Properties

Label 75.14.a.c.1.1
Level $75$
Weight $14$
Character 75.1
Self dual yes
Analytic conductor $80.423$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,14,Mod(1,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-131] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.4231967139\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3121}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 780 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(28.4330\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-149.299 q^{2} -729.000 q^{3} +14098.2 q^{4} +108839. q^{6} -384225. q^{7} -881782. q^{8} +531441. q^{9} +6.10216e6 q^{11} -1.02776e7 q^{12} -1.13332e6 q^{13} +5.73644e7 q^{14} +1.61570e7 q^{16} +2.69912e7 q^{17} -7.93435e7 q^{18} -3.29943e8 q^{19} +2.80100e8 q^{21} -9.11046e8 q^{22} -4.70204e8 q^{23} +6.42819e8 q^{24} +1.69203e8 q^{26} -3.87420e8 q^{27} -5.41687e9 q^{28} -4.24890e9 q^{29} +7.67054e9 q^{31} +4.81134e9 q^{32} -4.44848e9 q^{33} -4.02976e9 q^{34} +7.49234e9 q^{36} +2.83184e10 q^{37} +4.92601e10 q^{38} +8.26190e8 q^{39} -2.11336e10 q^{41} -4.18187e10 q^{42} +6.93928e10 q^{43} +8.60292e10 q^{44} +7.02010e10 q^{46} -1.01233e11 q^{47} -1.17784e10 q^{48} +5.07401e10 q^{49} -1.96766e10 q^{51} -1.59777e10 q^{52} +1.81846e11 q^{53} +5.78414e10 q^{54} +3.38803e11 q^{56} +2.40528e11 q^{57} +6.34357e11 q^{58} +3.10938e11 q^{59} +1.76596e11 q^{61} -1.14520e12 q^{62} -2.04193e11 q^{63} -8.50686e11 q^{64} +6.64152e11 q^{66} -6.25757e10 q^{67} +3.80526e11 q^{68} +3.42779e11 q^{69} +1.13419e12 q^{71} -4.68615e11 q^{72} +1.17191e11 q^{73} -4.22790e12 q^{74} -4.65158e12 q^{76} -2.34461e12 q^{77} -1.23349e11 q^{78} +3.99281e12 q^{79} +2.82430e11 q^{81} +3.15523e12 q^{82} -8.58275e11 q^{83} +3.94890e12 q^{84} -1.03603e13 q^{86} +3.09745e12 q^{87} -5.38077e12 q^{88} -9.67991e11 q^{89} +4.35450e11 q^{91} -6.62901e12 q^{92} -5.59183e12 q^{93} +1.51139e13 q^{94} -3.50747e12 q^{96} -2.50052e12 q^{97} -7.57544e12 q^{98} +3.24294e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 131 q^{2} - 1458 q^{3} + 6241 q^{4} + 95499 q^{6} - 496272 q^{7} - 1175463 q^{8} + 1062882 q^{9} + 6245888 q^{11} - 4549689 q^{12} - 1761164 q^{13} + 55314084 q^{14} + 75148705 q^{16} - 48151604 q^{17}+ \cdots + 3319320964608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −149.299 −1.64954 −0.824768 0.565472i \(-0.808694\pi\)
−0.824768 + 0.565472i \(0.808694\pi\)
\(3\) −729.000 −0.577350
\(4\) 14098.2 1.72097
\(5\) 0 0
\(6\) 108839. 0.952359
\(7\) −384225. −1.23438 −0.617190 0.786814i \(-0.711729\pi\)
−0.617190 + 0.786814i \(0.711729\pi\)
\(8\) −881782. −1.18926
\(9\) 531441. 0.333333
\(10\) 0 0
\(11\) 6.10216e6 1.03856 0.519280 0.854604i \(-0.326200\pi\)
0.519280 + 0.854604i \(0.326200\pi\)
\(12\) −1.02776e7 −0.993600
\(13\) −1.13332e6 −0.0651209 −0.0325605 0.999470i \(-0.510366\pi\)
−0.0325605 + 0.999470i \(0.510366\pi\)
\(14\) 5.73644e7 2.03615
\(15\) 0 0
\(16\) 1.61570e7 0.240757
\(17\) 2.69912e7 0.271209 0.135605 0.990763i \(-0.456702\pi\)
0.135605 + 0.990763i \(0.456702\pi\)
\(18\) −7.93435e7 −0.549845
\(19\) −3.29943e8 −1.60894 −0.804471 0.593992i \(-0.797551\pi\)
−0.804471 + 0.593992i \(0.797551\pi\)
\(20\) 0 0
\(21\) 2.80100e8 0.712669
\(22\) −9.11046e8 −1.71314
\(23\) −4.70204e8 −0.662301 −0.331151 0.943578i \(-0.607437\pi\)
−0.331151 + 0.943578i \(0.607437\pi\)
\(24\) 6.42819e8 0.686619
\(25\) 0 0
\(26\) 1.69203e8 0.107419
\(27\) −3.87420e8 −0.192450
\(28\) −5.41687e9 −2.12433
\(29\) −4.24890e9 −1.32645 −0.663224 0.748421i \(-0.730812\pi\)
−0.663224 + 0.748421i \(0.730812\pi\)
\(30\) 0 0
\(31\) 7.67054e9 1.55230 0.776149 0.630550i \(-0.217170\pi\)
0.776149 + 0.630550i \(0.217170\pi\)
\(32\) 4.81134e9 0.792121
\(33\) −4.44848e9 −0.599612
\(34\) −4.02976e9 −0.447369
\(35\) 0 0
\(36\) 7.49234e9 0.573655
\(37\) 2.83184e10 1.81450 0.907251 0.420590i \(-0.138177\pi\)
0.907251 + 0.420590i \(0.138177\pi\)
\(38\) 4.92601e10 2.65401
\(39\) 8.26190e8 0.0375976
\(40\) 0 0
\(41\) −2.11336e10 −0.694831 −0.347415 0.937711i \(-0.612941\pi\)
−0.347415 + 0.937711i \(0.612941\pi\)
\(42\) −4.18187e10 −1.17557
\(43\) 6.93928e10 1.67405 0.837026 0.547162i \(-0.184292\pi\)
0.837026 + 0.547162i \(0.184292\pi\)
\(44\) 8.60292e10 1.78732
\(45\) 0 0
\(46\) 7.02010e10 1.09249
\(47\) −1.01233e11 −1.36989 −0.684943 0.728597i \(-0.740173\pi\)
−0.684943 + 0.728597i \(0.740173\pi\)
\(48\) −1.17784e10 −0.139001
\(49\) 5.07401e10 0.523693
\(50\) 0 0
\(51\) −1.96766e10 −0.156583
\(52\) −1.59777e10 −0.112071
\(53\) 1.81846e11 1.12697 0.563484 0.826127i \(-0.309461\pi\)
0.563484 + 0.826127i \(0.309461\pi\)
\(54\) 5.78414e10 0.317453
\(55\) 0 0
\(56\) 3.38803e11 1.46800
\(57\) 2.40528e11 0.928923
\(58\) 6.34357e11 2.18802
\(59\) 3.10938e11 0.959701 0.479850 0.877350i \(-0.340691\pi\)
0.479850 + 0.877350i \(0.340691\pi\)
\(60\) 0 0
\(61\) 1.76596e11 0.438870 0.219435 0.975627i \(-0.429579\pi\)
0.219435 + 0.975627i \(0.429579\pi\)
\(62\) −1.14520e12 −2.56057
\(63\) −2.04193e11 −0.411460
\(64\) −8.50686e11 −1.54739
\(65\) 0 0
\(66\) 6.64152e11 0.989082
