Properties

Label 75.12.a.c.1.1
Level $75$
Weight $12$
Character 75.1
Self dual yes
Analytic conductor $57.626$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,12,Mod(1,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6257385420\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1801}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 450 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(21.7191\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.7191 q^{2} +243.000 q^{3} -1831.35 q^{4} -3576.74 q^{6} -79941.2 q^{7} +57100.5 q^{8} +59049.0 q^{9} +805067. q^{11} -445018. q^{12} +1.19767e6 q^{13} +1.17666e6 q^{14} +2.91013e6 q^{16} -2.63319e6 q^{17} -869148. q^{18} +1.16061e7 q^{19} -1.94257e7 q^{21} -1.18499e7 q^{22} -1.84216e7 q^{23} +1.38754e7 q^{24} -1.76286e7 q^{26} +1.43489e7 q^{27} +1.46400e8 q^{28} -1.90527e8 q^{29} +1.01127e8 q^{31} -1.59776e8 q^{32} +1.95631e8 q^{33} +3.87581e7 q^{34} -1.08139e8 q^{36} -8.06675e7 q^{37} -1.70831e8 q^{38} +2.91034e8 q^{39} +2.26316e8 q^{41} +2.85929e8 q^{42} -1.67149e9 q^{43} -1.47436e9 q^{44} +2.71150e8 q^{46} -8.58507e8 q^{47} +7.07162e8 q^{48} +4.41327e9 q^{49} -6.39864e8 q^{51} -2.19335e9 q^{52} +3.52750e9 q^{53} -2.11203e8 q^{54} -4.56468e9 q^{56} +2.82028e9 q^{57} +2.80438e9 q^{58} +4.35760e9 q^{59} -1.65393e9 q^{61} -1.48849e9 q^{62} -4.72045e9 q^{63} -3.60819e9 q^{64} -2.87951e9 q^{66} -7.58610e9 q^{67} +4.82228e9 q^{68} -4.47645e9 q^{69} -2.75809e10 q^{71} +3.37173e9 q^{72} -3.22368e10 q^{73} +1.18735e9 q^{74} -2.12548e10 q^{76} -6.43580e10 q^{77} -4.28376e9 q^{78} -2.43149e9 q^{79} +3.48678e9 q^{81} -3.33116e9 q^{82} -1.20729e10 q^{83} +3.55753e10 q^{84} +2.46028e10 q^{86} -4.62981e10 q^{87} +4.59697e10 q^{88} +4.44073e9 q^{89} -9.57433e10 q^{91} +3.37364e10 q^{92} +2.45737e10 q^{93} +1.26364e10 q^{94} -3.88257e10 q^{96} +2.04453e10 q^{97} -6.49594e10 q^{98} +4.75384e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 13 q^{2} + 486 q^{3} - 3111 q^{4} + 3159 q^{6} - 7784 q^{7} - 35139 q^{8} + 118098 q^{9} + 295568 q^{11} - 755973 q^{12} - 657492 q^{13} + 3176796 q^{14} + 2974065 q^{16} - 8579948 q^{17} + 767637 q^{18}+ \cdots + 17452994832 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −14.7191 −0.325249 −0.162625 0.986688i \(-0.551996\pi\)
−0.162625 + 0.986688i \(0.551996\pi\)
\(3\) 243.000 0.577350
\(4\) −1831.35 −0.894213
\(5\) 0 0
\(6\) −3576.74 −0.187783
\(7\) −79941.2 −1.79776 −0.898880 0.438195i \(-0.855618\pi\)
−0.898880 + 0.438195i \(0.855618\pi\)
\(8\) 57100.5 0.616091
\(9\) 59049.0 0.333333
\(10\) 0 0
\(11\) 805067. 1.50720 0.753602 0.657331i \(-0.228315\pi\)
0.753602 + 0.657331i \(0.228315\pi\)
\(12\) −445018. −0.516274
\(13\) 1.19767e6 0.894641 0.447321 0.894374i \(-0.352378\pi\)
0.447321 + 0.894374i \(0.352378\pi\)
\(14\) 1.17666e6 0.584720
\(15\) 0 0
\(16\) 2.91013e6 0.693830
\(17\) −2.63319e6 −0.449793 −0.224896 0.974383i \(-0.572204\pi\)
−0.224896 + 0.974383i \(0.572204\pi\)
\(18\) −869148. −0.108416
\(19\) 1.16061e7 1.07533 0.537664 0.843159i \(-0.319307\pi\)
0.537664 + 0.843159i \(0.319307\pi\)
\(20\) 0 0
\(21\) −1.94257e7 −1.03794
\(22\) −1.18499e7 −0.490217
\(23\) −1.84216e7 −0.596794 −0.298397 0.954442i \(-0.596452\pi\)
−0.298397 + 0.954442i \(0.596452\pi\)
\(24\) 1.38754e7 0.355700
\(25\) 0 0
\(26\) −1.76286e7 −0.290981
\(27\) 1.43489e7 0.192450
\(28\) 1.46400e8 1.60758
\(29\) −1.90527e8 −1.72491 −0.862457 0.506130i \(-0.831076\pi\)
−0.862457 + 0.506130i \(0.831076\pi\)
\(30\) 0 0
\(31\) 1.01127e8 0.634419 0.317209 0.948356i \(-0.397254\pi\)
0.317209 + 0.948356i \(0.397254\pi\)
\(32\) −1.59776e8 −0.841759
\(33\) 1.95631e8 0.870185
\(34\) 3.87581e7 0.146295
\(35\) 0 0
\(36\) −1.08139e8 −0.298071
\(37\) −8.06675e7 −0.191245 −0.0956223 0.995418i \(-0.530484\pi\)
−0.0956223 + 0.995418i \(0.530484\pi\)
\(38\) −1.70831e8 −0.349749
\(39\) 2.91034e8 0.516522
\(40\) 0 0
\(41\) 2.26316e8 0.305073 0.152537 0.988298i \(-0.451256\pi\)
0.152537 + 0.988298i \(0.451256\pi\)
\(42\) 2.85929e8 0.337588
\(43\) −1.67149e9 −1.73391 −0.866956 0.498385i \(-0.833927\pi\)
−0.866956 + 0.498385i \(0.833927\pi\)
\(44\) −1.47436e9 −1.34776
\(45\) 0 0
\(46\) 2.71150e8 0.194107
\(47\) −8.58507e8 −0.546016 −0.273008 0.962012i \(-0.588019\pi\)
−0.273008 + 0.962012i \(0.588019\pi\)
\(48\) 7.07162e8 0.400583
\(49\) 4.41327e9 2.23194
\(50\) 0 0
\(51\) −6.39864e8 −0.259688
\(52\) −2.19335e9 −0.800000
\(53\) 3.52750e9 1.15864 0.579322 0.815099i \(-0.303317\pi\)
0.579322 + 0.815099i \(0.303317\pi\)
\(54\) −2.11203e8 −0.0625942
\(55\) 0 0
\(56\) −4.56468e9 −1.10758
\(57\) 2.82028e9 0.620841
\(58\) 2.80438e9 0.561027
\(59\) 4.35760e9 0.793527 0.396763 0.917921i \(-0.370133\pi\)
0.396763 + 0.917921i \(0.370133\pi\)
\(60\) 0 0
\(61\) −1.65393e9 −0.250727 −0.125364 0.992111i \(-0.540010\pi\)
−0.125364 + 0.992111i \(0.540010\pi\)
\(62\) −1.48849e9 −0.206344
\(63\) −4.72045e9 −0.599253
\(64\) −3.60819e9 −0.420049
\(65\) 0 0
\(66\) −2.87951e9 −0.283027
\(67\) −7.58610e9 −0.686447 −0.343224 0.939254i \(-0.611519\pi\)
−0.343224 + 0.939254i \(0.611519\pi\)
\(68\) 4.82228e9 0.402211
\(69\) −4.47645e9 −0.344559
