Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7488,2,Mod(1,7488)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7488, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7488.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7488.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(59.7919810335\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 234) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 7488.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −2.00000 | −0.894427 | −0.447214 | − | 0.894427i | \(-0.647584\pi\) | ||||
−0.447214 | + | 0.894427i | \(0.647584\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.00000 | 0.755929 | 0.377964 | − | 0.925820i | \(-0.376624\pi\) | ||||
0.377964 | + | 0.925820i | \(0.376624\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 4.00000 | 1.20605 | 0.603023 | − | 0.797724i | \(-0.293963\pi\) | ||||
0.603023 | + | 0.797724i | \(0.293963\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000 | 0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −6.00000 | −1.37649 | −0.688247 | − | 0.725476i | \(-0.741620\pi\) | ||||
−0.688247 | + | 0.725476i | \(0.741620\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000 | 0.834058 | 0.417029 | − | 0.908893i | \(-0.363071\pi\) | ||||
0.417029 | + | 0.908893i | \(0.363071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −1.00000 | −0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −8.00000 | −1.48556 | −0.742781 | − | 0.669534i | \(-0.766494\pi\) | ||||
−0.742781 | + | 0.669534i | \(0.766494\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 2.00000 | 0.359211 | 0.179605 | − | 0.983739i | \(-0.442518\pi\) | ||||
0.179605 | + | 0.983739i | \(0.442518\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −4.00000 | −0.676123 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −6.00000 | −0.986394 | −0.493197 | − | 0.869918i | \(-0.664172\pi\) | ||||
−0.493197 | + | 0.869918i | \(0.664172\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −8.00000 | −1.21999 | −0.609994 | − | 0.792406i | \(-0.708828\pi\) | ||||
−0.609994 | + | 0.792406i | \(0.708828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 8.00000 | 1.16692 | 0.583460 | − | 0.812142i | \(-0.301699\pi\) | ||||
0.583460 | + | 0.812142i | \(0.301699\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3.00000 | −0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 12.0000 | 1.64833 | 0.824163 | − | 0.566352i | \(-0.191646\pi\) | ||||
0.824163 | + | 0.566352i | \(0.191646\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −8.00000 | −1.07872 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −4.00000 | −0.520756 | −0.260378 | − | 0.965507i | \(-0.583847\pi\) | ||||
−0.260378 | + | 0.965507i | \(0.583847\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −2.00000 | −0.248069 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −2.00000 | −0.244339 | −0.122169 | − | 0.992509i | \(-0.538985\pi\) | ||||
−0.122169 | + | 0.992509i | \(0.538985\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −16.0000 | −1.89885 | −0.949425 | − | 0.313993i | \(-0.898333\pi\) | ||||
−0.949425 | + | 0.313993i | \(0.898333\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 14.0000 | 1.63858 | 0.819288 | − | 0.573382i | \(-0.194369\pi\) | ||||
0.819288 | + | 0.573382i | \(0.194369\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 8.00000 | 0.911685 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 4.00000 | 0.450035 | 0.225018 | − | 0.974355i | \(-0.427756\pi\) | ||||
0.225018 | + | 0.974355i | \(0.427756\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000 | 1.31717 | 0.658586 | − | 0.752506i | \(-0.271155\pi\) | ||||
0.658586 | + | 0.752506i | \(0.271155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 2.00000 | 0.209657 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 12.0000 | 1.23117 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −10.0000 | −1.01535 | −0.507673 | − | 0.861550i | \(-0.669494\pi\) | ||||
−0.507673 | + | 0.861550i | \(0.669494\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −16.0000 | −1.59206 | −0.796030 | − | 0.605257i | \(-0.793070\pi\) | ||||
−0.796030 | + | 0.605257i | \(0.793070\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 20.0000 | 1.93347 | 0.966736 | − | 0.255774i | \(-0.0823304\pi\) | ||||
0.966736 | + | 0.255774i | \(0.0823304\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −4.00000 | −0.376288 | −0.188144 | − | 0.982141i | \(-0.560247\pi\) | ||||
−0.188144 | + | 0.982141i | \(0.560247\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −8.00000 | −0.746004 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 12.0000 | 1.07331 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000 | 0.709885 | 0.354943 | − | 0.934888i | \(-0.384500\pi\) | ||||