\(67\) −6.25757e10 −0.0845123 −0.0422561 0.999107i \(-0.513455\pi\)
−0.0422561 + 0.999107i \(0.513455\pi\)
\(68\) 3.80526e11 0.466742
\(69\) 3.42779e11 0.382380
\(70\) 0 0
\(71\) 1.13419e12 1.05076 0.525382 0.850867i \(-0.323923\pi\)
0.525382 + 0.850867i \(0.323923\pi\)
\(72\) −4.68615e11 −0.396419
\(73\) 1.17191e11 0.0906350 0.0453175 0.998973i \(-0.485570\pi\)
0.0453175 + 0.998973i \(0.485570\pi\)
\(74\) −4.22790e12 −2.99308
\(75\) 0 0
\(76\) −4.65158e12 −2.76893
\(77\) −2.34461e12 −1.28198
\(78\) −1.23349e11 −0.0620185
\(79\) 3.99281e12 1.84800 0.924002 0.382387i \(-0.124898\pi\)
0.924002 + 0.382387i \(0.124898\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) 3.15523e12 1.14615
\(83\) −8.58275e11 −0.288150 −0.144075 0.989567i \(-0.546021\pi\)
−0.144075 + 0.989567i \(0.546021\pi\)
\(84\) 3.94890e12 1.22648
\(85\) 0 0
\(86\) −1.03603e13 −2.76141
\(87\) 3.09745e12 0.765825
\(88\) −5.38077e12 −1.23512
\(89\) −9.67991e11 −0.206460 −0.103230 0.994657i \(-0.532918\pi\)
−0.103230 + 0.994657i \(0.532918\pi\)
\(90\) 0 0
\(91\) 4.35450e11 0.0803839
\(92\) −6.62901e12 −1.13980
\(93\) −5.59183e12 −0.896220
\(94\) 1.51139e13 2.25967
\(95\) 0 0
\(96\) −3.50747e12 −0.457331
\(97\) −2.50052e12 −0.304799 −0.152400 0.988319i \(-0.548700\pi\)
−0.152400 + 0.988319i \(0.548700\pi\)
\(98\) −7.57544e12 −0.863850
\(99\) 3.24294e12 0.346186
\(100\) 0 0
\(101\) −3.51016e12 −0.329032 −0.164516 0.986374i \(-0.552606\pi\)
−0.164516 + 0.986374i \(0.552606\pi\)
\(102\) 2.93769e12 0.258289
\(103\) 1.08186e13 0.892747 0.446373 0.894847i \(-0.352715\pi\)
0.446373 + 0.894847i \(0.352715\pi\)
\(104\) 9.99340e11 0.0774456
\(105\) 0 0
\(106\) −2.71495e13 −1.85897
\(107\) −1.49010e13 −0.959892 −0.479946 0.877298i \(-0.659344\pi\)
−0.479946 + 0.877298i \(0.659344\pi\)
\(108\) −5.46191e12 −0.331200
\(109\) −2.01251e13 −1.14939 −0.574694 0.818369i \(-0.694879\pi\)
−0.574694 + 0.818369i \(0.694879\pi\)
\(110\) 0 0
\(111\) −2.06441e13 −1.04760
\(112\) −6.20791e12 −0.297186
\(113\) −2.87905e13 −1.30088 −0.650442 0.759556i \(-0.725417\pi\)
−0.650442 + 0.759556i \(0.725417\pi\)
\(114\) −3.59106e13 −1.53229
\(115\) 0 0
\(116\) −5.99017e13 −2.28277
\(117\) −6.02292e11 −0.0217070
\(118\) −4.64227e13 −1.58306
\(119\) −1.03707e13 −0.334775
\(120\) 0 0
\(121\) 2.71366e12 0.0786051
\(122\) −2.63655e13 −0.723932
\(123\) 1.54064e13 0.401161
\(124\) 1.08140e14 2.67145
\(125\) 0 0
\(126\) 3.04858e13 0.678718
\(127\) −7.01983e13 −1.48458 −0.742288 0.670081i \(-0.766259\pi\)
−0.742288 + 0.670081i \(0.766259\pi\)
\(128\) 8.75919e13 1.76035
\(129\) −5.05873e13 −0.966515
\(130\) 0 0
\(131\) 9.26965e13 1.60251 0.801254 0.598325i \(-0.204167\pi\)
0.801254 + 0.598325i \(0.204167\pi\)
\(132\) −6.27153e13 −1.03191
\(133\) 1.26772e14 1.98604
\(134\) 9.34249e12 0.139406
\(135\) 0 0
\(136\) −2.38004e13 −0.322538
\(137\) 4.89202e13 0.632127 0.316064 0.948738i \(-0.397639\pi\)
0.316064 + 0.948738i \(0.397639\pi\)
\(138\) −5.11765e13 −0.630749
\(139\) 4.48733e13 0.527706 0.263853 0.964563i \(-0.415007\pi\)
0.263853 + 0.964563i \(0.415007\pi\)
\(140\) 0 0
\(141\) 7.37986e13 0.790904
\(142\) −1.69333e14 −1.73327
\(143\) −6.91570e12 −0.0676319
\(144\) 8.58647e12 0.0802525
\(145\) 0 0
\(146\) −1.74965e13 −0.149506
\(147\) −3.69895e13 −0.302354
\(148\) 3.99237e14 3.12270
\(149\) 1.30203e14 0.974789 0.487395 0.873182i \(-0.337947\pi\)
0.487395 + 0.873182i \(0.337947\pi\)
\(150\) 0 0
\(151\) −1.94653e14 −1.33632 −0.668160 0.744018i \(-0.732918\pi\)
−0.668160 + 0.744018i \(0.732918\pi\)
\(152\) 2.90938e14 1.91345
\(153\) 1.43442e13 0.0904031
\(154\) 3.50047e14 2.11466
\(155\) 0 0
\(156\) 1.16477e13 0.0647041
\(157\) 7.93587e13 0.422909 0.211454 0.977388i \(-0.432180\pi\)
0.211454 + 0.977388i \(0.432180\pi\)
\(158\) −5.96123e14 −3.04835
\(159\) −1.32566e14 −0.650655
\(160\) 0 0
\(161\) 1.80664e14 0.817531
\(162\) −4.21664e13 −0.183282
\(163\) 1.62086e14 0.676904 0.338452 0.940984i \(-0.390097\pi\)
0.338452 + 0.940984i \(0.390097\pi\)
\(164\) −2.97945e14 −1.19578
\(165\) 0 0
\(166\) 1.28139e14 0.475314
\(167\) −2.62269e14 −0.935600 −0.467800 0.883834i \(-0.654953\pi\)
−0.467800 + 0.883834i \(0.654953\pi\)
\(168\) −2.46987e14 −0.847548
\(169\) −3.01591e14 −0.995759
\(170\) 0 0
\(171\) −1.75345e14 −0.536314
\(172\) 9.78310e14 2.88099
\(173\) −7.87595e13 −0.223359 −0.111679 0.993744i \(-0.535623\pi\)
−0.111679 + 0.993744i \(0.535623\pi\)
\(174\) −4.62446e14 −1.26325
\(175\) 0 0
\(176\) 9.85923e13 0.250041
\(177\) −2.26674e14 −0.554083
\(178\) 1.44520e14 0.340563
\(179\) −7.53329e14 −1.71175 −0.855874 0.517184i \(-0.826980\pi\)
−0.855874 + 0.517184i \(0.826980\pi\)
\(180\) 0 0
\(181\) −4.79674e14 −1.01399 −0.506997 0.861948i \(-0.669245\pi\)
−0.506997 + 0.861948i \(0.669245\pi\)
\(182\) −6.50122e13 −0.132596
\(183\) −1.28738e14 −0.253382
\(184\) 4.14618e14 0.787647
\(185\) 0 0
\(186\) 8.34853e14 1.47835
\(187\) 1.64705e14 0.281667
\(188\) −1.42719e15 −2.35753
\(189\) 1.48857e14 0.237556
\(190\) 0 0
\(191\) 4.70960e14 0.701888 0.350944 0.936397i \(-0.385861\pi\)
0.350944 + 0.936397i \(0.385861\pi\)
\(192\) 6.20150e14 0.893385