\(70\) 0 0
\(71\) −2.75809e10 −1.81421 −0.907104 0.420905i \(-0.861712\pi\)
−0.907104 + 0.420905i \(0.861712\pi\)
\(72\) 3.37173e9 0.205364
\(73\) −3.22368e10 −1.82002 −0.910011 0.414584i \(-0.863927\pi\)
−0.910011 + 0.414584i \(0.863927\pi\)
\(74\) 1.18735e9 0.0622022
\(75\) 0 0
\(76\) −2.12548e10 −0.961572
\(77\) −6.43580e10 −2.70959
\(78\) −4.28376e9 −0.167998
\(79\) −2.43149e9 −0.0889046 −0.0444523 0.999012i \(-0.514154\pi\)
−0.0444523 + 0.999012i \(0.514154\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) −3.33116e9 −0.0992247
\(83\) −1.20729e10 −0.336421 −0.168210 0.985751i \(-0.553799\pi\)
−0.168210 + 0.985751i \(0.553799\pi\)
\(84\) 3.55753e10 0.928137
\(85\) 0 0
\(86\) 2.46028e10 0.563953
\(87\) −4.62981e10 −0.995880
\(88\) 4.59697e10 0.928575
\(89\) 4.44073e9 0.0842964 0.0421482 0.999111i \(-0.486580\pi\)
0.0421482 + 0.999111i \(0.486580\pi\)
\(90\) 0 0
\(91\) −9.57433e10 −1.60835
\(92\) 3.37364e10 0.533661
\(93\) 2.45737e10 0.366282
\(94\) 1.26364e10 0.177591
\(95\) 0 0
\(96\) −3.88257e10 −0.485990
\(97\) 2.04453e10 0.241740 0.120870 0.992668i \(-0.461432\pi\)
0.120870 + 0.992668i \(0.461432\pi\)
\(98\) −6.49594e10 −0.725937
\(99\) 4.75384e10 0.502401
\(100\) 0 0
\(101\) −1.55947e11 −1.47642 −0.738209 0.674572i \(-0.764328\pi\)
−0.738209 + 0.674572i \(0.764328\pi\)
\(102\) 9.41823e9 0.0844633
\(103\) 5.10325e10 0.433752 0.216876 0.976199i \(-0.430413\pi\)
0.216876 + 0.976199i \(0.430413\pi\)
\(104\) 6.83876e10 0.551181
\(105\) 0 0
\(106\) −5.19217e10 −0.376848
\(107\) −1.06665e10 −0.0735207 −0.0367603 0.999324i \(-0.511704\pi\)
−0.0367603 + 0.999324i \(0.511704\pi\)
\(108\) −2.62778e10 −0.172091
\(109\) −3.12513e10 −0.194546 −0.0972729 0.995258i \(-0.531012\pi\)
−0.0972729 + 0.995258i \(0.531012\pi\)
\(110\) 0 0
\(111\) −1.96022e10 −0.110415
\(112\) −2.32640e11 −1.24734
\(113\) 3.96346e10 0.202369 0.101184 0.994868i \(-0.467737\pi\)
0.101184 + 0.994868i \(0.467737\pi\)
\(114\) −4.15119e10 −0.201928
\(115\) 0 0
\(116\) 3.48921e11 1.54244
\(117\) 7.07213e10 0.298214
\(118\) −6.41400e10 −0.258094
\(119\) 2.10500e11 0.808620
\(120\) 0 0
\(121\) 3.62821e11 1.27166
\(122\) 2.43443e10 0.0815489
\(123\) 5.49948e10 0.176134
\(124\) −1.85198e11 −0.567305
\(125\) 0 0
\(126\) 6.94808e10 0.194907
\(127\) −2.63460e10 −0.0707611 −0.0353806 0.999374i \(-0.511264\pi\)
−0.0353806 + 0.999374i \(0.511264\pi\)
\(128\) 3.80331e11 0.978379
\(129\) −4.06172e11 −1.00107
\(130\) 0 0
\(131\) −2.19917e11 −0.498044 −0.249022 0.968498i \(-0.580109\pi\)
−0.249022 + 0.968498i \(0.580109\pi\)
\(132\) −3.58269e11 −0.778131
\(133\) −9.27805e11 −1.93318
\(134\) 1.11661e11 0.223266
\(135\) 0 0
\(136\) −1.50356e11 −0.277113
\(137\) 5.54041e11 0.980795 0.490398 0.871499i \(-0.336852\pi\)
0.490398 + 0.871499i \(0.336852\pi\)
\(138\) 6.58894e10 0.112068
\(139\) −6.17540e11 −1.00945 −0.504723 0.863281i \(-0.668406\pi\)
−0.504723 + 0.863281i \(0.668406\pi\)
\(140\) 0 0
\(141\) −2.08617e11 −0.315243
\(142\) 4.05966e11 0.590070
\(143\) 9.64205e11 1.34841
\(144\) 1.71840e11 0.231277
\(145\) 0 0
\(146\) 4.74497e11 0.591961
\(147\) 1.07243e12 1.28861
\(148\) 1.47730e11 0.171013
\(149\) −6.68742e11 −0.745992 −0.372996 0.927833i \(-0.621670\pi\)
−0.372996 + 0.927833i \(0.621670\pi\)
\(150\) 0 0
\(151\) 1.38243e12 1.43308 0.716541 0.697545i \(-0.245724\pi\)
0.716541 + 0.697545i \(0.245724\pi\)
\(152\) 6.62713e11 0.662500
\(153\) −1.55487e11 −0.149931
\(154\) 9.47292e11 0.881292
\(155\) 0 0
\(156\) −5.32985e11 −0.461880
\(157\) 7.93661e11 0.664029 0.332014 0.943274i \(-0.392272\pi\)
0.332014 + 0.943274i \(0.392272\pi\)
\(158\) 3.57894e10 0.0289161
\(159\) 8.57184e11 0.668944
\(160\) 0 0
\(161\) 1.47265e12 1.07289
\(162\) −5.13223e10 −0.0361388
\(163\) 4.67399e11 0.318168 0.159084 0.987265i \(-0.449146\pi\)
0.159084 + 0.987265i \(0.449146\pi\)
\(164\) −4.14463e11 −0.272800
\(165\) 0 0
\(166\) 1.77702e11 0.109421
\(167\) −2.87482e12 −1.71266 −0.856328 0.516432i \(-0.827260\pi\)
−0.856328 + 0.516432i \(0.827260\pi\)
\(168\) −1.10922e12 −0.639464
\(169\) −3.57745e11 −0.199617
\(170\) 0 0
\(171\) 6.85328e11 0.358443
\(172\) 3.06108e12 1.55049
\(173\) −1.53085e12 −0.751068 −0.375534 0.926809i \(-0.622541\pi\)
−0.375534 + 0.926809i \(0.622541\pi\)
\(174\) 6.81465e11 0.323909
\(175\) 0 0
\(176\) 2.34285e12 1.04574
\(177\) 1.05890e12 0.458143
\(178\) −6.53635e10 −0.0274173
\(179\) −1.91337e12 −0.778228 −0.389114 0.921190i \(-0.627219\pi\)
−0.389114 + 0.921190i \(0.627219\pi\)
\(180\) 0 0
\(181\) −1.70819e12 −0.653587 −0.326794 0.945096i \(-0.605968\pi\)
−0.326794 + 0.945096i \(0.605968\pi\)
\(182\) 1.40925e12 0.523115
\(183\) −4.01904e11 −0.144758
\(184\) −1.05188e12 −0.367680
\(185\) 0 0
\(186\) −3.61703e11 −0.119133
\(187\) −2.11989e12 −0.677930
\(188\) 1.57223e12 0.488255
\(189\) −1.14707e12 −0.345979
\(190\) 0 0
\(191\) 3.16020e12 0.899562 0.449781 0.893139i \(-0.351502\pi\)
0.449781 + 0.893139i \(0.351502\pi\)
\(192\) −8.76790e11 −0.242515
\(193\) −2.77296e12 −0.745382 −0.372691 0.927956i \(-0.621565\pi\)
−0.372691 + 0.927956i \(0.621565\pi\)
\(194\) −3.00936e11 −0.0786256
\(195\) 0 0
\(196\) −8.08224e12 −1.99583