0.354943 | + | 0.934888i | \(0.384500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −4.00000 | −0.349482 | −0.174741 | − | 0.984614i | \(-0.555909\pi\) | ||||
−0.174741 | + | 0.984614i | \(0.555909\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −12.0000 | −1.04053 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 18.0000 | 1.53784 | 0.768922 | − | 0.639343i | \(-0.220793\pi\) | ||||
0.768922 | + | 0.639343i | \(0.220793\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −20.0000 | −1.69638 | −0.848189 | − | 0.529694i | \(-0.822307\pi\) | ||||
−0.848189 | + | 0.529694i | \(0.822307\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 4.00000 | 0.334497 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 16.0000 | 1.32873 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −18.0000 | −1.46482 | −0.732410 | − | 0.680864i | \(-0.761604\pi\) | ||||
−0.732410 | + | 0.680864i | \(0.761604\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −4.00000 | −0.321288 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −2.00000 | −0.159617 | −0.0798087 | − | 0.996810i | \(-0.525431\pi\) | ||||
−0.0798087 | + | 0.996810i | \(0.525431\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 8.00000 | 0.630488 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −10.0000 | −0.783260 | −0.391630 | − | 0.920123i | \(-0.628089\pi\) | ||||
−0.391630 | + | 0.920123i | \(0.628089\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 16.0000 | 1.21646 | 0.608229 | − | 0.793762i | \(-0.291880\pi\) | ||||
0.608229 | + | 0.793762i | \(0.291880\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −2.00000 | −0.151186 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 18.0000 | 1.33793 | 0.668965 | − | 0.743294i | \(-0.266738\pi\) | ||||
0.668965 | + | 0.743294i | \(0.266738\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 12.0000 | 0.882258 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −4.00000 | −0.289430 | −0.144715 | − | 0.989473i | \(-0.546227\pi\) | ||||
−0.144715 | + | 0.989473i | \(0.546227\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 2.00000 | 0.143963 | 0.0719816 | − | 0.997406i | \(-0.477068\pi\) | ||||
0.0719816 | + | 0.997406i | \(0.477068\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −18.0000 | −1.28245 | −0.641223 | − | 0.767354i | \(-0.721573\pi\) | ||||
−0.641223 | + | 0.767354i | \(0.721573\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −8.00000 | −0.567105 | −0.283552 | − | 0.958957i | \(-0.591513\pi\) | ||||
−0.283552 | + | 0.958957i | \(0.591513\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −16.0000 | −1.12298 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 12.0000 | 0.838116 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −24.0000 | −1.66011 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 8.00000 | 0.550743 | 0.275371 | − | 0.961338i | \(-0.411199\pi\) | ||||
0.275371 | + | 0.961338i | \(0.411199\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 16.0000 | 1.09119 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 4.00000 | 0.271538 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −6.00000 | −0.401790 | −0.200895 | − | 0.979613i | \(-0.564385\pi\) | ||||
−0.200895 | + | 0.979613i | \(0.564385\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −12.0000 | −0.796468 | −0.398234 | − | 0.917284i | \(-0.630377\pi\) | ||||
−0.398234 | + | 0.917284i | \(0.630377\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 30.0000 | 1.98246 | 0.991228 | − | 0.132164i | \(-0.0421925\pi\) | ||||
0.991228 | + | 0.132164i | \(0.0421925\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −20.0000 | −1.31024 | −0.655122 | − | 0.755523i | \(-0.727383\pi\) | ||||
−0.655122 | + | 0.755523i | \(0.727383\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −16.0000 | −1.04372 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −24.0000 | −1.55243 | −0.776215 | − | 0.630468i | \(-0.782863\pi\) | ||||
−0.776215 | + | 0.630468i | \(0.782863\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 6.00000 | 0.386494 | 0.193247 | − | 0.981150i | \(-0.438098\pi\) | ||||
0.193247 | + | 0.981150i | \(0.438098\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 6.00000 | 0.383326 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −6.00000 | −0.381771 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 16.0000 | 1.00591 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −12.0000 | −0.748539 | −0.374270 | − | 0.927320i | \(-0.622107\pi\) | ||||
−0.374270 | + | 0.927320i | \(0.622107\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −12.0000 | −0.745644 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −24.0000 | −1.47431 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −22.0000 | −1.33640 | −0.668202 | − | 0.743980i | \(-0.732936\pi\) | ||||