\(193\) 1.24350e14 0.173191 0.0865954 0.996244i \(-0.472401\pi\)
0.0865954 + 0.996244i \(0.472401\pi\)
\(194\) 3.73324e14 0.502777
\(195\) 0 0
\(196\) 7.15342e14 0.901258
\(197\) 4.20205e12 0.00512190 0.00256095 0.999997i \(-0.499185\pi\)
0.00256095 + 0.999997i \(0.499185\pi\)
\(198\) −4.84167e14 −0.571047
\(199\) 1.09925e15 1.25474 0.627370 0.778722i \(-0.284132\pi\)
0.627370 + 0.778722i \(0.284132\pi\)
\(200\) 0 0
\(201\) 4.56177e13 0.0487932
\(202\) 5.24063e14 0.542749
\(203\) 1.63254e15 1.63734
\(204\) −2.77404e14 −0.269474
\(205\) 0 0
\(206\) −1.61520e15 −1.47262
\(207\) −2.49886e14 −0.220767
\(208\) −1.83110e13 −0.0156783
\(209\) −2.01336e15 −1.67098
\(210\) 0 0
\(211\) −4.43736e14 −0.346170 −0.173085 0.984907i \(-0.555373\pi\)
−0.173085 + 0.984907i \(0.555373\pi\)
\(212\) 2.56370e15 1.93947
\(213\) −8.26822e14 −0.606659
\(214\) 2.22471e15 1.58337
\(215\) 0 0
\(216\) 3.41620e14 0.228873
\(217\) −2.94722e15 −1.91613
\(218\) 3.00466e15 1.89595
\(219\) −8.54323e13 −0.0523281
\(220\) 0 0
\(221\) −3.05897e13 −0.0176614
\(222\) 3.08214e15 1.72806
\(223\) 2.15493e15 1.17342 0.586708 0.809799i \(-0.300424\pi\)
0.586708 + 0.809799i \(0.300424\pi\)
\(224\) −1.84864e15 −0.977777
\(225\) 0 0
\(226\) 4.29838e15 2.14586
\(227\) −3.86902e15 −1.87686 −0.938431 0.345466i \(-0.887721\pi\)
−0.938431 + 0.345466i \(0.887721\pi\)
\(228\) 3.39100e15 1.59864
\(229\) −1.09844e15 −0.503324 −0.251662 0.967815i \(-0.580977\pi\)
−0.251662 + 0.967815i \(0.580977\pi\)
\(230\) 0 0
\(231\) 1.70922e15 0.740149
\(232\) 3.74661e15 1.57749
\(233\) −4.34127e15 −1.77747 −0.888737 0.458417i \(-0.848417\pi\)
−0.888737 + 0.458417i \(0.848417\pi\)
\(234\) 8.99216e13 0.0358064
\(235\) 0 0
\(236\) 4.38365e15 1.65161
\(237\) −2.91076e15 −1.06695
\(238\) 1.54834e15 0.552224
\(239\) −1.70803e15 −0.592801 −0.296400 0.955064i \(-0.595786\pi\)
−0.296400 + 0.955064i \(0.595786\pi\)
\(240\) 0 0
\(241\) 2.87167e15 0.944114 0.472057 0.881568i \(-0.343512\pi\)
0.472057 + 0.881568i \(0.343512\pi\)
\(242\) −4.05146e14 −0.129662
\(243\) −2.05891e14 −0.0641500
\(244\) 2.48967e15 0.755281
\(245\) 0 0
\(246\) −2.30016e15 −0.661729
\(247\) 3.73931e14 0.104776
\(248\) −6.76374e15 −1.84608
\(249\) 6.25683e14 0.166364
\(250\) 0 0
\(251\) −9.41402e14 −0.237627 −0.118813 0.992917i \(-0.537909\pi\)
−0.118813 + 0.992917i \(0.537909\pi\)
\(252\) −2.87875e15 −0.708108
\(253\) −2.86926e15 −0.687839
\(254\) 1.04805e16 2.44886
\(255\) 0 0
\(256\) −6.10855e15 −1.35637
\(257\) 3.31316e15 0.717260 0.358630 0.933480i \(-0.383244\pi\)
0.358630 + 0.933480i \(0.383244\pi\)
\(258\) 7.55263e15 1.59430
\(259\) −1.08806e16 −2.23978
\(260\) 0 0
\(261\) −2.25804e15 −0.442149
\(262\) −1.38395e16 −2.64339
\(263\) 3.12580e15 0.582437 0.291219 0.956657i \(-0.405939\pi\)
0.291219 + 0.956657i \(0.405939\pi\)
\(264\) 3.92258e15 0.713094
\(265\) 0 0
\(266\) −1.89270e16 −3.27605
\(267\) 7.05666e14 0.119200
\(268\) −8.82202e14 −0.145443
\(269\) 2.51897e15 0.405352 0.202676 0.979246i \(-0.435036\pi\)
0.202676 + 0.979246i \(0.435036\pi\)
\(270\) 0 0
\(271\) −9.26522e14 −0.142087 −0.0710436 0.997473i \(-0.522633\pi\)
−0.0710436 + 0.997473i \(0.522633\pi\)
\(272\) 4.36096e14 0.0652957
\(273\) −3.17443e14 −0.0464097
\(274\) −7.30373e15 −1.04272
\(275\) 0 0
\(276\) 4.83255e15 0.658063
\(277\) 4.03418e14 0.0536583 0.0268292 0.999640i \(-0.491459\pi\)
0.0268292 + 0.999640i \(0.491459\pi\)
\(278\) −6.69953e15 −0.870469
\(279\) 4.07644e15 0.517433
\(280\) 0 0
\(281\) −8.56272e15 −1.03758 −0.518789 0.854903i \(-0.673617\pi\)
−0.518789 + 0.854903i \(0.673617\pi\)
\(282\) −1.10180e16 −1.30462
\(283\) 3.74874e15 0.433784 0.216892 0.976196i \(-0.430408\pi\)
0.216892 + 0.976196i \(0.430408\pi\)
\(284\) 1.59899e16 1.80833
\(285\) 0 0
\(286\) 1.03251e15 0.111561
\(287\) 8.12008e15 0.857685
\(288\) 2.55694e15 0.264040
\(289\) −9.17605e15 −0.926445
\(290\) 0 0
\(291\) 1.82288e15 0.175976
\(292\) 1.65218e15 0.155980
\(293\) −2.47408e15 −0.228441 −0.114221 0.993455i \(-0.536437\pi\)
−0.114221 + 0.993455i \(0.536437\pi\)
\(294\) 5.52250e15 0.498744
\(295\) 0 0
\(296\) −2.49706e16 −2.15791
\(297\) −2.36410e15 −0.199871
\(298\) −1.94392e16 −1.60795
\(299\) 5.32892e14 0.0431297
\(300\) 0 0
\(301\) −2.66625e16 −2.06642
\(302\) 2.90614e16 2.20431
\(303\) 2.55891e15 0.189967
\(304\) −5.33087e15 −0.387365
\(305\) 0 0
\(306\) −2.14158e15 −0.149123
\(307\) −3.12228e15 −0.212849 −0.106425 0.994321i \(-0.533940\pi\)
−0.106425 + 0.994321i \(0.533940\pi\)
\(308\) −3.30546e16 −2.20624
\(309\) −7.88675e15 −0.515428
\(310\) 0 0
\(311\) 8.71900e15 0.546417 0.273209 0.961955i \(-0.411915\pi\)
0.273209 + 0.961955i \(0.411915\pi\)
\(312\) −7.28519e14 −0.0447132
\(313\) −1.94308e16 −1.16803 −0.584013 0.811744i \(-0.698518\pi\)
−0.584013 + 0.811744i \(0.698518\pi\)
\(314\) −1.18482e16 −0.697603
\(315\) 0 0
\(316\) 5.62913e16 3.18035
\(317\) −2.73728e16 −1.51508 −0.757538 0.652791i \(-0.773598\pi\)
−0.757538 + 0.652791i \(0.773598\pi\)
\(318\) 1.97920e16 1.07328
\(319\) −2.59275e16 −1.37759
\(320\) 0 0
\(321\) 1.08629e16 0.554194
\(322\) −2.69730e16 −1.34855
\(323\) −8.90556e15 −0.436360