\(197\) −3.86504e12 −0.928089 −0.464044 0.885812i \(-0.653602\pi\)
−0.464044 + 0.885812i \(0.653602\pi\)
\(198\) −6.99722e11 −0.163406
\(199\) −1.01839e12 −0.231325 −0.115663 0.993289i \(-0.536899\pi\)
−0.115663 + 0.993289i \(0.536899\pi\)
\(200\) 0 0
\(201\) −1.84342e12 −0.396321
\(202\) 2.29540e12 0.480204
\(203\) 1.52310e13 3.10098
\(204\) 1.17181e12 0.232216
\(205\) 0 0
\(206\) −7.51152e11 −0.141078
\(207\) −1.08778e12 −0.198931
\(208\) 3.48538e12 0.620729
\(209\) 9.34367e12 1.62074
\(210\) 0 0
\(211\) 2.05668e12 0.338543 0.169271 0.985569i \(-0.445859\pi\)
0.169271 + 0.985569i \(0.445859\pi\)
\(212\) −6.46009e12 −1.03608
\(213\) −6.70216e12 −1.04743
\(214\) 1.57001e11 0.0239125
\(215\) 0 0
\(216\) 8.19330e11 0.118567
\(217\) −8.08418e12 −1.14053
\(218\) 4.59990e11 0.0632759
\(219\) −7.83355e12 −1.05079
\(220\) 0 0
\(221\) −3.15369e12 −0.402403
\(222\) 2.88527e11 0.0359124
\(223\) −9.99986e12 −1.21428 −0.607138 0.794597i \(-0.707682\pi\)
−0.607138 + 0.794597i \(0.707682\pi\)
\(224\) 1.27727e13 1.51328
\(225\) 0 0
\(226\) −5.83386e11 −0.0658202
\(227\) 6.77123e12 0.745634 0.372817 0.927905i \(-0.378392\pi\)
0.372817 + 0.927905i \(0.378392\pi\)
\(228\) −5.16491e12 −0.555164
\(229\) 1.01933e13 1.06959 0.534796 0.844981i \(-0.320389\pi\)
0.534796 + 0.844981i \(0.320389\pi\)
\(230\) 0 0
\(231\) −1.56390e13 −1.56438
\(232\) −1.08792e13 −1.06270
\(233\) −6.74446e12 −0.643412 −0.321706 0.946840i \(-0.604256\pi\)
−0.321706 + 0.946840i \(0.604256\pi\)
\(234\) −1.04095e12 −0.0969938
\(235\) 0 0
\(236\) −7.98029e12 −0.709582
\(237\) −5.90853e11 −0.0513291
\(238\) −3.09837e12 −0.263003
\(239\) −1.76501e13 −1.46406 −0.732030 0.681272i \(-0.761427\pi\)
−0.732030 + 0.681272i \(0.761427\pi\)
\(240\) 0 0
\(241\) −1.37662e13 −1.09074 −0.545369 0.838196i \(-0.683611\pi\)
−0.545369 + 0.838196i \(0.683611\pi\)
\(242\) −5.34039e12 −0.413608
\(243\) 8.47289e11 0.0641500
\(244\) 3.02891e12 0.224204
\(245\) 0 0
\(246\) −8.09473e11 −0.0572874
\(247\) 1.39003e13 0.962033
\(248\) 5.77438e12 0.390860
\(249\) −2.93372e12 −0.194233
\(250\) 0 0
\(251\) 3.02252e13 1.91498 0.957490 0.288467i \(-0.0931454\pi\)
0.957490 + 0.288467i \(0.0931454\pi\)
\(252\) 8.64479e12 0.535860
\(253\) −1.48306e13 −0.899491
\(254\) 3.87790e11 0.0230150
\(255\) 0 0
\(256\) 1.79144e12 0.101832
\(257\) −6.88263e12 −0.382933 −0.191466 0.981499i \(-0.561324\pi\)
−0.191466 + 0.981499i \(0.561324\pi\)
\(258\) 5.97848e12 0.325599
\(259\) 6.44866e12 0.343812
\(260\) 0 0
\(261\) −1.12504e13 −0.574971
\(262\) 3.23698e12 0.161988
\(263\) 3.29948e13 1.61692 0.808462 0.588549i \(-0.200301\pi\)
0.808462 + 0.588549i \(0.200301\pi\)
\(264\) 1.11706e13 0.536113
\(265\) 0 0
\(266\) 1.36564e13 0.628765
\(267\) 1.07910e12 0.0486686
\(268\) 1.38928e13 0.613830
\(269\) −2.97478e13 −1.28771 −0.643855 0.765148i \(-0.722666\pi\)
−0.643855 + 0.765148i \(0.722666\pi\)
\(270\) 0 0
\(271\) −4.30410e13 −1.78876 −0.894378 0.447312i \(-0.852381\pi\)
−0.894378 + 0.447312i \(0.852381\pi\)
\(272\) −7.66293e12 −0.312080
\(273\) −2.32656e13 −0.928582
\(274\) −8.15498e12 −0.319003
\(275\) 0 0
\(276\) 8.19795e12 0.308110
\(277\) −1.46706e13 −0.540518 −0.270259 0.962788i \(-0.587109\pi\)
−0.270259 + 0.962788i \(0.587109\pi\)
\(278\) 9.08963e12 0.328322
\(279\) 5.97142e12 0.211473
\(280\) 0 0
\(281\) 4.18378e13 1.42457 0.712286 0.701890i \(-0.247660\pi\)
0.712286 + 0.701890i \(0.247660\pi\)
\(282\) 3.07066e12 0.102532
\(283\) −2.34242e13 −0.767078 −0.383539 0.923525i \(-0.625295\pi\)
−0.383539 + 0.923525i \(0.625295\pi\)
\(284\) 5.05102e13 1.62229
\(285\) 0 0
\(286\) −1.41922e13 −0.438568
\(287\) −1.80920e13 −0.548448
\(288\) −9.43463e12 −0.280586
\(289\) −2.73382e13 −0.797686
\(290\) 0 0
\(291\) 4.96820e12 0.139568
\(292\) 5.90369e13 1.62749
\(293\) 7.31258e12 0.197833 0.0989166 0.995096i \(-0.468462\pi\)
0.0989166 + 0.995096i \(0.468462\pi\)
\(294\) −1.57851e13 −0.419120
\(295\) 0 0
\(296\) −4.60616e12 −0.117824
\(297\) 1.15518e13 0.290062
\(298\) 9.84328e12 0.242633
\(299\) −2.20630e13 −0.533917
\(300\) 0 0
\(301\) 1.33621e14 3.11716
\(302\) −2.03482e13 −0.466109
\(303\) −3.78951e13 −0.852410
\(304\) 3.37752e13 0.746094
\(305\) 0 0
\(306\) 2.28863e12 0.0487649
\(307\) 5.37239e13 1.12436 0.562181 0.827014i \(-0.309962\pi\)
0.562181 + 0.827014i \(0.309962\pi\)
\(308\) 1.17862e14 2.42295
\(309\) 1.24009e13 0.250427
\(310\) 0 0
\(311\) 5.41406e13 1.05521 0.527607 0.849489i \(-0.323089\pi\)
0.527607 + 0.849489i \(0.323089\pi\)
\(312\) 1.66182e13 0.318224
\(313\) 4.29721e12 0.0808524 0.0404262 0.999183i \(-0.487128\pi\)
0.0404262 + 0.999183i \(0.487128\pi\)
\(314\) −1.16820e13 −0.215975
\(315\) 0 0
\(316\) 4.45291e12 0.0794996
\(317\) 2.81928e13 0.494666 0.247333 0.968931i \(-0.420446\pi\)
0.247333 + 0.968931i \(0.420446\pi\)
\(318\) −1.26170e13 −0.217573
\(319\) −1.53387e14 −2.59980
\(320\) 0 0
\(321\) −2.59195e12 −0.0424472
\(322\) −2.16760e13 −0.348958
\(323\) −3.05610e13 −0.483675
\(324\) −6.38552e12 −0.0993570
\(325\) 0 0
\(326\) −6.87969e12 −0.103484
\(327\) −7.59406e12 −0.112321
\(328\) 1.29227e13 0.187953
\(329\) 6.86301e13 0.981606
\(330\) 0 0
