.60253e17 0.116656
\(727\) −2.06443e18 −0.518594 −0.259297 0.965798i \(-0.583491\pi\)
−0.259297 + 0.965798i \(0.583491\pi\)
\(728\) −2.06599e16 −0.00514367
\(729\) 1.50095e17 0.0370370
\(730\) 0 0
\(731\) 4.66110e17 0.112986
\(732\) −2.32884e18 −0.559522
\(733\) 2.95043e18 0.702603 0.351301 0.936262i \(-0.385739\pi\)
0.351301 + 0.936262i \(0.385739\pi\)
\(734\) 3.87717e17 0.0915147
\(735\) 0 0
\(736\) −9.20335e17 −0.213422
\(737\) −4.26130e16 −0.00979498
\(738\) −8.24104e16 −0.0187766
\(739\) −1.77031e18 −0.399816 −0.199908 0.979815i \(-0.564064\pi\)
−0.199908 + 0.979815i \(0.564064\pi\)
\(740\) 0 0
\(741\) 1.68625e17 0.0374199
\(742\) 4.72133e17 0.103858
\(743\) −8.75773e18 −1.90970 −0.954848 0.297094i \(-0.903983\pi\)
−0.954848 + 0.297094i \(0.903983\pi\)
\(744\) −3.36221e17 −0.0726776
\(745\) 0 0
\(746\) −4.15372e17 −0.0882339
\(747\) −2.53645e18 −0.534124
\(748\) 8.48575e16 0.0177145
\(749\) 1.41372e18 0.292571
\(750\) 0 0
\(751\) 3.32951e18 0.677205 0.338602 0.940930i \(-0.390046\pi\)
0.338602 + 0.940930i \(0.390046\pi\)
\(752\) −2.22507e17 −0.0448671
\(753\) 2.61090e18 0.521944
\(754\) −6.17569e16 −0.0122397
\(755\) 0 0
\(756\) −3.41072e17 −0.0664439
\(757\) −1.11835e17 −0.0216001 −0.0108000 0.999942i \(-0.503438\pi\)
−0.0108000 + 0.999942i \(0.503438\pi\)
\(758\) −6.60685e17 −0.126516
\(759\) 2.76674e16 0.00525287
\(760\) 0 0
\(761\) 1.10635e18 0.206486 0.103243 0.994656i \(-0.467078\pi\)
0.103243 + 0.994656i \(0.467078\pi\)
\(762\) 9.24045e17 0.170996
\(763\) −1.68057e18 −0.308351
\(764\) −5.91165e18 −1.07548
\(765\) 0 0
\(766\) −3.92359e17 −0.0701773
\(767\) −2.58565e17 −0.0458565
\(768\) −2.02186e18 −0.355553
\(769\) 7.10729e18 1.23932 0.619659 0.784871i \(-0.287271\pi\)
0.619659 + 0.784871i \(0.287271\pi\)
\(770\) 0 0
\(771\) 5.54471e18 0.950661
\(772\) 3.28782e18 0.558979
\(773\) −4.57751e18 −0.771724 −0.385862 0.922556i \(-0.626096\pi\)
−0.385862 + 0.922556i \(0.626096\pi\)
\(774\) −6.03226e16 −0.0100847
\(775\) 0 0
\(776\) 4.07709e18 0.670270
\(777\) 1.51122e18 0.246372
\(778\) 1.19485e18 0.193172
\(779\) −3.12208e18 −0.500554
\(780\) 0 0
\(781\) −5.71515e16 −0.00901148
\(782\) 3.63091e17 0.0567768
\(783\) −2.08253e18 −0.322954
\(784\) −4.97504e18 −0.765143
\(785\) 0 0
\(786\) 4.81223e17 0.0727947
\(787\) 8.42386e18 1.26379 0.631896 0.775053i \(-0.282277\pi\)
0.631896 + 0.775053i \(0.282277\pi\)
\(788\) −3.96287e18 −0.589643
\(789\) 5.73106e18 0.845736
\(790\) 0 0
\(791\) −3.49403e18 −0.507201
\(792\) −2.24320e16 −0.00322965
\(793\) 2.55269e17 0.0364521
\(794\) −5.99075e17 −0.0848492
\(795\) 0 0
\(796\) 7.96393e18 1.10967
\(797\) 4.95824e18 0.685249 0.342625 0.939472i \(-0.388684\pi\)