\(324\) 3.98173e15 0.191218
\(325\) 0 0
\(326\) −2.41993e16 −1.11658
\(327\) 1.46712e16 0.663599
\(328\) 1.86352e16 0.826333
\(329\) 3.88961e16 1.69096
\(330\) 0 0
\(331\) 1.48805e16 0.621923 0.310961 0.950423i \(-0.399349\pi\)
0.310961 + 0.950423i \(0.399349\pi\)
\(332\) −1.21001e16 −0.495897
\(333\) 1.50496e16 0.604834
\(334\) 3.91565e16 1.54330
\(335\) 0 0
\(336\) 4.52557e15 0.171580
\(337\) 9.51124e15 0.353706 0.176853 0.984237i \(-0.443408\pi\)
0.176853 + 0.984237i \(0.443408\pi\)
\(338\) 4.50271e16 1.64254
\(339\) 2.09883e16 0.751066
\(340\) 0 0
\(341\) 4.68069e16 1.61215
\(342\) 2.61788e16 0.884668
\(343\) 1.77316e16 0.587943
\(344\) −6.11893e16 −1.99088
\(345\) 0 0
\(346\) 1.17587e16 0.368438
\(347\) −2.02295e16 −0.622076 −0.311038 0.950398i \(-0.600677\pi\)
−0.311038 + 0.950398i \(0.600677\pi\)
\(348\) 4.36683e16 1.31796
\(349\) 8.80222e15 0.260751 0.130376 0.991465i \(-0.458382\pi\)
0.130376 + 0.991465i \(0.458382\pi\)
\(350\) 0 0
\(351\) 4.39071e14 0.0125325
\(352\) 2.93596e16 0.822664
\(353\) −1.67276e16 −0.460148 −0.230074 0.973173i \(-0.573897\pi\)
−0.230074 + 0.973173i \(0.573897\pi\)
\(354\) 3.38421e16 0.913980
\(355\) 0 0
\(356\) −1.36469e16 −0.355311
\(357\) 7.56025e15 0.193283
\(358\) 1.12471e17 2.82359
\(359\) −7.94820e16 −1.95954 −0.979772 0.200119i \(-0.935867\pi\)
−0.979772 + 0.200119i \(0.935867\pi\)
\(360\) 0 0
\(361\) 6.68093e16 1.58869
\(362\) 7.16148e16 1.67262
\(363\) −1.97826e15 −0.0453827
\(364\) 6.13904e15 0.138338
\(365\) 0 0
\(366\) 1.92205e16 0.417962
\(367\) 6.97003e16 1.48904 0.744518 0.667602i \(-0.232679\pi\)
0.744518 + 0.667602i \(0.232679\pi\)
\(368\) −7.59707e15 −0.159454
\(369\) −1.12313e16 −0.231610
\(370\) 0 0
\(371\) −6.98700e16 −1.39111
\(372\) −7.88344e16 −1.54236
\(373\) −2.07893e16 −0.399698 −0.199849 0.979827i \(-0.564045\pi\)
−0.199849 + 0.979827i \(0.564045\pi\)
\(374\) −2.45902e16 −0.464619
\(375\) 0 0
\(376\) 8.92650e16 1.62915
\(377\) 4.81537e15 0.0863795
\(378\) −2.22241e16 −0.391858
\(379\) 7.77269e16 1.34715 0.673576 0.739118i \(-0.264757\pi\)
0.673576 + 0.739118i \(0.264757\pi\)
\(380\) 0 0
\(381\) 5.11746e16 0.857120
\(382\) −7.03139e16 −1.15779
\(383\) −6.62740e16 −1.07288 −0.536440 0.843938i \(-0.680231\pi\)
−0.536440 + 0.843938i \(0.680231\pi\)
\(384\) −6.38545e16 −1.01634
\(385\) 0 0
\(386\) −1.85654e16 −0.285684
\(387\) 3.68782e16 0.558018
\(388\) −3.52527e16 −0.524549
\(389\) −3.03230e15 −0.0443711 −0.0221855 0.999754i \(-0.507062\pi\)
−0.0221855 + 0.999754i \(0.507062\pi\)
\(390\) 0 0
\(391\) −1.26914e16 −0.179622
\(392\) −4.47417e16 −0.622806
\(393\) −6.75758e16 −0.925208
\(394\) −6.27362e14 −0.00844876
\(395\) 0 0
\(396\) 4.57194e16 0.595775
\(397\) −3.47691e16 −0.445712 −0.222856 0.974851i \(-0.571538\pi\)
−0.222856 + 0.974851i \(0.571538\pi\)
\(398\) −1.64118e17 −2.06974
\(399\) −9.24171e16 −1.14664
\(400\) 0 0
\(401\) 4.47291e16 0.537220 0.268610 0.963249i \(-0.413436\pi\)
0.268610 + 0.963249i \(0.413436\pi\)
\(402\) −6.81067e15 −0.0804861
\(403\) −8.69317e15 −0.101087
\(404\) −4.94867e16 −0.566252
\(405\) 0 0
\(406\) −2.43736e17 −2.70085
\(407\) 1.72803e17 1.88447
\(408\) 1.73505e16 0.186217
\(409\) 4.58740e16 0.484579 0.242290 0.970204i \(-0.422102\pi\)
0.242290 + 0.970204i \(0.422102\pi\)
\(410\) 0 0
\(411\) −3.56628e16 −0.364959
\(412\) 1.52522e17 1.53639
\(413\) −1.19470e17 −1.18463
\(414\) 3.73077e16 0.364163
\(415\) 0 0
\(416\) −5.45279e15 −0.0515836
\(417\) −3.27126e16 −0.304671
\(418\) 3.00593e17 2.75634
\(419\) 7.04588e16 0.636128 0.318064 0.948069i \(-0.396967\pi\)
0.318064 + 0.948069i \(0.396967\pi\)
\(420\) 0 0
\(421\) −2.11625e16 −0.185239 −0.0926196 0.995702i \(-0.529524\pi\)
−0.0926196 + 0.995702i \(0.529524\pi\)
\(422\) 6.62493e16 0.571019
\(423\) −5.37991e16 −0.456628
\(424\) −1.60349e17 −1.34026
\(425\) 0 0
\(426\) 1.23444e17 1.00070
\(427\) −6.78526e16 −0.541733
\(428\) −2.10077e17 −1.65194
\(429\) 5.04154e15 0.0390473
\(430\) 0 0
\(431\) 4.09241e16 0.307523 0.153761 0.988108i \(-0.450861\pi\)
0.153761 + 0.988108i \(0.450861\pi\)
\(432\) −6.25954e15 −0.0463338
\(433\) −8.57212e16 −0.625053 −0.312527 0.949909i \(-0.601175\pi\)
−0.312527 + 0.949909i \(0.601175\pi\)
\(434\) 4.40016e17 3.16072
\(435\) 0 0
\(436\) −2.83727e17 −1.97806
\(437\) 1.55141e17 1.06560
\(438\) 1.27549e16 0.0863171
\(439\) 3.70635e16 0.247131 0.123565 0.992336i \(-0.460567\pi\)
0.123565 + 0.992336i \(0.460567\pi\)
\(440\) 0 0
\(441\) 2.69654e16 0.174564
\(442\) 4.56700e15 0.0291331
\(443\) 1.55015e16 0.0974431 0.0487215 0.998812i \(-0.484485\pi\)
0.0487215 + 0.998812i \(0.484485\pi\)
\(444\) −2.91044e17 −1.80289
\(445\) 0 0
\(446\) −3.21729e17 −1.93559
\(447\) −9.49181e16 −0.562795
\(448\) 3.26855e17 1.91006
\(449\) −2.75973e17 −1.58952 −0.794759 0.606925i \(-0.792403\pi\)
−0.794759 + 0.606925i \(0.792403\pi\)
\(450\) 0 0
\(451\) −1.28961e17 −0.721623
\(452\) −4.05892e17 −2.23878
\(453\) 1.41902e17 0.771524
\(454\) 5.77640e17 3.09595
\(455\) 0 0
\(456\) −2.12093e17 −1.10473
\(457\) −2.05141e17 −1.05341 −0.526703 0.850049i \(-0.676572\pi\)
−0.526703 + 0.850049i \(0.676572\pi\)