\(331\) −9.95469e13 −1.37713 −0.688563 0.725176i \(-0.741758\pi\)
−0.688563 + 0.725176i \(0.741758\pi\)
\(332\) 2.21097e13 0.300832
\(333\) −4.76334e12 −0.0637482
\(334\) 4.23148e13 0.557040
\(335\) 0 0
\(336\) −5.65314e13 −0.720152
\(337\) 9.05175e13 1.13440 0.567202 0.823579i \(-0.308026\pi\)
0.567202 + 0.823579i \(0.308026\pi\)
\(338\) 5.26568e12 0.0649251
\(339\) 9.63121e12 0.116838
\(340\) 0 0
\(341\) 8.14136e13 0.956198
\(342\) −1.00874e13 −0.116583
\(343\) −1.94733e14 −2.21473
\(344\) −9.54428e13 −1.06825
\(345\) 0 0
\(346\) 2.25327e13 0.244284
\(347\) 6.36892e13 0.679601 0.339801 0.940498i \(-0.389640\pi\)
0.339801 + 0.940498i \(0.389640\pi\)
\(348\) 8.47879e13 0.890529
\(349\) 7.08598e13 0.732588 0.366294 0.930499i \(-0.380626\pi\)
0.366294 + 0.930499i \(0.380626\pi\)
\(350\) 0 0
\(351\) 1.71853e13 0.172174
\(352\) −1.28631e14 −1.26870
\(353\) −6.62893e13 −0.643699 −0.321849 0.946791i \(-0.604304\pi\)
−0.321849 + 0.946791i \(0.604304\pi\)
\(354\) −1.55860e13 −0.149011
\(355\) 0 0
\(356\) −8.13252e12 −0.0753790
\(357\) 5.11516e13 0.466857
\(358\) 2.81630e13 0.253118
\(359\) 6.80217e13 0.602044 0.301022 0.953617i \(-0.402672\pi\)
0.301022 + 0.953617i \(0.402672\pi\)
\(360\) 0 0
\(361\) 1.82109e13 0.156330
\(362\) 2.51430e13 0.212579
\(363\) 8.81654e13 0.734196
\(364\) 1.75339e14 1.43821
\(365\) 0 0
\(366\) 5.91566e12 0.0470823
\(367\) −2.19771e14 −1.72309 −0.861543 0.507685i \(-0.830501\pi\)
−0.861543 + 0.507685i \(0.830501\pi\)
\(368\) −5.36094e13 −0.414074
\(369\) 1.33637e13 0.101691
\(370\) 0 0
\(371\) −2.81993e14 −2.08296
\(372\) −4.50031e13 −0.327534
\(373\) 1.67232e14 1.19928 0.599639 0.800271i \(-0.295311\pi\)
0.599639 + 0.800271i \(0.295311\pi\)
\(374\) 3.12029e13 0.220496
\(375\) 0 0
\(376\) −4.90212e13 −0.336396
\(377\) −2.28189e14 −1.54318
\(378\) 1.68838e13 0.112529
\(379\) −1.57778e14 −1.03641 −0.518205 0.855256i \(-0.673400\pi\)
−0.518205 + 0.855256i \(0.673400\pi\)
\(380\) 0 0
\(381\) −6.40209e12 −0.0408540
\(382\) −4.65153e13 −0.292582
\(383\) −5.49255e13 −0.340550 −0.170275 0.985397i \(-0.554466\pi\)
−0.170275 + 0.985397i \(0.554466\pi\)
\(384\) 9.24205e13 0.564867
\(385\) 0 0
\(386\) 4.08155e13 0.242435
\(387\) −9.86997e13 −0.577971
\(388\) −3.74424e13 −0.216167
\(389\) −2.32940e14 −1.32593 −0.662965 0.748650i \(-0.730702\pi\)
−0.662965 + 0.748650i \(0.730702\pi\)
\(390\) 0 0
\(391\) 4.85076e13 0.268434
\(392\) 2.52000e14 1.37508
\(393\) −5.34399e13 −0.287546
\(394\) 5.68899e13 0.301860
\(395\) 0 0
\(396\) −8.70593e13 −0.449254
\(397\) 4.76134e13 0.242316 0.121158 0.992633i \(-0.461339\pi\)
0.121158 + 0.992633i \(0.461339\pi\)
\(398\) 1.49898e13 0.0752383
\(399\) −2.25456e14 −1.11612
\(400\) 0 0
\(401\) −2.99074e14 −1.44040 −0.720202 0.693764i \(-0.755951\pi\)
−0.720202 + 0.693764i \(0.755951\pi\)
\(402\) 2.71335e13 0.128903
\(403\) 1.21116e14 0.567577
\(404\) 2.85593e14 1.32023
\(405\) 0 0
\(406\) −2.24186e14 −1.00859
\(407\) −6.49428e13 −0.288245
\(408\) −3.65366e13 −0.159992
\(409\) −2.55879e14 −1.10550 −0.552748 0.833349i \(-0.686421\pi\)
−0.552748 + 0.833349i \(0.686421\pi\)
\(410\) 0 0
\(411\) 1.34632e14 0.566262
\(412\) −9.34582e13 −0.387867
\(413\) −3.48352e14 −1.42657
\(414\) 1.60111e13 0.0647023
\(415\) 0 0
\(416\) −1.91359e14 −0.753072
\(417\) −1.50062e14 −0.582804
\(418\) −1.37530e14 −0.527144
\(419\) 2.21825e14 0.839139 0.419570 0.907723i \(-0.362181\pi\)
0.419570 + 0.907723i \(0.362181\pi\)
\(420\) 0 0
\(421\) 9.78949e13 0.360752 0.180376 0.983598i \(-0.442269\pi\)
0.180376 + 0.983598i \(0.442269\pi\)
\(422\) −3.02725e13 −0.110111
\(423\) −5.06940e13 −0.182005
\(424\) 2.01422e14 0.713831
\(425\) 0 0
\(426\) 9.86497e13 0.340677
\(427\) 1.32217e14 0.450748
\(428\) 1.95340e13 0.0657432
\(429\) 2.34302e14 0.778503
\(430\) 0 0
\(431\) 1.11415e14 0.360842 0.180421 0.983589i \(-0.442254\pi\)
0.180421 + 0.983589i \(0.442254\pi\)
\(432\) 4.17572e13 0.133528
\(433\) 3.42045e14 1.07994 0.539970 0.841684i \(-0.318436\pi\)
0.539970 + 0.841684i \(0.318436\pi\)
\(434\) 1.18992e14 0.370957
\(435\) 0 0
\(436\) 5.72320e13 0.173965
\(437\) −2.13803e14 −0.641750
\(438\) 1.15303e14 0.341769
\(439\) 1.20947e14 0.354029 0.177015 0.984208i \(-0.443356\pi\)
0.177015 + 0.984208i \(0.443356\pi\)
\(440\) 0 0
\(441\) 2.60599e14 0.743980
\(442\) 4.64195e13 0.130881
\(443\) 1.27316e14 0.354539 0.177270 0.984162i \(-0.443274\pi\)
0.177270 + 0.984162i \(0.443274\pi\)
\(444\) 3.58985e13 0.0987347
\(445\) 0 0
\(446\) 1.47189e14 0.394942
\(447\) −1.62504e14 −0.430699
\(448\) 2.88443e14 0.755147
\(449\) −1.61837e14 −0.418526 −0.209263 0.977859i \(-0.567106\pi\)
−0.209263 + 0.977859i \(0.567106\pi\)
\(450\) 0 0
\(451\) 1.82199e14 0.459807
\(452\) −7.25848e13 −0.180961
\(453\) 3.35931e14 0.827390
\(454\) −9.96664e13 −0.242517
\(455\) 0 0
\(456\) 1.61039e14 0.382494
\(457\) 3.49165e14 0.819391 0.409696 0.912222i \(-0.365635\pi\)
0.409696 + 0.912222i \(0.365635\pi\)
\(458\) −1.50036e14 −0.347884
\(459\) −3.77834e13 −0.0865627
\(460\) 0 0
\(461\) −4.49619e14 −1.00575 −0.502875 0.864359i \(-0.667724\pi\)
−0.502875 + 0.864359i \(0.667724\pi\)
\(462\) 2.30192e14 0.508814