0.342625 + 0.939472i \(0.388684\pi\)
\(798\) 5.50670e17 0.0754871
\(799\) 2.83426e17 0.0385377
\(800\) 0 0
\(801\) 3.65691e18 0.489218
\(802\) 6.71897e17 0.0891598
\(803\) 1.97952e17 0.0260560
\(804\) −1.69823e18 −0.221734
\(805\) 0 0
\(806\) 1.80425e16 0.00231803
\(807\) 4.40646e18 0.561580
\(808\) 3.01762e18 0.381497
\(809\) −2.91720e18 −0.365848 −0.182924 0.983127i \(-0.558556\pi\)
−0.182924 + 0.983127i \(0.558556\pi\)
\(810\) 0 0
\(811\) 2.27898e18 0.281258 0.140629 0.990062i \(-0.455088\pi\)
0.140629 + 0.990062i \(0.455088\pi\)
\(812\) 4.73231e18 0.579374
\(813\) 8.32659e18 1.01130
\(814\) 4.86590e16 0.00586280
\(815\) 0 0
\(816\) 3.23152e18 0.383195
\(817\) −2.28529e18 −0.268843
\(818\) 4.35016e15 0.000507702 0
\(819\) 3.73857e16 0.00432873
\(820\) 0 0
\(821\) −9.35907e18 −1.06660 −0.533301 0.845926i \(-0.679049\pi\)
−0.533301 + 0.845926i \(0.679049\pi\)
\(822\) 1.12913e18 0.127666
\(823\) 1.20581e19 1.35264 0.676319 0.736609i \(-0.263574\pi\)
0.676319 + 0.736609i \(0.263574\pi\)
\(824\) 3.11063e18 0.346195
\(825\) 0 0
\(826\) −8.44386e17 −0.0925062
\(827\) 7.53213e18 0.818714 0.409357 0.912374i \(-0.365753\pi\)
0.409357 + 0.912374i \(0.365753\pi\)
\(828\) 1.10261e18 0.118912
\(829\) 1.09464e19 1.17130 0.585649 0.810565i \(-0.300840\pi\)
0.585649 + 0.810565i \(0.300840\pi\)
\(830\) 0 0
\(831\) −1.20995e18 −0.127456
\(832\) 2.63370e17 0.0275274
\(833\) 6.33714e18 0.657205
\(834\) −1.65162e17 −0.0169954
\(835\) 0 0
\(836\) −4.16048e17 −0.0421505
\(837\) 6.08420e17 0.0611629
\(838\) −1.97166e18 −0.196674
\(839\) −1.38440e19 −1.37028 −0.685139 0.728413i \(-0.740258\pi\)
−0.685139 + 0.728413i \(0.740258\pi\)
\(840\) 0 0
\(841\) 1.86341e19 1.81607
\(842\) −8.17677e16 −0.00790775
\(843\) 9.34826e18 0.897122
\(844\) −5.25259e18 −0.500204
\(845\) 0 0
\(846\) −3.66802e16 −0.00343973
\(847\) 3.86584e18 0.359751
\(848\) −1.35842e19 −1.25447
\(849\) −1.13253e19 −1.03789
\(850\) 0 0
\(851\) −4.88546e18 −0.440923
\(852\) −2.27763e18 −0.203998
\(853\) −1.10709e19 −0.984039 −0.492020 0.870584i \(-0.663741\pi\)
−0.492020 + 0.870584i \(0.663741\pi\)
\(854\) 8.33622e17 0.0735348
\(855\) 0 0
\(856\) 3.70545e18 0.321930
\(857\) 3.38629e18 0.291977 0.145989 0.989286i \(-0.453364\pi\)
0.145989 + 0.989286i \(0.453364\pi\)
\(858\) 1.20376e15 0.000103009 0
\(859\) 5.43237e18 0.461354 0.230677 0.973030i \(-0.425906\pi\)
0.230677 + 0.973030i \(0.425906\pi\)
\(860\) 0 0
\(861\) −6.92196e17 −0.0579040
\(862\) −4.35575e18 −0.361631
\(863\) −1.86531e18 −0.153703 −0.0768513 0.997043i \(-0.524487\pi\)
−0.0768513 + 0.997043i \(0.524487\pi\)
\(864\) −1.35028e18 −0.110430