\(458\) 1.63997e17 0.830250
\(459\) −1.04570e16 −0.0521943
\(460\) 0 0
\(461\) 2.29523e17 1.11370 0.556852 0.830612i \(-0.312009\pi\)
0.556852 + 0.830612i \(0.312009\pi\)
\(462\) −2.55184e17 −1.22090
\(463\) −1.90465e17 −0.898544 −0.449272 0.893395i \(-0.648317\pi\)
−0.449272 + 0.893395i \(0.648317\pi\)
\(464\) −6.86493e16 −0.319352
\(465\) 0 0
\(466\) 6.48147e17 2.93201
\(467\) 1.67739e17 0.748297 0.374148 0.927369i \(-0.377935\pi\)
0.374148 + 0.927369i \(0.377935\pi\)
\(468\) −8.49121e15 −0.0373570
\(469\) 2.40432e16 0.104320
\(470\) 0 0
\(471\) −5.78525e16 −0.244166
\(472\) −2.74179e17 −1.14133
\(473\) 4.23446e17 1.73860
\(474\) 4.34573e17 1.75996
\(475\) 0 0
\(476\) −1.46208e17 −0.576137
\(477\) 9.66406e16 0.375656
\(478\) 2.55007e17 0.977845
\(479\) −3.71727e17 −1.40619 −0.703095 0.711096i \(-0.748199\pi\)
−0.703095 + 0.711096i \(0.748199\pi\)
\(480\) 0 0
\(481\) −3.20938e16 −0.118162
\(482\) −4.28738e17 −1.55735
\(483\) −1.31704e17 −0.472002
\(484\) 3.82576e16 0.135277
\(485\) 0 0
\(486\) 3.07393e16 0.105818
\(487\) −4.87760e16 −0.165679 −0.0828397 0.996563i \(-0.526399\pi\)
−0.0828397 + 0.996563i \(0.526399\pi\)
\(488\) −1.55719e17 −0.521930
\(489\) −1.18161e17 −0.390810
\(490\) 0 0
\(491\) −6.19444e16 −0.199513 −0.0997567 0.995012i \(-0.531806\pi\)
−0.0997567 + 0.995012i \(0.531806\pi\)
\(492\) 2.17202e17 0.690384
\(493\) −1.14683e17 −0.359745
\(494\) −5.58274e16 −0.172831
\(495\) 0 0
\(496\) 1.23933e17 0.373727
\(497\) −4.35783e17 −1.29704
\(498\) −9.34137e16 −0.274423
\(499\) −2.79726e17 −0.811108 −0.405554 0.914071i \(-0.632921\pi\)
−0.405554 + 0.914071i \(0.632921\pi\)
\(500\) 0 0
\(501\) 1.91194e17 0.540169
\(502\) 1.40550e17 0.391974
\(503\) −3.38759e17 −0.932609 −0.466304 0.884624i \(-0.654415\pi\)
−0.466304 + 0.884624i \(0.654415\pi\)
\(504\) 1.80054e17 0.489332
\(505\) 0 0
\(506\) 4.28378e17 1.13461
\(507\) 2.19860e17 0.574902
\(508\) −9.89666e17 −2.55490
\(509\) −3.81496e17 −0.972354 −0.486177 0.873860i \(-0.661609\pi\)
−0.486177 + 0.873860i \(0.661609\pi\)
\(510\) 0 0
\(511\) −4.50278e16 −0.111878
\(512\) 1.94447e17 0.477032
\(513\) 1.27827e17 0.309641
\(514\) −4.94651e17 −1.18315
\(515\) 0 0
\(516\) −7.13188e17 −1.66334
\(517\) −6.17738e17 −1.42271
\(518\) 1.62447e18 3.69460
\(519\) 5.74157e16 0.128956
\(520\) 0 0
\(521\) −3.97604e17 −0.870975 −0.435487 0.900195i \(-0.643424\pi\)
−0.435487 + 0.900195i \(0.643424\pi\)
\(522\) 3.37123e17 0.729340
\(523\) −6.78177e16 −0.144905 −0.0724523 0.997372i \(-0.523082\pi\)
−0.0724523 + 0.997372i \(0.523082\pi\)
\(524\) 1.30685e18 2.75786
\(525\) 0 0
\(526\) −4.66679e17 −0.960750
\(527\) 2.07037e17 0.420998
\(528\) −7.18738e16 −0.144361
\(529\) −2.82944e17 −0.561357
\(530\) 0 0
\(531\) 1.65245e17 0.319900
\(532\) 1.78726e18 3.41792
\(533\) 2.39511e16 0.0452480
\(534\) −1.05355e17 −0.196624
\(535\) 0 0
\(536\) 5.51781e16 0.100507
\(537\) 5.49177e17 0.988278
\(538\) −3.76079e17 −0.668643
\(539\) 3.09624e17 0.543886
\(540\) 0 0
\(541\) −9.53886e17 −1.63574 −0.817870 0.575403i \(-0.804845\pi\)
−0.817870 + 0.575403i \(0.804845\pi\)
\(542\) 1.38329e17 0.234378
\(543\) 3.49683e17 0.585430
\(544\) 1.29864e17 0.214830
\(545\) 0 0
\(546\) 4.73939e16 0.0765544
\(547\) −5.54825e17 −0.885601 −0.442800 0.896620i \(-0.646015\pi\)
−0.442800 + 0.896620i \(0.646015\pi\)
\(548\) 6.89684e17 1.08787
\(549\) 9.38502e16 0.146290
\(550\) 0 0
\(551\) 1.40190e18 2.13418
\(552\) −3.02256e17 −0.454748
\(553\) −1.53414e18 −2.28114
\(554\) −6.02299e16 −0.0885113
\(555\) 0 0
\(556\) 6.32630e17 0.908163
\(557\) −8.83747e17 −1.25392 −0.626959 0.779052i \(-0.715701\pi\)
−0.626959 + 0.779052i \(0.715701\pi\)
\(558\) −6.08608e17 −0.853523
\(559\) −7.86442e16 −0.109016
\(560\) 0 0
\(561\) −1.20070e17 −0.162620
\(562\) 1.27840e18 1.71152
\(563\) −1.34034e18 −1.77383 −0.886913 0.461937i \(-0.847154\pi\)
−0.886913 + 0.461937i \(0.847154\pi\)
\(564\) 1.04042e18 1.36112
\(565\) 0 0
\(566\) −5.59682e17 −0.715541
\(567\) −1.08517e17 −0.137153
\(568\) −1.00010e18 −1.24963
\(569\) −2.62408e16 −0.0324151 −0.0162075 0.999869i \(-0.505159\pi\)
−0.0162075 + 0.999869i \(0.505159\pi\)
\(570\) 0 0
\(571\) 6.67128e17 0.805517 0.402758 0.915306i \(-0.368051\pi\)
0.402758 + 0.915306i \(0.368051\pi\)
\(572\) −9.74986e16 −0.116392
\(573\) −3.43330e17 −0.405235
\(574\) −1.21232e18 −1.41478
\(575\) 0 0
\(576\) −4.52089e17 −0.515796
\(577\) 1.37034e17 0.154591 0.0772955 0.997008i \(-0.475372\pi\)
0.0772955 + 0.997008i \(0.475372\pi\)
\(578\) 1.36997e18 1.52820
\(579\) −9.06515e16 −0.0999918
\(580\) 0 0
\(581\) 3.29771e17 0.355687
\(582\) −2.72153e17 −0.290278
\(583\) 1.10966e18 1.17042
\(584\) −1.03337e17 −0.107788
\(585\) 0 0
\(586\) 3.69378e17 0.376822
\(587\) −1.19496e17 −0.120561 −0.0602805 0.998181i \(-0.519200\pi\)
−0.0602805 + 0.998181i \(0.519200\pi\)
\(588\) −5.21484e17 −0.520342
\(589\) −2.53084e18 −2.49756
\(590\) 0 0
\(591\) −3.06330e15 −0.00295713
\(592\) 4.57539e17 0.436855
\(593\) 1.87526e18 1.77095 0.885475 0.464687i \(-0.153833\pi\)
0.885475 + 0.464687i \(0.153833\pi\)
\(594\) 3.52958e17 0.329694
\(595\) 0 0