−0.668202 | + | 0.743980i | \(0.732936\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −4.00000 | −0.241209 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 6.00000 | 0.360505 | 0.180253 | − | 0.983620i | \(-0.442309\pi\) | ||||
0.180253 | + | 0.983620i | \(0.442309\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 10.0000 | 0.596550 | 0.298275 | − | 0.954480i | \(-0.403589\pi\) | ||||
0.298275 | + | 0.954480i | \(0.403589\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −20.0000 | −1.18888 | −0.594438 | − | 0.804141i | \(-0.702626\pi\) | ||||
−0.594438 | + | 0.804141i | \(0.702626\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −12.0000 | −0.708338 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 2.00000 | 0.116841 | 0.0584206 | − | 0.998292i | \(-0.481394\pi\) | ||||
0.0584206 | + | 0.998292i | \(0.481394\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 8.00000 | 0.465778 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 4.00000 | 0.231326 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −16.0000 | −0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 20.0000 | 1.14520 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 2.00000 | 0.114146 | 0.0570730 | − | 0.998370i | \(-0.481823\pi\) | ||||
0.0570730 | + | 0.998370i | \(0.481823\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −12.0000 | −0.680458 | −0.340229 | − | 0.940343i | \(-0.610505\pi\) | ||||
−0.340229 | + | 0.940343i | \(0.610505\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 26.0000 | 1.46961 | 0.734803 | − | 0.678280i | \(-0.237274\pi\) | ||||
0.734803 | + | 0.678280i | \(0.237274\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6.00000 | 0.336994 | 0.168497 | − | 0.985702i | \(-0.446109\pi\) | ||||
0.168497 | + | 0.985702i | \(0.446109\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −32.0000 | −1.79166 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −1.00000 | −0.0554700 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 16.0000 | 0.882109 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −10.0000 | −0.549650 | −0.274825 | − | 0.961494i | \(-0.588620\pi\) | ||||
−0.274825 | + | 0.961494i | \(0.588620\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 4.00000 | 0.218543 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −34.0000 | −1.85210 | −0.926049 | − | 0.377403i | \(-0.876817\pi\) | ||||
−0.926049 | + | 0.377403i | \(0.876817\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 8.00000 | 0.433224 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −20.0000 | −1.07990 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 24.0000 | 1.28839 | 0.644194 | − | 0.764862i | \(-0.277193\pi\) | ||||
0.644194 | + | 0.764862i | \(0.277193\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −22.0000 | −1.17763 | −0.588817 | − | 0.808267i | \(-0.700406\pi\) | ||||
−0.588817 | + | 0.808267i | \(0.700406\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −14.0000 | −0.745145 | −0.372572 | − | 0.928003i | \(-0.621524\pi\) | ||||
−0.372572 | + | 0.928003i | \(0.621524\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 32.0000 | 1.69838 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 17.0000 | 0.894737 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −28.0000 | −1.46559 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 24.0000 | 1.24602 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 10.0000 | 0.517780 | 0.258890 | − | 0.965907i | \(-0.416643\pi\) | ||||
0.258890 | + | 0.965907i | \(0.416643\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −8.00000 | −0.412021 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 10.0000 | 0.513665 | 0.256833 | − | 0.966456i | \(-0.417321\pi\) | ||||
0.256833 | + | 0.966456i | \(0.417321\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −16.0000 | −0.815436 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −12.0000 | −0.608424 | −0.304212 | − | 0.952604i | \(-0.598393\pi\) | ||||
−0.304212 | + | 0.952604i | \(0.598393\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −8.00000 | −0.402524 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 10.0000 | 0.501886 | 0.250943 | − | 0.968002i | \(-0.419259\pi\) | ||||
0.250943 | + | 0.968002i | \(0.419259\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 6.00000 | 0.299626 | 0.149813 | − | 0.988714i | \(-0.452133\pi\) | ||||
0.149813 | + | 0.988714i | \(0.452133\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 2.00000 | 0.0996271 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −24.0000 | −1.18964 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −26.0000 | −1.28562 | −0.642809 | − | 0.766027i | \(-0.722231\pi\) | ||||