\(463\) −4.21098e13 −0.0919787 −0.0459894 0.998942i \(-0.514644\pi\)
−0.0459894 + 0.998942i \(0.514644\pi\)
\(464\) −5.54459e14 −1.19680
\(465\) 0 0
\(466\) 9.92723e13 0.209269
\(467\) 7.91358e13 0.164866 0.0824328 0.996597i \(-0.473731\pi\)
0.0824328 + 0.996597i \(0.473731\pi\)
\(468\) −1.29515e14 −0.266667
\(469\) 6.06442e14 1.23407
\(470\) 0 0
\(471\) 1.92860e14 0.383377
\(472\) 2.48821e14 0.488885
\(473\) −1.34566e15 −2.61336
\(474\) 8.69682e12 0.0166947
\(475\) 0 0
\(476\) −3.85499e14 −0.723078
\(477\) 2.08296e14 0.386215
\(478\) 2.59794e14 0.476184
\(479\) −9.62318e14 −1.74371 −0.871853 0.489768i \(-0.837081\pi\)
−0.871853 + 0.489768i \(0.837081\pi\)
\(480\) 0 0
\(481\) −9.66132e13 −0.171095
\(482\) 2.02626e14 0.354762
\(483\) 3.57853e14 0.619435
\(484\) −6.64451e14 −1.13714
\(485\) 0 0
\(486\) −1.24713e13 −0.0208647
\(487\) −4.57117e14 −0.756168 −0.378084 0.925771i \(-0.623417\pi\)
−0.378084 + 0.925771i \(0.623417\pi\)
\(488\) −9.44399e13 −0.154471
\(489\) 1.13578e14 0.183694
\(490\) 0 0
\(491\) 4.40122e14 0.696025 0.348013 0.937490i \(-0.386857\pi\)
0.348013 + 0.937490i \(0.386857\pi\)
\(492\) −1.00715e14 −0.157501
\(493\) 5.01693e14 0.775854
\(494\) −2.04599e14 −0.312900
\(495\) 0 0
\(496\) 2.94292e14 0.440179
\(497\) 2.20485e15 3.26151
\(498\) 4.31817e13 0.0631740
\(499\) 6.36085e14 0.920369 0.460185 0.887823i \(-0.347783\pi\)
0.460185 + 0.887823i \(0.347783\pi\)
\(500\) 0 0
\(501\) −6.98581e14 −0.988802
\(502\) −4.44888e14 −0.622846
\(503\) 4.81639e12 0.00666957 0.00333478 0.999994i \(-0.498939\pi\)
0.00333478 + 0.999994i \(0.498939\pi\)
\(504\) −2.69540e14 −0.369195
\(505\) 0 0
\(506\) 2.18294e14 0.292559
\(507\) −8.69320e13 −0.115249
\(508\) 4.82488e13 0.0632755
\(509\) −5.73829e14 −0.744449 −0.372224 0.928143i \(-0.621405\pi\)
−0.372224 + 0.928143i \(0.621405\pi\)
\(510\) 0 0
\(511\) 2.57705e15 3.27196
\(512\) −8.05287e14 −1.01150
\(513\) 1.66535e14 0.206947
\(514\) 1.01306e14 0.124548
\(515\) 0 0
\(516\) 7.43842e14 0.895174
\(517\) −6.91155e14 −0.822958
\(518\) −9.49185e13 −0.111825
\(519\) −3.71997e14 −0.433630
\(520\) 0 0
\(521\) 5.14705e14 0.587422 0.293711 0.955894i \(-0.405110\pi\)
0.293711 + 0.955894i \(0.405110\pi\)
\(522\) 1.65596e14 0.187009
\(523\) −1.20146e15 −1.34261 −0.671304 0.741182i \(-0.734265\pi\)
−0.671304 + 0.741182i \(0.734265\pi\)
\(524\) 4.02745e14 0.445357
\(525\) 0 0
\(526\) −4.85654e14 −0.525903
\(527\) −2.66285e14 −0.285357
\(528\) 5.69313e14 0.603760
\(529\) −6.13454e14 −0.643836
\(530\) 0 0
\(531\) 2.57312e14 0.264509
\(532\) 1.69913e15 1.72868
\(533\) 2.71052e14 0.272931
\(534\) −1.58833e13 −0.0158294
\(535\) 0 0
\(536\) −4.33170e14 −0.422914
\(537\) −4.64948e14 −0.449310
\(538\) 4.37861e14 0.418826
\(539\) 3.55298e15 3.36399
\(540\) 0 0
\(541\) −1.89107e15 −1.75438 −0.877190 0.480143i \(-0.840585\pi\)
−0.877190 + 0.480143i \(0.840585\pi\)
\(542\) 6.33524e14 0.581791
\(543\) −4.15090e14 −0.377349
\(544\) 4.20721e14 0.378617
\(545\) 0 0
\(546\) 3.42449e14 0.302020
\(547\) −1.37400e14 −0.119966 −0.0599830 0.998199i \(-0.519105\pi\)
−0.0599830 + 0.998199i \(0.519105\pi\)
\(548\) −1.01464e15 −0.877040
\(549\) −9.76626e13 −0.0835758
\(550\) 0 0
\(551\) −2.21127e15 −1.85485
\(552\) −2.55608e14 −0.212280
\(553\) 1.94377e14 0.159829
\(554\) 2.15939e14 0.175803
\(555\) 0 0
\(556\) 1.13093e15 0.902661
\(557\) 1.18622e15 0.937483 0.468742 0.883335i \(-0.344708\pi\)
0.468742 + 0.883335i \(0.344708\pi\)
\(558\) −8.78939e13 −0.0687814
\(559\) −2.00189e15 −1.55123
\(560\) 0 0
\(561\) −5.15134e14 −0.391403
\(562\) −6.15815e14 −0.463340
\(563\) 2.58208e15 1.92386 0.961929 0.273298i \(-0.0881146\pi\)
0.961929 + 0.273298i \(0.0881146\pi\)
\(564\) 3.82051e14 0.281894
\(565\) 0 0
\(566\) 3.44783e14 0.249491
\(567\) −2.78738e14 −0.199751
\(568\) −1.57488e15 −1.11772
\(569\) 6.86455e13 0.0482497 0.0241249 0.999709i \(-0.492320\pi\)
0.0241249 + 0.999709i \(0.492320\pi\)
\(570\) 0 0
\(571\) −1.48521e15 −1.02397 −0.511986 0.858994i \(-0.671090\pi\)
−0.511986 + 0.858994i \(0.671090\pi\)
\(572\) −1.76579e15 −1.20576
\(573\) 7.67929e14 0.519363
\(574\) 2.66297e14 0.178382
\(575\) 0 0
\(576\) −2.13060e14 −0.140016
\(577\) 1.11682e14 0.0726966 0.0363483 0.999339i \(-0.488427\pi\)
0.0363483 + 0.999339i \(0.488427\pi\)
\(578\) 4.02394e14 0.259447
\(579\) −6.73830e14 −0.430346
\(580\) 0 0
\(581\) 9.65124e14 0.604803
\(582\) −7.31274e13 −0.0453945
\(583\) 2.83988e15 1.74631
\(584\) −1.84074e15 −1.12130
\(585\) 0 0
\(586\) −1.07635e14 −0.0643450
\(587\) −1.03228e15 −0.611347 −0.305673 0.952136i \(-0.598882\pi\)
−0.305673 + 0.952136i \(0.598882\pi\)
\(588\) −1.96398e15 −1.15229
\(589\) 1.17368e15 0.682208
\(590\) 0 0
\(591\) −9.39204e14 −0.535832
\(592\) −2.34753e14 −0.132691
\(593\) −5.05946e14 −0.283337 −0.141668 0.989914i \(-0.545247\pi\)
−0.141668 + 0.989914i \(0.545247\pi\)
\(594\) −1.70032e14 −0.0943423
\(595\) 0 0
\(596\) 1.22470e15 0.667076
\(597\) −2.47469e14 −0.133556
\(598\) 3.24748e14 0.173656
\(599\) −1.86439e14 −0.0987846 −0.0493923 0.998779i \(-0.515728\pi\)
−0.0493923 + 0.998779i \(0.515728\pi\)
\(600\) 0 0