\(865\) 0 0
\(866\) −2.78752e17 −0.0224570
\(867\) 3.10418e18 0.248212
\(868\) −1.38256e18 −0.109725
\(869\) −6.70437e16 −0.00528116
\(870\) 0 0
\(871\) 1.86147e17 0.0144457
\(872\) −4.40487e18 −0.339294
\(873\) −7.37784e18 −0.564075
\(874\) −1.78020e18 −0.135097
\(875\) 0 0
\(876\) 7.88887e18 0.589845
\(877\) −1.78738e19 −1.32654 −0.663269 0.748381i \(-0.730831\pi\)
−0.663269 + 0.748381i \(0.730831\pi\)
\(878\) −2.68501e18 −0.197803
\(879\) 1.13991e19 0.833568
\(880\) 0 0
\(881\) 3.72462e18 0.268372 0.134186 0.990956i \(-0.457158\pi\)
0.134186 + 0.990956i \(0.457158\pi\)
\(882\) −8.20134e17 −0.0586596
\(883\) 1.78621e19 1.26820 0.634102 0.773250i \(-0.281370\pi\)
0.634102 + 0.773250i \(0.281370\pi\)
\(884\) −3.70685e17 −0.0261255
\(885\) 0 0
\(886\) −3.31009e18 −0.229890
\(887\) −1.20818e19 −0.832967 −0.416483 0.909143i \(-0.636738\pi\)
−0.416483 + 0.909143i \(0.636738\pi\)
\(888\) 3.96101e18 0.271095
\(889\) 7.76141e18 0.527326
\(890\) 0 0
\(891\) 4.05927e16 0.00271796
\(892\) −5.21985e18 −0.346965
\(893\) −1.38961e18 −0.0916978
\(894\) 1.35472e18 0.0887474
\(895\) 0 0
\(896\) 4.05920e18 0.262083
\(897\) −1.20860e17 −0.00774697
\(898\) −5.24444e18 −0.333736
\(899\) −8.44170e18 −0.533325
\(900\) 0 0
\(901\) 1.73033e19 1.07750
\(902\) −2.22877e16 −0.00137791
\(903\) −5.06672e17 −0.0310997
\(904\) −9.15808e18 −0.558097
\(905\) 0 0
\(906\) 8.35150e17 0.0501685
\(907\) 1.97495e19 1.17790 0.588951 0.808168i \(-0.299541\pi\)
0.588951 + 0.808168i \(0.299541\pi\)
\(908\) −2.15971e19 −1.27890
\(909\) −5.46064e18 −0.321054
\(910\) 0 0
\(911\) −2.11213e19 −1.22420 −0.612100 0.790781i \(-0.709675\pi\)
−0.612100 + 0.790781i \(0.709675\pi\)
\(912\) −1.58438e19 −0.911787
\(913\) −6.85975e17 −0.0391966
\(914\) −3.67002e18 −0.208218
\(915\) 0 0
\(916\) −1.51728e19 −0.848683
\(917\) 4.04197e18 0.224488
\(918\) 5.32714e17 0.0293776
\(919\) −2.23735e18 −0.122513 −0.0612566 0.998122i \(-0.519511\pi\)
−0.0612566 + 0.998122i \(0.519511\pi\)
\(920\) 0 0
\(921\) −3.45491e18 −0.186530
\(922\) −1.28723e18 −0.0690092
\(923\) 2.49656e17 0.0132902
\(924\) −9.22421e16 −0.00487597
\(925\) 0 0
\(926\) −3.14531e18 −0.163943
\(927\) −5.62894e18 −0.291345
\(928\) 1.87349e19 0.962919
\(929\) 2.69207e19 1.37399 0.686996 0.726662i \(-0.258929\pi\)
0.686996 + 0.726662i \(0.258929\pi\)
\(930\) 0 0
\(931\) −3.10704e19 −1.56377
\(932\) 2.39252e19 1.19578
\(933\) 1.63298e19 0.810497
\(934\) −9.83900e17 −0.0484949
\(935\) 0 0
\(936\) 9.79904e16 0.00476311
\(937\) −1.74551e19 −0.842588 −0.421294 0.906924i \(-0.638424\pi\)
−0.421294 + 0.906924i \(0.638424\pi\)
\(938\) 6.07894e17 0.0291413
\(939\) −1.81374e18 −0.0863474