\(596\) 1.83562e18 1.67758
\(597\) −8.01357e17 −0.724424
\(598\) −7.95601e16 −0.0711439
\(599\) −5.19643e17 −0.459654 −0.229827 0.973231i \(-0.573816\pi\)
−0.229827 + 0.973231i \(0.573816\pi\)
\(600\) 0 0
\(601\) 5.26704e17 0.455913 0.227957 0.973671i \(-0.426796\pi\)
0.227957 + 0.973671i \(0.426796\pi\)
\(602\) 3.98067e18 3.40863
\(603\) −3.32553e16 −0.0281708
\(604\) −2.74424e18 −2.29976
\(605\) 0 0
\(606\) −3.82042e17 −0.313356
\(607\) −1.87571e18 −1.52209 −0.761043 0.648701i \(-0.775312\pi\)
−0.761043 + 0.648701i \(0.775312\pi\)
\(608\) −1.58747e18 −1.27448
\(609\) −1.19012e18 −0.945318
\(610\) 0 0
\(611\) 1.14729e17 0.0892082
\(612\) 2.02227e17 0.155581
\(613\) 4.47233e17 0.340440 0.170220 0.985406i \(-0.445552\pi\)
0.170220 + 0.985406i \(0.445552\pi\)
\(614\) 4.66152e17 0.351102
\(615\) 0 0
\(616\) 2.06743e18 1.52460
\(617\) 8.44420e17 0.616176 0.308088 0.951358i \(-0.400311\pi\)
0.308088 + 0.951358i \(0.400311\pi\)
\(618\) 1.17748e18 0.850216
\(619\) 2.36925e18 1.69286 0.846430 0.532500i \(-0.178747\pi\)
0.846430 + 0.532500i \(0.178747\pi\)
\(620\) 0 0
\(621\) 1.82167e17 0.127460
\(622\) −1.30174e18 −0.901334
\(623\) 3.71927e17 0.254850
\(624\) 1.33487e16 0.00905190
\(625\) 0 0
\(626\) 2.90100e18 1.92670
\(627\) 1.46774e18 0.964741
\(628\) 1.11881e18 0.727811
\(629\) 7.64348e17 0.492110
\(630\) 0 0
\(631\) −2.91193e18 −1.83649 −0.918247 0.396009i \(-0.870395\pi\)
−0.918247 + 0.396009i \(0.870395\pi\)
\(632\) −3.52079e18 −2.19775
\(633\) 3.23484e17 0.199861
\(634\) 4.08673e18 2.49917
\(635\) 0 0
\(636\) −1.86894e18 −1.11976
\(637\) −5.75048e16 −0.0341034
\(638\) 3.87095e18 2.27239
\(639\) 6.02753e17 0.350255
\(640\) 0 0
\(641\) −3.49512e17 −0.199014 −0.0995072 0.995037i \(-0.531727\pi\)
−0.0995072 + 0.995037i \(0.531727\pi\)
\(642\) −1.62181e18 −0.914162
\(643\) 3.11686e18 1.73919 0.869593 0.493769i \(-0.164381\pi\)
0.869593 + 0.493769i \(0.164381\pi\)
\(644\) 2.54703e18 1.40694
\(645\) 0 0
\(646\) 1.32959e18 0.719791
\(647\) −1.99766e18 −1.07064 −0.535321 0.844649i \(-0.679809\pi\)
−0.535321 + 0.844649i \(0.679809\pi\)
\(648\) −2.49041e17 −0.132140
\(649\) 1.89739e18 0.996706
\(650\) 0 0
\(651\) 2.14852e18 1.10628
\(652\) 2.28512e18 1.16493
\(653\) 1.08626e18 0.548276 0.274138 0.961690i \(-0.411607\pi\)
0.274138 + 0.961690i \(0.411607\pi\)
\(654\) −2.19040e18 −1.09463
\(655\) 0 0
\(656\) −3.41455e17 −0.167286
\(657\) 6.22801e16 0.0302117
\(658\) −5.80715e18 −2.78930
\(659\) −1.64776e17 −0.0783678 −0.0391839 0.999232i \(-0.512476\pi\)
−0.0391839 + 0.999232i \(0.512476\pi\)
\(660\) 0 0
\(661\) −4.20993e18 −1.96320 −0.981601 0.190942i \(-0.938846\pi\)
−0.981601 + 0.190942i \(0.938846\pi\)
\(662\) −2.22165e18 −1.02588
\(663\) 2.22999e16 0.0101968
\(664\) 7.56811e17 0.342685
\(665\) 0 0
\(666\) −2.24688e18 −0.997695
\(667\) 1.99785e18 0.878508
\(668\) −3.69751e18 −1.61013
\(669\) −1.57094e18 −0.677472
\(670\) 0 0
\(671\) 1.07762e18 0.455793
\(672\) 1.34766e18 0.564520
\(673\) 2.30935e18 0.958057 0.479029 0.877799i \(-0.340989\pi\)
0.479029 + 0.877799i \(0.340989\pi\)
\(674\) −1.42002e18 −0.583451
\(675\) 0 0
\(676\) −4.25187e18 −1.71367
\(677\) 4.16216e18 1.66147 0.830736 0.556667i \(-0.187920\pi\)
0.830736 + 0.556667i \(0.187920\pi\)
\(678\) −3.13352e18 −1.23891
\(679\) 9.60762e17 0.376238
\(680\) 0 0
\(681\) 2.82051e18 1.08361
\(682\) −6.98822e18 −2.65930
\(683\) 5.67684e17 0.213979 0.106990 0.994260i \(-0.465879\pi\)
0.106990 + 0.994260i \(0.465879\pi\)
\(684\) −2.47204e18 −0.922978
\(685\) 0 0
\(686\) −2.64730e18 −0.969833
\(687\) 8.00766e17 0.290594
\(688\) 1.12118e18 0.403041
\(689\) −2.06090e17 −0.0733892
\(690\) 0 0
\(691\) 1.60571e18 0.561126 0.280563 0.959836i \(-0.409479\pi\)
0.280563 + 0.959836i \(0.409479\pi\)
\(692\) −1.11036e18 −0.384393
\(693\) −1.24602e18 −0.427325
\(694\) 3.02024e18 1.02614
\(695\) 0 0
\(696\) −2.73128e18 −0.910763
\(697\) −5.70423e17 −0.188445
\(698\) −1.31416e18 −0.430119
\(699\) 3.16479e18 1.02623
\(700\) 0 0
\(701\) −2.88624e18 −0.918681 −0.459341 0.888260i \(-0.651914\pi\)
−0.459341 + 0.888260i \(0.651914\pi\)
\(702\) −6.55528e16 −0.0206728
\(703\) −9.34345e18 −2.91943
\(704\) −5.19102e18 −1.60705
\(705\) 0 0
\(706\) 2.49741e18 0.759030
\(707\) 1.34869e18 0.406150
\(708\) −3.19568e18 −0.953558
\(709\) 3.41704e18 1.01030 0.505150 0.863032i \(-0.331437\pi\)
0.505150 + 0.863032i \(0.331437\pi\)
\(710\) 0 0
\(711\) 2.12195e18 0.616002
\(712\) 8.53557e17 0.245535
\(713\) −3.60672e18 −1.02809
\(714\) −1.12874e18 −0.318826
\(715\) 0 0
\(716\) −1.06205e19 −2.94586
\(717\) 1.24515e18 0.342254
\(718\) 1.18666e19 3.23234
\(719\) −4.01107e18 −1.08274 −0.541368 0.840786i \(-0.682093\pi\)
−0.541368 + 0.840786i \(0.682093\pi\)
\(720\) 0 0
\(721\) −4.15677e18 −1.10199
\(722\) −9.97455e18 −2.62060
\(723\) −2.09345e18 −0.545084
\(724\) −6.76252e18 −1.74505
\(725\) 0 0
\(726\) 2.95352e17 0.0748603
\(727\) 2.32433e18 0.583881 0.291941 0.956436i \(-0.405699\pi\)
0.291941 + 0.956436i \(0.405699\pi\)
\(728\) −3.83972e17 −0.0955973
\(729\) 1.50095e17 0.0370370
\(730\) 0 0
\(731\) 1.87300e18 0.454019