\(601\) −6.39018e14 −0.332433 −0.166216 0.986089i \(-0.553155\pi\)
−0.166216 + 0.986089i \(0.553155\pi\)
\(602\) −1.96678e15 −1.01385
\(603\) −4.47952e14 −0.228816
\(604\) −2.53172e15 −1.28148
\(605\) 0 0
\(606\) 5.57782e14 0.277246
\(607\) −3.07440e15 −1.51434 −0.757169 0.653219i \(-0.773418\pi\)
−0.757169 + 0.653219i \(0.773418\pi\)
\(608\) −1.85438e15 −0.905166
\(609\) 3.70112e15 1.79035
\(610\) 0 0
\(611\) −1.02821e15 −0.488489
\(612\) 2.84751e14 0.134070
\(613\) −1.45823e15 −0.680447 −0.340223 0.940345i \(-0.610503\pi\)
−0.340223 + 0.940345i \(0.610503\pi\)
\(614\) −7.90767e14 −0.365698
\(615\) 0 0
\(616\) −3.67488e15 −1.66935
\(617\) −2.52038e15 −1.13474 −0.567372 0.823462i \(-0.692040\pi\)
−0.567372 + 0.823462i \(0.692040\pi\)
\(618\) −1.82530e14 −0.0814512
\(619\) 2.76117e15 1.22122 0.610612 0.791930i \(-0.290924\pi\)
0.610612 + 0.791930i \(0.290924\pi\)
\(620\) 0 0
\(621\) −2.64330e14 −0.114853
\(622\) −7.96900e14 −0.343207
\(623\) −3.54997e14 −0.151545
\(624\) 8.46948e14 0.358378
\(625\) 0 0
\(626\) −6.32511e13 −0.0262972
\(627\) 2.27051e15 0.935734
\(628\) −1.45347e15 −0.593783
\(629\) 2.12413e14 0.0860205
\(630\) 0 0
\(631\) −5.89126e14 −0.234448 −0.117224 0.993105i \(-0.537400\pi\)
−0.117224 + 0.993105i \(0.537400\pi\)
\(632\) −1.38839e14 −0.0547733
\(633\) 4.99774e14 0.195458
\(634\) −4.14972e14 −0.160890
\(635\) 0 0
\(636\) −1.56980e15 −0.598178
\(637\) 5.28565e15 1.99679
\(638\) 2.25772e15 0.845582
\(639\) −1.62862e15 −0.604736
\(640\) 0 0
\(641\) 1.59787e15 0.583208 0.291604 0.956539i \(-0.405811\pi\)
0.291604 + 0.956539i \(0.405811\pi\)
\(642\) 3.81512e13 0.0138059
\(643\) −4.44445e15 −1.59462 −0.797310 0.603569i \(-0.793745\pi\)
−0.797310 + 0.603569i \(0.793745\pi\)
\(644\) −2.69693e15 −0.959395
\(645\) 0 0
\(646\) 4.49830e14 0.157315
\(647\) 8.54247e14 0.296217 0.148108 0.988971i \(-0.452682\pi\)
0.148108 + 0.988971i \(0.452682\pi\)
\(648\) 1.99097e14 0.0684546
\(649\) 3.50816e15 1.19601
\(650\) 0 0
\(651\) −1.96446e15 −0.658486
\(652\) −8.55971e14 −0.284510
\(653\) 2.86428e15 0.944045 0.472022 0.881587i \(-0.343524\pi\)
0.472022 + 0.881587i \(0.343524\pi\)
\(654\) 1.11778e14 0.0365323
\(655\) 0 0
\(656\) 6.58609e14 0.211669
\(657\) −1.90355e15 −0.606674
\(658\) −1.01017e15 −0.319267
\(659\) 4.78135e15 1.49858 0.749291 0.662241i \(-0.230394\pi\)
0.749291 + 0.662241i \(0.230394\pi\)
\(660\) 0 0
\(661\) −5.52275e14 −0.170234 −0.0851172 0.996371i \(-0.527126\pi\)
−0.0851172 + 0.996371i \(0.527126\pi\)
\(662\) 1.46524e15 0.447909
\(663\) −7.66347e14 −0.232328
\(664\) −6.89369e14 −0.207266
\(665\) 0 0
\(666\) 7.01120e13 0.0207341
\(667\) 3.50982e15 1.02942
\(668\) 5.26480e15 1.53148
\(669\) −2.42997e15 −0.701062
\(670\) 0 0
\(671\) −1.33152e15 −0.377897
\(672\) 3.10377e15 0.873693
\(673\) 3.31175e15 0.924645 0.462323 0.886712i \(-0.347016\pi\)
0.462323 + 0.886712i \(0.347016\pi\)
\(674\) −1.33234e15 −0.368964
\(675\) 0 0
\(676\) 6.55156e14 0.178500
\(677\) −6.69181e15 −1.80845 −0.904223 0.427060i \(-0.859549\pi\)
−0.904223 + 0.427060i \(0.859549\pi\)
\(678\) −1.41763e14 −0.0380013
\(679\) −1.63442e15 −0.434590
\(680\) 0 0
\(681\) 1.64541e15 0.430492
\(682\) −1.19833e15 −0.311003
\(683\) 7.20810e15 1.85570 0.927848 0.372959i \(-0.121657\pi\)
0.927848 + 0.372959i \(0.121657\pi\)
\(684\) −1.25507e15 −0.320524
\(685\) 0 0
\(686\) 2.86629e15 0.720340
\(687\) 2.47696e15 0.617529
\(688\) −4.86426e15 −1.20304
\(689\) 4.22479e15 1.03657
\(690\) 0 0
\(691\) 7.79467e15 1.88221 0.941106 0.338112i \(-0.109788\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(692\) 2.80352e15 0.671615
\(693\) −3.80028e15 −0.903197
\(694\) −9.37448e14 −0.221040
\(695\) 0 0
\(696\) −2.64364e15 −0.613553
\(697\) −5.95932e14 −0.137220
\(698\) −1.04299e15 −0.238274
\(699\) −1.63890e15 −0.371474
\(700\) 0 0
\(701\) 6.71290e15 1.49782 0.748912 0.662669i \(-0.230577\pi\)
0.748912 + 0.662669i \(0.230577\pi\)
\(702\) −2.52952e14 −0.0559994
\(703\) −9.36234e14 −0.205651
\(704\) −2.90483e15 −0.633099
\(705\) 0 0
\(706\) 9.75719e14 0.209362
\(707\) 1.24666e16 2.65424
\(708\) −1.93921e15 −0.409677
\(709\) −4.10214e15 −0.859917 −0.429959 0.902849i \(-0.641472\pi\)
−0.429959 + 0.902849i \(0.641472\pi\)
\(710\) 0 0
\(711\) −1.43577e14 −0.0296349
\(712\) 2.53568e14 0.0519343
\(713\) −1.86291e15 −0.378617
\(714\) −7.52905e14 −0.151845
\(715\) 0 0
\(716\) 3.50404e15 0.695902
\(717\) −4.28898e15 −0.845276
\(718\) −1.00122e15 −0.195814
\(719\) −3.31818e15 −0.644008 −0.322004 0.946738i \(-0.604356\pi\)
−0.322004 + 0.946738i \(0.604356\pi\)
\(720\) 0 0
\(721\) −4.07960e15 −0.779783
\(722\) −2.68047e14 −0.0508460
\(723\) −3.34519e15 −0.629738
\(724\) 3.12829e15 0.584446
\(725\) 0 0
\(726\) −1.29772e15 −0.238797
\(727\) −3.34273e15 −0.610467 −0.305233 0.952278i \(-0.598734\pi\)
−0.305233 + 0.952278i \(0.598734\pi\)
\(728\) −5.46699e15 −0.990890
\(729\) 2.05891e14 0.0370370
\(730\) 0 0
\(731\) 4.40134e15 0.779901
\(732\) 7.36026e14 0.129444
\(733\) 6.14966e15 1.07344 0.536722 0.843759i \(-0.319662\pi\)
0.536722 + 0.843759i \(0.319662\pi\)
\(734\) 3.23483e15 0.560432
\(735\) 0 0
\(736\) 2.94334e15 0.502357
\(737\) −6.10732e15 −1.03462
