Properties

Label 75.12
Level 75
Weight 12
Dimension 1499
Nonzero newspaces 6
Newform subspaces 27
Sturm bound 4800
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 27 \)
Sturm bound: \(4800\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(75))\).

Total New Old
Modular forms 2256 1539 717
Cusp forms 2144 1499 645
Eisenstein series 112 40 72

Trace form

\( 1499 q - 50 q^{2} - 1261 q^{3} + 16304 q^{4} + 2814 q^{5} + 19860 q^{6} - 340 q^{7} - 537504 q^{8} + 295235 q^{9} - 38464 q^{10} - 1995140 q^{11} + 3384626 q^{12} + 8062666 q^{13} - 8887728 q^{14} + 1519346 q^{15}+ \cdots - 193760318052 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(75))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
75.12.a \(\chi_{75}(1, \cdot)\) 75.12.a.a 1 1
75.12.a.b 1
75.12.a.c 2
75.12.a.d 2
75.12.a.e 3
75.12.a.f 3
75.12.a.g 3
75.12.a.h 4
75.12.a.i 4
75.12.a.j 6
75.12.a.k 6
75.12.b \(\chi_{75}(49, \cdot)\) 75.12.b.a 2 1
75.12.b.b 2
75.12.b.c 4
75.12.b.d 4
75.12.b.e 6
75.12.b.f 6
75.12.b.g 8
75.12.e \(\chi_{75}(32, \cdot)\) 75.12.e.a 4 2
75.12.e.b 4
75.12.e.c 24
75.12.e.d 40
75.12.e.e 56
75.12.g \(\chi_{75}(16, \cdot)\) 75.12.g.a 108 4
75.12.g.b 108
75.12.i \(\chi_{75}(4, \cdot)\) 75.12.i.a 224 4
75.12.l \(\chi_{75}(2, \cdot)\) 75.12.l.a 864 8

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(75))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(75)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)