\(940\) 0 0
\(941\) −2.30287e19 −1.08128 −0.540638 0.841255i \(-0.681817\pi\)
−0.540638 + 0.841255i \(0.681817\pi\)
\(942\) −4.62807e18 −0.215809
\(943\) 2.23772e18 0.103629
\(944\) 2.42946e19 1.11736
\(945\) 0 0
\(946\) −1.63141e16 −0.000740065 0
\(947\) 2.31518e18 0.104306 0.0521532 0.998639i \(-0.483392\pi\)
0.0521532 + 0.998639i \(0.483392\pi\)
\(948\) −2.67186e18 −0.119553
\(949\) −8.64718e17 −0.0384277
\(950\) 0 0
\(951\) −5.12229e17 −0.0224538
\(952\) −2.47265e18 −0.107652
\(953\) −1.88776e19 −0.816288 −0.408144 0.912917i \(-0.633824\pi\)
−0.408144 + 0.912917i \(0.633824\pi\)
\(954\) −2.23934e18 −0.0961737
\(955\) 0 0
\(956\) −1.28759e19 −0.545508
\(957\) −5.63215e17 −0.0236999
\(958\) 2.66627e18 0.111437
\(959\) 9.48398e18 0.393704
\(960\) 0 0
\(961\) −2.19513e19 −0.898996
\(962\) −2.12558e17 −0.00864650
\(963\) −6.70532e18 −0.270925
\(964\) 1.83562e18 0.0736686
\(965\) 0 0
\(966\) −3.94688e17 −0.0156280
\(967\) −3.58183e18 −0.140875 −0.0704374 0.997516i \(-0.522439\pi\)
−0.0704374 + 0.997516i \(0.522439\pi\)
\(968\) 1.01326e19 0.395851
\(969\) 2.01816e19 0.783162
\(970\) 0 0
\(971\) 3.44871e19 1.32048 0.660240 0.751055i \(-0.270455\pi\)
0.660240 + 0.751055i \(0.270455\pi\)
\(972\) 1.61772e18 0.0615279
\(973\) −1.38726e18 −0.0524112
\(974\) −4.03572e18 −0.151456
\(975\) 0 0
\(976\) −2.39849e19 −0.888206
\(977\) −1.61246e19 −0.593162 −0.296581 0.955008i \(-0.595846\pi\)
−0.296581 + 0.955008i \(0.595846\pi\)
\(978\) −5.72883e18 −0.209345
\(979\) 9.89000e17 0.0359012
\(980\) 0 0
\(981\) 7.97098e18 0.285537
\(982\) −4.46164e17 −0.0158770
\(983\) 1.25333e19 0.443065 0.221532 0.975153i \(-0.428894\pi\)
0.221532 + 0.975153i \(0.428894\pi\)
\(984\) −1.81429e18 −0.0637146
\(985\) 0 0
\(986\) −7.39130e18 −0.256166
\(987\) −3.08091e17 −0.0106076
\(988\) 1.81743e18 0.0621639
\(989\) 1.63796e18 0.0556581
\(990\) 0 0
\(991\) −5.10124e18 −0.171079 −0.0855396 0.996335i \(-0.527261\pi\)
−0.0855396 + 0.996335i \(0.527261\pi\)
\(992\) −5.47348e18 −0.182363
\(993\) −2.18615e19 −0.723618
\(994\) 8.15292e17 0.0268103
\(995\) 0 0
\(996\) −2.73378e19 −0.887315
\(997\) −2.50551e18 −0.0807939 −0.0403969 0.999184i \(-0.512862\pi\)
−0.0403969 + 0.999184i \(0.512862\pi\)
\(998\) 4.66108e18 0.149327
\(999\) −7.16778e18 −0.228144
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.14.a.c.1.2 2
5.2 odd 4 75.14.b.e.49.3 4
5.3 odd 4 75.14.b.e.49.2 4
5.4 even 2 15.14.a.c.1.1 2
15.14 odd 2 45.14.a.b.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.14.a.c.1.1 2 5.4 even 2
45.14.a.b.1.2 2 15.14 odd 2
75.14.a.c.1.2 2 1.1 even 1 trivial
75.14.b.e.49.2 4 5.3 odd 4
75.14.b.e.49.3 4 5.2 odd 4