\(738\) −1.96702e14 −0.0330749
\(739\) −4.15701e15 −0.693804 −0.346902 0.937901i \(-0.612766\pi\)
−0.346902 + 0.937901i \(0.612766\pi\)
\(740\) 0 0
\(741\) 3.37776e15 0.555430
\(742\) 4.15068e15 0.677482
\(743\) 4.90364e15 0.794474 0.397237 0.917716i \(-0.369969\pi\)
0.397237 + 0.917716i \(0.369969\pi\)
\(744\) 1.40317e15 0.225663
\(745\) 0 0
\(746\) −2.46150e15 −0.390064
\(747\) −7.12893e14 −0.112140
\(748\) 3.88226e15 0.606214
\(749\) 8.52690e14 0.132173
\(750\) 0 0
\(751\) −2.00580e15 −0.306385 −0.153192 0.988196i \(-0.548955\pi\)
−0.153192 + 0.988196i \(0.548955\pi\)
\(752\) −2.49837e15 −0.378842
\(753\) 7.34473e15 1.10561
\(754\) 3.35873e15 0.501918
\(755\) 0 0
\(756\) 2.10068e15 0.309379
\(757\) −2.85016e15 −0.416718 −0.208359 0.978052i \(-0.566812\pi\)
−0.208359 + 0.978052i \(0.566812\pi\)
\(758\) 2.32235e15 0.337091
\(759\) −3.60384e15 −0.519321
\(760\) 0 0
\(761\) 8.65962e15 1.22994 0.614969 0.788551i \(-0.289168\pi\)
0.614969 + 0.788551i \(0.289168\pi\)
\(762\) 9.42329e13 0.0132877
\(763\) 2.49827e15 0.349747
\(764\) −5.78743e15 −0.804400
\(765\) 0 0
\(766\) 8.08453e14 0.110763
\(767\) 5.21897e15 0.709922
\(768\) 4.35320e14 0.0587925
\(769\) −7.49727e15 −1.00533 −0.502665 0.864481i \(-0.667647\pi\)
−0.502665 + 0.864481i \(0.667647\pi\)
\(770\) 0 0
\(771\) −1.67248e15 −0.221086
\(772\) 5.07826e15 0.666530
\(773\) −2.07867e15 −0.270894 −0.135447 0.990785i \(-0.543247\pi\)
−0.135447 + 0.990785i \(0.543247\pi\)
\(774\) 1.45277e15 0.187984
\(775\) 0 0
\(776\) 1.16743e15 0.148934
\(777\) 1.56703e15 0.198500
\(778\) 3.42866e15 0.431258
\(779\) 2.62664e15 0.328053
\(780\) 0 0
\(781\) −2.22045e16 −2.73438
\(782\) −7.13988e14 −0.0873079
\(783\) −2.73385e15 −0.331960
\(784\) 1.28432e16 1.54859
\(785\) 0 0
\(786\) 7.86587e14 0.0935239
\(787\) 1.58421e16 1.87047 0.935235 0.354026i \(-0.115188\pi\)
0.935235 + 0.354026i \(0.115188\pi\)
\(788\) 7.07823e15 0.829909
\(789\) 8.01774e15 0.933531
\(790\) 0 0
\(791\) −3.16844e15 −0.363810
\(792\) 2.71447e15 0.309525
\(793\) −1.98086e15 −0.224311
\(794\) −7.00826e14 −0.0788129
\(795\) 0 0
\(796\) 1.86503e15 0.206854
\(797\) 4.58469e15 0.504997 0.252499 0.967597i \(-0.418748\pi\)
0.252499 + 0.967597i \(0.418748\pi\)
\(798\) 3.31852e15 0.363018
\(799\) 2.26061e15 0.245594
\(800\) 0 0
\(801\) 2.62221e14 0.0280988
\(802\) 4.40210e15 0.468490
\(803\) −2.59528e16 −2.74315
\(804\) 3.37595e15 0.354395
\(805\) 0 0
\(806\) −1.78272e15 −0.184604
\(807\) −7.22872e15 −0.743459
\(808\) −8.90465e15 −0.909608
\(809\) −1.72813e15 −0.175331 −0.0876656 0.996150i \(-0.527941\pi\)
−0.0876656 + 0.996150i \(0.527941\pi\)
\(810\) 0 0
\(811\) 4.24638e14 0.0425015 0.0212507 0.999774i \(-0.493235\pi\)
0.0212507 + 0.999774i \(0.493235\pi\)
\(812\) −2.78932e16 −2.77294
\(813\) −1.04590e16 −1.03274
\(814\) 9.55899e14 0.0937514
\(815\) 0 0
\(816\) −1.86209e15 −0.180179
\(817\) −1.93994e16 −1.86452
\(818\) 3.76631e15 0.359561
\(819\) −5.65355e15 −0.536117
\(820\) 0 0
\(821\) −1.96517e16 −1.83871 −0.919354 0.393431i \(-0.871288\pi\)
−0.919354 + 0.393431i \(0.871288\pi\)
\(822\) −1.98166e15 −0.184176
\(823\) −5.95701e14 −0.0549957 −0.0274979 0.999622i \(-0.508754\pi\)
−0.0274979 + 0.999622i \(0.508754\pi\)
\(824\) 2.91398e15 0.267231
\(825\) 0 0
\(826\) 5.12743e15 0.463991
\(827\) 1.40975e16 1.26725 0.633626 0.773639i \(-0.281566\pi\)
0.633626 + 0.773639i \(0.281566\pi\)
\(828\) 1.99210e15 0.177887
\(829\) −7.87187e15 −0.698277 −0.349139 0.937071i \(-0.613526\pi\)
−0.349139 + 0.937071i \(0.613526\pi\)
\(830\) 0 0
\(831\) −3.56497e15 −0.312068
\(832\) −4.32142e15 −0.375793
\(833\) −1.16210e16 −1.00391
\(834\) 2.20878e15 0.189557
\(835\) 0 0
\(836\) −1.71115e16 −1.44929
\(837\) 1.45106e15 0.122094
\(838\) −3.26507e15 −0.272929
\(839\) 6.12117e15 0.508327 0.254164 0.967161i \(-0.418200\pi\)
0.254164 + 0.967161i \(0.418200\pi\)
\(840\) 0 0
\(841\) 2.41000e16 1.97533
\(842\) −1.44092e15 −0.117334
\(843\) 1.01666e16 0.822476
\(844\) −3.76650e15 −0.302729
\(845\) 0 0
\(846\) 7.46170e14 0.0591971
\(847\) −2.90043e16 −2.28615
\(848\) 1.02655e16 0.803902
\(849\) −5.69208e15 −0.442873
\(850\) 0 0
\(851\) 1.48603e15 0.114134
\(852\) 1.22740e16 0.936629
\(853\) −2.83032e15 −0.214594 −0.107297 0.994227i \(-0.534219\pi\)
−0.107297 + 0.994227i \(0.534219\pi\)
\(854\) −1.94611e15 −0.146605
\(855\) 0 0
\(856\) −6.09060e14 −0.0452954
\(857\) 4.83193e14 0.0357048 0.0178524 0.999841i \(-0.494317\pi\)
0.0178524 + 0.999841i \(0.494317\pi\)
\(858\) −3.44871e15 −0.253208
\(859\) 1.23886e16 0.903775 0.451888 0.892075i \(-0.350751\pi\)
0.451888 + 0.892075i \(0.350751\pi\)
\(860\) 0 0
\(861\) −4.39635e15 −0.316647
\(862\) −1.63992e15 −0.117364
\(863\) 2.26458e16 1.61038 0.805191 0.593016i \(-0.202063\pi\)
0.805191 + 0.593016i \(0.202063\pi\)
\(864\) −2.29262e15 −0.161997
\(865\) 0 0
\(866\) −5.03459e15 −0.351249
\(867\) −6.64319e15 −0.460544
\(868\) 1.48050e16 1.01988
\(869\) −1.95751e15 −0.133997
\(870\) 0 0
\(871\) −9.08565e15 −0.614124
\(872\) −1.78446e15 −0.119858
\(873\) 1.20727e15 0.0805799
\(874\) 3.14698e15 0.208728
\(875\) 0 0
\(876\) 1.43460e16 0.939630