−0.642809 | + | 0.766027i | \(0.722231\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −8.00000 | −0.393654 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −24.0000 | −1.17811 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −36.0000 | −1.75872 | −0.879358 | − | 0.476162i | \(-0.842028\pi\) | ||||
−0.879358 | + | 0.476162i | \(0.842028\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −10.0000 | −0.487370 | −0.243685 | − | 0.969854i | \(-0.578356\pi\) | ||||
−0.243685 | + | 0.969854i | \(0.578356\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −20.0000 | −0.967868 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −2.00000 | −0.0961139 | −0.0480569 | − | 0.998845i | \(-0.515303\pi\) | ||||
−0.0480569 | + | 0.998845i | \(0.515303\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −24.0000 | −1.14808 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 4.00000 | 0.190910 | 0.0954548 | − | 0.995434i | \(-0.469569\pi\) | ||||
0.0954548 | + | 0.995434i | \(0.469569\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −36.0000 | −1.71041 | −0.855206 | − | 0.518289i | \(-0.826569\pi\) | ||||
−0.855206 | + | 0.518289i | \(0.826569\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −12.0000 | −0.568855 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −26.0000 | −1.22702 | −0.613508 | − | 0.789689i | \(-0.710242\pi\) | ||||
−0.613508 | + | 0.789689i | \(0.710242\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −24.0000 | −1.13012 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −4.00000 | −0.187523 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −2.00000 | −0.0935561 | −0.0467780 | − | 0.998905i | \(-0.514895\pi\) | ||||
−0.0467780 | + | 0.998905i | \(0.514895\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 30.0000 | 1.39724 | 0.698620 | − | 0.715493i | \(-0.253798\pi\) | ||||
0.698620 | + | 0.715493i | \(0.253798\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −22.0000 | −1.02243 | −0.511213 | − | 0.859454i | \(-0.670804\pi\) | ||||
−0.511213 | + | 0.859454i | \(0.670804\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 8.00000 | 0.370196 | 0.185098 | − | 0.982720i | \(-0.440740\pi\) | ||||
0.185098 | + | 0.982720i | \(0.440740\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −4.00000 | −0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −32.0000 | −1.47136 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 6.00000 | 0.275299 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −6.00000 | −0.273576 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 20.0000 | 0.908153 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −38.0000 | −1.72194 | −0.860972 | − | 0.508652i | \(-0.830144\pi\) | ||||
−0.860972 | + | 0.508652i | \(0.830144\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 16.0000 | 0.722070 | 0.361035 | − | 0.932552i | \(-0.382424\pi\) | ||||
0.361035 | + | 0.932552i | \(0.382424\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −32.0000 | −1.43540 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 22.0000 | 0.984855 | 0.492428 | − | 0.870353i | \(-0.336110\pi\) | ||||
0.492428 | + | 0.870353i | \(0.336110\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 32.0000 | 1.42681 | 0.713405 | − | 0.700752i | \(-0.247152\pi\) | ||||
0.713405 | + | 0.700752i | \(0.247152\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 32.0000 | 1.42398 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −10.0000 | −0.443242 | −0.221621 | − | 0.975133i | \(-0.571135\pi\) | ||||
−0.221621 | + | 0.975133i | \(0.571135\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 28.0000 | 1.23865 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 8.00000 | 0.352522 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 32.0000 | 1.40736 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 36.0000 | 1.57719 | 0.788594 | − | 0.614914i | \(-0.210809\pi\) | ||||
0.788594 | + | 0.614914i | \(0.210809\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −12.0000 | −0.524723 | −0.262362 | − | 0.964970i | \(-0.584501\pi\) | ||||
−0.262362 | + | 0.964970i | \(0.584501\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −6.00000 | −0.259889 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −40.0000 | −1.72935 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −12.0000 | −0.516877 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −2.00000 | −0.0859867 | −0.0429934 | − | 0.999075i | \(-0.513689\pi\) | ||||
−0.0429934 | + | 0.999075i | \(0.513689\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 20.0000 | 0.856706 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −20.0000 | −0.855138 | −0.427569 | − | 0.903983i | \(-0.640630\pi\) | ||||
−0.427569 | + | 0.903983i | \(0.640630\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 48.0000 | 2.04487 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000 | 0.340195 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 18.0000 | 0.762684 | 0.381342 | − | 0.924434i | \(-0.375462\pi\) | ||||