\(732\) −1.81497e18 −0.436062
\(733\) 2.96621e17 0.0706359 0.0353180 0.999376i \(-0.488756\pi\)
0.0353180 + 0.999376i \(0.488756\pi\)
\(734\) −1.04062e19 −2.45622
\(735\) 0 0
\(736\) −2.26231e18 −0.524622
\(737\) −3.81847e17 −0.0877710
\(738\) 1.67682e18 0.382049
\(739\) 8.38574e18 1.89388 0.946940 0.321410i \(-0.104157\pi\)
0.946940 + 0.321410i \(0.104157\pi\)
\(740\) 0 0
\(741\) −2.72595e17 −0.0604923
\(742\) 1.04315e19 2.29468
\(743\) −1.06547e18 −0.232335 −0.116168 0.993230i \(-0.537061\pi\)
−0.116168 + 0.993230i \(0.537061\pi\)
\(744\) 4.93077e18 1.06584
\(745\) 0 0
\(746\) 3.10382e18 0.659316
\(747\) −4.56123e17 −0.0960501
\(748\) 2.32203e18 0.484739
\(749\) 5.72536e18 1.18487
\(750\) 0 0
\(751\) −9.57457e18 −1.94742 −0.973710 0.227792i \(-0.926849\pi\)
−0.973710 + 0.227792i \(0.926849\pi\)
\(752\) −1.63561e18 −0.329810
\(753\) 6.86282e17 0.137194
\(754\) −7.18929e17 −0.142486
\(755\) 0 0
\(756\) 2.09861e18 0.408827
\(757\) −4.59607e18 −0.887695 −0.443847 0.896102i \(-0.646387\pi\)
−0.443847 + 0.896102i \(0.646387\pi\)
\(758\) −1.16045e19 −2.22217
\(759\) 2.09169e18 0.397124
\(760\) 0 0
\(761\) 3.11769e18 0.581879 0.290940 0.956741i \(-0.406032\pi\)
0.290940 + 0.956741i \(0.406032\pi\)
\(762\) −7.64030e18 −1.41385
\(763\) 7.73258e18 1.41878
\(764\) 6.63967e18 1.20792
\(765\) 0 0
\(766\) 9.89464e18 1.76975
\(767\) −3.52392e17 −0.0624966
\(768\) 4.45313e18 0.783101
\(769\) 4.30427e18 0.750547 0.375274 0.926914i \(-0.377549\pi\)
0.375274 + 0.926914i \(0.377549\pi\)
\(770\) 0 0
\(771\) −2.41529e18 −0.414110
\(772\) 1.75311e18 0.298056
\(773\) 6.51519e18 1.09840 0.549200 0.835691i \(-0.314933\pi\)
0.549200 + 0.835691i \(0.314933\pi\)
\(774\) −5.50587e18 −0.920470
\(775\) 0 0
\(776\) 2.20491e18 0.362485
\(777\) 7.93199e18 1.29314
\(778\) 4.52719e17 0.0731916
\(779\) 6.97289e18 1.11794
\(780\) 0 0
\(781\) 6.92099e18 1.09128
\(782\) 1.89481e18 0.296293
\(783\) 1.64611e18 0.255275
\(784\) 8.19806e17 0.126083
\(785\) 0 0
\(786\) 1.00890e19 1.52616
\(787\) 7.49401e18 1.12429 0.562145 0.827039i \(-0.309976\pi\)
0.562145 + 0.827039i \(0.309976\pi\)
\(788\) 5.92412e16 0.00881462
\(789\) −2.27871e18 −0.336270
\(790\) 0 0
\(791\) 1.10620e19 1.60579
\(792\) −2.85956e18 −0.411705
\(793\) −2.00139e17 −0.0285796
\(794\) 5.19098e18 0.735218
\(795\) 0 0
\(796\) 1.54975e19 2.15936
\(797\) 8.43590e18 1.16588 0.582938 0.812516i \(-0.301903\pi\)
0.582938 + 0.812516i \(0.301903\pi\)
\(798\) 1.37978e19 1.89143
\(799\) −2.73239e18 −0.371526
\(800\) 0 0
\(801\) −5.14430e17 −0.0688201
\(802\) −6.67801e18 −0.886163
\(803\) 7.15119e17 0.0941298
\(804\) 6.43125e17 0.0839714
\(805\) 0 0
\(806\) 1.29788e18 0.166747
\(807\) −1.83633e18 −0.234030
\(808\) 3.09519e18 0.391304
\(809\) −2.98965e18 −0.374934 −0.187467 0.982271i \(-0.560028\pi\)
−0.187467 + 0.982271i \(0.560028\pi\)
\(810\) 0 0
\(811\) −1.10858e19 −1.36814 −0.684072 0.729415i \(-0.739792\pi\)
−0.684072 + 0.729415i \(0.739792\pi\)
\(812\) 2.30157e19 2.81780
\(813\) 6.75434e17 0.0820341
\(814\) −2.57993e19 −3.10849
\(815\) 0 0
\(816\) −3.17914e17 −0.0376985
\(817\) −2.28956e19 −2.69345
\(818\) −6.84893e18 −0.799330
\(819\) 2.31416e17 0.0267946
\(820\) 0 0
\(821\) 1.97742e18 0.225356 0.112678 0.993632i \(-0.464057\pi\)
0.112678 + 0.993632i \(0.464057\pi\)
\(822\) 5.32442e18 0.602012
\(823\) 1.12620e19 1.26333 0.631665 0.775242i \(-0.282372\pi\)
0.631665 + 0.775242i \(0.282372\pi\)
\(824\) −9.53963e18 −1.06171
\(825\) 0 0
\(826\) 1.78368e19 1.95410
\(827\) 1.16025e19 1.26115 0.630574 0.776129i \(-0.282819\pi\)
0.630574 + 0.776129i \(0.282819\pi\)
\(828\) −3.52293e18 −0.379933
\(829\) −4.67038e18 −0.499745 −0.249872 0.968279i \(-0.580389\pi\)
−0.249872 + 0.968279i \(0.580389\pi\)
\(830\) 0 0
\(831\) −2.94092e17 −0.0309797
\(832\) 9.64098e17 0.100767
\(833\) 1.36954e18 0.142030
\(834\) 4.88396e18 0.502565
\(835\) 0 0
\(836\) −2.83847e19 −2.87570
\(837\) −2.97173e18 −0.298740
\(838\) −1.05194e19 −1.04931
\(839\) −8.73017e17 −0.0864112 −0.0432056 0.999066i \(-0.513757\pi\)
−0.0432056 + 0.999066i \(0.513757\pi\)
\(840\) 0 0
\(841\) 7.79256e18 0.759462
\(842\) 3.15953e18 0.305559
\(843\) 6.24222e18 0.599046
\(844\) −6.25586e18 −0.595746
\(845\) 0 0
\(846\) 8.03215e18 0.753225
\(847\) −1.04266e18 −0.0970285
\(848\) 2.93808e18 0.271326
\(849\) −2.73283e18 −0.250445
\(850\) 0 0
\(851\) −1.33154e19 −1.20175
\(852\) −1.16567e19 −1.04404
\(853\) −1.24079e19 −1.10288 −0.551442 0.834213i \(-0.685922\pi\)
−0.551442 + 0.834213i \(0.685922\pi\)
\(854\) 1.01303e19 0.893607
\(855\) 0 0
\(856\) 1.31395e19 1.14156
\(857\) −7.04934e18 −0.607817 −0.303909 0.952701i \(-0.598292\pi\)
−0.303909 + 0.952701i \(0.598292\pi\)
\(858\) −7.52697e17 −0.0644099
\(859\) −2.37855e17 −0.0202003 −0.0101001 0.999949i \(-0.503215\pi\)
−0.0101001 + 0.999949i \(0.503215\pi\)
\(860\) 0 0
\(861\) −5.91953e18 −0.495185
\(862\) −6.10992e18 −0.507269
\(863\) −1.21210e19 −0.998774 −0.499387 0.866379i \(-0.666441\pi\)
−0.499387 + 0.866379i \(0.666441\pi\)
\(864\) −1.86401e18 −0.152444
\(865\) 0 0
\(866\) 1.27981e19 1.03105
\(867\) 6.68934e18 0.534884
\(868\) −4.15503e19 −3.29759