\(877\) 8.89622e15 0.579039 0.289519 0.957172i \(-0.406505\pi\)
0.289519 + 0.957172i \(0.406505\pi\)
\(878\) −1.78023e15 −0.115148
\(879\) 1.77696e15 0.114219
\(880\) 0 0
\(881\) −1.82720e16 −1.15989 −0.579946 0.814655i \(-0.696927\pi\)
−0.579946 + 0.814655i \(0.696927\pi\)
\(882\) −3.83579e15 −0.241979
\(883\) −8.75758e15 −0.549035 −0.274518 0.961582i \(-0.588518\pi\)
−0.274518 + 0.961582i \(0.588518\pi\)
\(884\) 5.77551e15 0.359834
\(885\) 0 0
\(886\) −1.87398e15 −0.115314
\(887\) −8.52159e15 −0.521124 −0.260562 0.965457i \(-0.583908\pi\)
−0.260562 + 0.965457i \(0.583908\pi\)
\(888\) −1.11930e15 −0.0680258
\(889\) 2.10613e15 0.127212
\(890\) 0 0
\(891\) 2.80709e15 0.167467
\(892\) 1.83132e16 1.08582
\(893\) −9.96390e15 −0.587146
\(894\) 2.39192e15 0.140084
\(895\) 0 0
\(896\) −3.04042e16 −1.75889
\(897\) −5.36132e15 −0.308257
\(898\) 2.38209e15 0.136125
\(899\) −1.92673e16 −1.09432
\(900\) 0 0
\(901\) −9.28858e15 −0.521150
\(902\) −2.68181e15 −0.149552
\(903\) 3.24699e16 1.79969
\(904\) 2.26316e15 0.124677
\(905\) 0 0
\(906\) −4.94461e15 −0.269108
\(907\) −2.10550e16 −1.13898 −0.569490 0.821998i \(-0.692859\pi\)
−0.569490 + 0.821998i \(0.692859\pi\)
\(908\) −1.24005e16 −0.666756
\(909\) −9.20851e15 −0.492139
\(910\) 0 0
\(911\) 3.04479e16 1.60771 0.803854 0.594827i \(-0.202780\pi\)
0.803854 + 0.594827i \(0.202780\pi\)
\(912\) 8.20739e15 0.430758
\(913\) −9.71950e15 −0.507055
\(914\) −5.13939e15 −0.266506
\(915\) 0 0
\(916\) −1.86674e16 −0.956443
\(917\) 1.75805e16 0.895363
\(918\) 5.56137e14 0.0281544
\(919\) −4.47695e15 −0.225293 −0.112646 0.993635i \(-0.535933\pi\)
−0.112646 + 0.993635i \(0.535933\pi\)
\(920\) 0 0
\(921\) 1.30549e16 0.649151
\(922\) 6.61799e15 0.327119
\(923\) −3.30328e16 −1.62307
\(924\) 2.86405e16 1.39889
\(925\) 0 0
\(926\) 6.19818e14 0.0299160
\(927\) 3.01342e15 0.144584
\(928\) 3.04417e16 1.45196
\(929\) 2.63310e16 1.24848 0.624238 0.781234i \(-0.285409\pi\)
0.624238 + 0.781234i \(0.285409\pi\)
\(930\) 0 0
\(931\) 5.12208e16 2.40007
\(932\) 1.23515e16 0.575348
\(933\) 1.31562e16 0.609228
\(934\) −1.16481e15 −0.0536224
\(935\) 0 0
\(936\) 4.03822e15 0.183727
\(937\) −1.18259e16 −0.534894 −0.267447 0.963573i \(-0.586180\pi\)
−0.267447 + 0.963573i \(0.586180\pi\)
\(938\) −8.92628e15 −0.401379
\(939\) 1.04422e15 0.0466802
\(940\) 0 0
\(941\) 6.96003e15 0.307517 0.153758 0.988108i \(-0.450862\pi\)
0.153758 + 0.988108i \(0.450862\pi\)
\(942\) −2.83872e15 −0.124693
\(943\) −4.16911e15 −0.182066
\(944\) 1.26812e16 0.550573
\(945\) 0 0
\(946\) 1.98069e16 0.849993
\(947\) 3.38501e16 1.44423 0.722113 0.691775i \(-0.243171\pi\)
0.722113 + 0.691775i \(0.243171\pi\)
\(948\) 1.08206e15 0.0458991
\(949\) −3.86091e16 −1.62827
\(950\) 0 0
\(951\) 6.85084e15 0.285595
\(952\) 1.20197e16 0.498183
\(953\) −4.50062e16 −1.85465 −0.927323 0.374262i \(-0.877896\pi\)
−0.927323 + 0.374262i \(0.877896\pi\)
\(954\) −3.06592e15 −0.125616
\(955\) 0 0
\(956\) 3.23235e16 1.30918
\(957\) −3.72730e16 −1.50099
\(958\) 1.41644e16 0.567139
\(959\) −4.42907e16 −1.76323
\(960\) 0 0
\(961\) −1.51819e16 −0.597513
\(962\) 1.42206e15 0.0556486
\(963\) −6.29844e14 −0.0245069
\(964\) 2.52107e16 0.975353
\(965\) 0 0
\(966\) −5.26728e15 −0.201471
\(967\) 1.48359e16 0.564246 0.282123 0.959378i \(-0.408961\pi\)
0.282123 + 0.959378i \(0.408961\pi\)
\(968\) 2.07172e16 0.783461
\(969\) −7.42632e15 −0.279250
\(970\) 0 0
\(971\) 1.14414e16 0.425378 0.212689 0.977120i \(-0.431778\pi\)
0.212689 + 0.977120i \(0.431778\pi\)
\(972\) −1.55168e15 −0.0573638
\(973\) 4.93669e16 1.81474
\(974\) 6.72835e15 0.245943
\(975\) 0 0
\(976\) −4.81314e15 −0.173962
\(977\) 2.64437e16 0.950390 0.475195 0.879881i \(-0.342378\pi\)
0.475195 + 0.879881i \(0.342378\pi\)
\(978\) −1.67177e15 −0.0597464
\(979\) 3.57508e15 0.127052
\(980\) 0 0
\(981\) −1.84536e15 −0.0648486
\(982\) −6.47820e15 −0.226382
\(983\) −3.63656e16 −1.26371 −0.631854 0.775088i \(-0.717706\pi\)
−0.631854 + 0.775088i \(0.717706\pi\)
\(984\) 3.14023e15 0.108515
\(985\) 0 0
\(986\) −7.38447e15 −0.252346
\(987\) 1.66771e16 0.566731
\(988\) −2.54562e16 −0.860262
\(989\) 3.07915e16 1.03479
\(990\) 0 0
\(991\) 5.09067e16 1.69188 0.845941 0.533276i \(-0.179039\pi\)
0.845941 + 0.533276i \(0.179039\pi\)
\(992\) −1.61576e16 −0.534027
\(993\) −2.41899e16 −0.795084
\(994\) −3.24534e16 −1.06080
\(995\) 0 0
\(996\) 5.37266e15 0.173685
\(997\) 4.28291e16 1.37694 0.688471 0.725264i \(-0.258282\pi\)
0.688471 + 0.725264i \(0.258282\pi\)
\(998\) −9.36259e15 −0.299349
\(999\) −1.15749e15 −0.0368051
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.12.a.c.1.1 2
3.2 odd 2 225.12.a.i.1.2 2
5.2 odd 4 75.12.b.d.49.2 4
5.3 odd 4 75.12.b.d.49.3 4
5.4 even 2 15.12.a.c.1.2 2
15.2 even 4 225.12.b.i.199.3 4
15.8 even 4 225.12.b.i.199.2 4
15.14 odd 2 45.12.a.c.1.1 2
20.19 odd 2 240.12.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.12.a.c.1.2 2 5.4 even 2
45.12.a.c.1.1 2 15.14 odd 2
75.12.a.c.1.1 2 1.1 even 1 trivial
75.12.b.d.49.2 4 5.2 odd 4
75.12.b.d.49.3 4 5.3 odd 4
225.12.a.i.1.2 2 3.2 odd 2
225.12.b.i.199.2 4 15.8 even 4
225.12.b.i.199.3 4 15.2 even 4
240.12.a.m.1.1 2 20.19 odd 2