0.381342 | + | 0.924434i | \(0.375462\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 20.0000 | 0.842900 | 0.421450 | − | 0.906852i | \(-0.361521\pi\) | ||||
0.421450 | + | 0.906852i | \(0.361521\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 8.00000 | 0.336563 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 4.00000 | 0.167689 | 0.0838444 | − | 0.996479i | \(-0.473280\pi\) | ||||
0.0838444 | + | 0.996479i | \(0.473280\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 36.0000 | 1.50655 | 0.753277 | − | 0.657704i | \(-0.228472\pi\) | ||||
0.753277 | + | 0.657704i | \(0.228472\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −4.00000 | −0.166812 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −30.0000 | −1.24892 | −0.624458 | − | 0.781058i | \(-0.714680\pi\) | ||||
−0.624458 | + | 0.781058i | \(0.714680\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 24.0000 | 0.995688 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 48.0000 | 1.98796 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −28.0000 | −1.15568 | −0.577842 | − | 0.816149i | \(-0.696105\pi\) | ||||
−0.577842 | + | 0.816149i | \(0.696105\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −12.0000 | −0.494451 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 38.0000 | 1.56047 | 0.780236 | − | 0.625485i | \(-0.215099\pi\) | ||||
0.780236 | + | 0.625485i | \(0.215099\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −40.0000 | −1.63436 | −0.817178 | − | 0.576386i | \(-0.804463\pi\) | ||||
−0.817178 | + | 0.576386i | \(0.804463\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −10.0000 | −0.406558 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −24.0000 | −0.974130 | −0.487065 | − | 0.873366i | \(-0.661933\pi\) | ||||
−0.487065 | + | 0.873366i | \(0.661933\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 8.00000 | 0.323645 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 34.0000 | 1.37325 | 0.686624 | − | 0.727013i | \(-0.259092\pi\) | ||||
0.686624 | + | 0.727013i | \(0.259092\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −14.0000 | −0.563619 | −0.281809 | − | 0.959470i | \(-0.590935\pi\) | ||||
−0.281809 | + | 0.959470i | \(0.590935\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 34.0000 | 1.36658 | 0.683288 | − | 0.730149i | \(-0.260549\pi\) | ||||
0.683288 | + | 0.730149i | \(0.260549\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 12.0000 | 0.480770 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 14.0000 | 0.557331 | 0.278666 | − | 0.960388i | \(-0.410108\pi\) | ||||
0.278666 | + | 0.960388i | \(0.410108\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −16.0000 | −0.634941 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −3.00000 | −0.118864 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 40.0000 | 1.57991 | 0.789953 | − | 0.613168i | \(-0.210105\pi\) | ||||
0.789953 | + | 0.613168i | \(0.210105\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −10.0000 | −0.394362 | −0.197181 | − | 0.980367i | \(-0.563179\pi\) | ||||
−0.197181 | + | 0.980367i | \(0.563179\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 8.00000 | 0.314512 | 0.157256 | − | 0.987558i | \(-0.449735\pi\) | ||||
0.157256 | + | 0.987558i | \(0.449735\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −16.0000 | −0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 8.00000 | 0.312586 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 48.0000 | 1.86981 | 0.934907 | − | 0.354892i | \(-0.115482\pi\) | ||||
0.934907 | + | 0.354892i | \(0.115482\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −14.0000 | −0.544537 | −0.272268 | − | 0.962221i | \(-0.587774\pi\) | ||||
−0.272268 | + | 0.962221i | \(0.587774\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 24.0000 | 0.930680 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −32.0000 | −1.23904 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −40.0000 | −1.54418 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 22.0000 | 0.848038 | 0.424019 | − | 0.905653i | \(-0.360619\pi\) | ||||
0.424019 | + | 0.905653i | \(0.360619\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −12.0000 | −0.461197 | −0.230599 | − | 0.973049i | \(-0.574068\pi\) | ||||
−0.230599 | + | 0.973049i | \(0.574068\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −20.0000 | −0.767530 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 4.00000 | 0.153056 | 0.0765279 | − | 0.997067i | \(-0.475617\pi\) | ||||
0.0765279 | + | 0.997067i | \(0.475617\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −36.0000 | −1.37549 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 12.0000 | 0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −26.0000 | −0.989087 | −0.494543 | − | 0.869153i | \(-0.664665\pi\) | ||||