\(869\) 2.43648e19 1.91926
\(870\) 0 0
\(871\) 7.09183e16 0.00550352
\(872\) 1.77460e19 1.36692
\(873\) −1.32888e18 −0.101600
\(874\) −2.31623e19 −1.75775
\(875\) 0 0
\(876\) −1.20444e18 −0.0900549
\(877\) 3.74100e18 0.277645 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(878\) −5.53354e18 −0.407651
\(879\) 1.80361e18 0.131891
\(880\) 0 0
\(881\) −1.36085e19 −0.980544 −0.490272 0.871570i \(-0.663102\pi\)
−0.490272 + 0.871570i \(0.663102\pi\)
\(882\) −4.02590e18 −0.287950
\(883\) −9.87005e18 −0.700769 −0.350384 0.936606i \(-0.613949\pi\)
−0.350384 + 0.936606i \(0.613949\pi\)
\(884\) −4.31258e17 −0.0303947
\(885\) 0 0
\(886\) −2.31436e18 −0.160736
\(887\) −1.35100e19 −0.931432 −0.465716 0.884934i \(-0.654203\pi\)
−0.465716 + 0.884934i \(0.654203\pi\)
\(888\) 1.82036e19 1.24587
\(889\) 2.69720e19 1.83253
\(890\) 0 0
\(891\) 1.72343e18 0.115395
\(892\) 3.03805e19 2.01941
\(893\) 3.34010e19 2.20407
\(894\) 1.41712e19 0.928350
\(895\) 0 0
\(896\) −3.36550e19 −2.17294
\(897\) −3.88478e17 −0.0249009
\(898\) 4.12025e19 2.62197
\(899\) −3.25914e19 −2.05904
\(900\) 0 0
\(901\) 4.90826e18 0.305644
\(902\) 1.92537e19 1.19034
\(903\) 1.94369e19 1.19305
\(904\) 2.53869e19 1.54709
\(905\) 0 0
\(906\) −2.11858e19 −1.27266
\(907\) 7.78812e18 0.464500 0.232250 0.972656i \(-0.425391\pi\)
0.232250 + 0.972656i \(0.425391\pi\)
\(908\) −5.45460e19 −3.23002
\(909\) −1.86544e18 −0.109677
\(910\) 0 0
\(911\) 6.24185e17 0.0361779 0.0180890 0.999836i \(-0.494242\pi\)
0.0180890 + 0.999836i \(0.494242\pi\)
\(912\) 3.88621e18 0.223645
\(913\) −5.23733e18 −0.299261
\(914\) 3.06272e19 1.73763
\(915\) 0 0
\(916\) −1.54860e19 −0.866203
\(917\) −3.56164e19 −1.97810
\(918\) 1.56121e18 0.0860963
\(919\) −3.08457e19 −1.68906 −0.844528 0.535511i \(-0.820119\pi\)
−0.844528 + 0.535511i \(0.820119\pi\)
\(920\) 0 0
\(921\) 2.27614e18 0.122888
\(922\) −3.42675e19 −1.83709
\(923\) −1.28539e18 −0.0684267
\(924\) 2.40968e19 1.27377
\(925\) 0 0
\(926\) 2.84363e19 1.48218
\(927\) 5.74944e18 0.297582
\(928\) −2.04429e19 −1.05071
\(929\) −2.60942e19 −1.33181 −0.665905 0.746037i \(-0.731954\pi\)
−0.665905 + 0.746037i \(0.731954\pi\)
\(930\) 0 0
\(931\) −1.67413e19 −0.842592
\(932\) −6.12039e19 −3.05897
\(933\) −6.35615e18 −0.315474
\(934\) −2.50432e19 −1.23434
\(935\) 0 0
\(936\) 5.31090e17 0.0258152
\(937\) 1.43219e19 0.691340 0.345670 0.938356i \(-0.387652\pi\)
0.345670 + 0.938356i \(0.387652\pi\)
\(938\) −3.58962e18 −0.172080
\(939\) 1.41651e19 0.674361
\(940\) 0 0
\(941\) −6.74040e18 −0.316485 −0.158242 0.987400i \(-0.550583\pi\)
−0.158242 + 0.987400i \(0.550583\pi\)
\(942\) 8.63731e18 0.402761
\(943\) 9.93712e18 0.460187
\(944\) 5.02381e18 0.231055
\(945\) 0 0
\(946\) −6.32200e19 −2.86789
\(947\) 4.26475e18 0.192140 0.0960701 0.995375i \(-0.469373\pi\)
0.0960701 + 0.995375i \(0.469373\pi\)
\(948\) −4.10364e19 −1.83618
\(949\) −1.32815e17 −0.00590223
\(950\) 0 0
\(951\) 1.99548e19 0.874729
\(952\) 9.14471e18 0.398134
\(953\) −2.39618e17 −0.0103613 −0.00518067 0.999987i \(-0.501649\pi\)
−0.00518067 + 0.999987i \(0.501649\pi\)
\(954\) −1.44283e19 −0.619658
\(955\) 0 0
\(956\) −2.40800e19 −1.02019
\(957\) 1.89011e19 0.795354
\(958\) 5.54985e19 2.31956
\(959\) −1.87964e19 −0.780285
\(960\) 0 0
\(961\) 3.44197e19 1.40963
\(962\) 4.79157e18 0.194912
\(963\) −7.91903e18 −0.319964
\(964\) 4.04853e19 1.62479
\(965\) 0 0
\(966\) 1.96633e19 0.778584
\(967\) −1.50588e19 −0.592268 −0.296134 0.955146i \(-0.595698\pi\)
−0.296134 + 0.955146i \(0.595698\pi\)
\(968\) −2.39286e18 −0.0934817
\(969\) 6.49215e18 0.251933
\(970\) 0 0
\(971\) 1.51669e19 0.580728 0.290364 0.956916i \(-0.406224\pi\)
0.290364 + 0.956916i \(0.406224\pi\)
\(972\) −2.90268e18 −0.110400
\(973\) −1.72415e19 −0.651389
\(974\) 7.28221e18 0.273294
\(975\) 0 0
\(976\) 2.85325e18 0.105661
\(977\) −5.43050e18 −0.199768 −0.0998838 0.994999i \(-0.531847\pi\)
−0.0998838 + 0.994999i \(0.531847\pi\)
\(978\) 1.76413e19 0.644656
\(979\) −5.90684e18 −0.214421
\(980\) 0 0
\(981\) −1.06953e19 −0.383129
\(982\) 9.24822e18 0.329104
\(983\) 4.45646e19 1.57540 0.787702 0.616057i \(-0.211271\pi\)
0.787702 + 0.616057i \(0.211271\pi\)
\(984\) −1.35851e19 −0.477084
\(985\) 0 0
\(986\) 1.71221e19 0.593412
\(987\) −2.83553e19 −0.976275
\(988\) 5.27173e18 0.180315
\(989\) −3.26288e19 −1.10873
\(990\) 0 0
\(991\) 8.11044e18 0.271998 0.135999 0.990709i \(-0.456576\pi\)
0.135999 + 0.990709i \(0.456576\pi\)
\(992\) 3.69056e19 1.22961
\(993\) −1.08479e19 −0.359067
\(994\) 6.50619e19 2.13951
\(995\) 0 0
\(996\) 8.82097e18 0.286306
\(997\) −3.75569e19 −1.21107 −0.605537 0.795817i \(-0.707042\pi\)
−0.605537 + 0.795817i \(0.707042\pi\)
\(998\) 4.17627e19 1.33795
\(999\) −1.09711e19 −0.349201
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.14.a.c.1.1 2
5.2 odd 4 75.14.b.e.49.1 4
5.3 odd 4 75.14.b.e.49.4 4
5.4 even 2 15.14.a.c.1.2 2
15.14 odd 2 45.14.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.14.a.c.1.2 2 5.4 even 2
45.14.a.b.1.1 2 15.14 odd 2
75.14.a.c.1.1 2 1.1 even 1 trivial
75.14.b.e.49.1 4 5.2 odd 4
75.14.b.e.49.4 4 5.3 odd 4