−0.494543 | + | 0.869153i | \(0.664665\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 40.0000 | 1.51729 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −12.0000 | −0.453234 | −0.226617 | − | 0.973984i | \(-0.572767\pi\) | ||||
−0.226617 | + | 0.973984i | \(0.572767\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 36.0000 | 1.35777 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −32.0000 | −1.20348 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 22.0000 | 0.826227 | 0.413114 | − | 0.910679i | \(-0.364441\pi\) | ||||
0.413114 | + | 0.910679i | \(0.364441\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 8.00000 | 0.299602 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −8.00000 | −0.299183 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 28.0000 | 1.04422 | 0.522112 | − | 0.852877i | \(-0.325144\pi\) | ||||
0.522112 | + | 0.852877i | \(0.325144\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −8.00000 | −0.297936 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 8.00000 | 0.297113 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 8.00000 | 0.296704 | 0.148352 | − | 0.988935i | \(-0.452603\pi\) | ||||
0.148352 | + | 0.988935i | \(0.452603\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 22.0000 | 0.812589 | 0.406294 | − | 0.913742i | \(-0.366821\pi\) | ||||
0.406294 | + | 0.913742i | \(0.366821\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −8.00000 | −0.294684 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −54.0000 | −1.98642 | −0.993211 | − | 0.116326i | \(-0.962888\pi\) | ||||
−0.993211 | + | 0.116326i | \(0.962888\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −40.0000 | −1.46746 | −0.733729 | − | 0.679442i | \(-0.762222\pi\) | ||||
−0.733729 | + | 0.679442i | \(0.762222\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 12.0000 | 0.439646 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 40.0000 | 1.46157 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 12.0000 | 0.437886 | 0.218943 | − | 0.975738i | \(-0.429739\pi\) | ||||
0.218943 | + | 0.975738i | \(0.429739\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 36.0000 | 1.31017 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 18.0000 | 0.654221 | 0.327111 | − | 0.944986i | \(-0.393925\pi\) | ||||
0.327111 | + | 0.944986i | \(0.393925\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −30.0000 | −1.08750 | −0.543750 | − | 0.839248i | \(-0.682996\pi\) | ||||
−0.543750 | + | 0.839248i | \(0.682996\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −20.0000 | −0.724049 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −4.00000 | −0.144432 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −30.0000 | −1.08183 | −0.540914 | − | 0.841078i | \(-0.681921\pi\) | ||||
−0.540914 | + | 0.841078i | \(0.681921\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −14.0000 | −0.503545 | −0.251773 | − | 0.967786i | \(-0.581013\pi\) | ||||
−0.251773 | + | 0.967786i | \(0.581013\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −2.00000 | −0.0718421 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 36.0000 | 1.28983 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −64.0000 | −2.29010 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 4.00000 | 0.142766 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −22.0000 | −0.784215 | −0.392108 | − | 0.919919i | \(-0.628254\pi\) | ||||
−0.392108 | + | 0.919919i | \(0.628254\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −8.00000 | −0.284447 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −10.0000 | −0.355110 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −12.0000 | −0.425062 | −0.212531 | − | 0.977154i | \(-0.568171\pi\) | ||||
−0.212531 | + | 0.977154i | \(0.568171\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 56.0000 | 1.97620 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −16.0000 | −0.563926 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −36.0000 | −1.26569 | −0.632846 | − | 0.774277i | \(-0.718114\pi\) | ||||
−0.632846 | + | 0.774277i | \(0.718114\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 50.0000 | 1.75574 | 0.877869 | − | 0.478901i | \(-0.158965\pi\) | ||||
0.877869 | + | 0.478901i | \(0.158965\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 20.0000 | 0.700569 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 48.0000 | 1.67931 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 34.0000 | 1.18661 | 0.593304 | − | 0.804978i | \(-0.297823\pi\) | ||||
0.593304 | + | 0.804978i | \(0.297823\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 12.0000 | 0.418294 | 0.209147 | − | 0.977884i | \(-0.432931\pi\) | ||||
0.209147 | + | 0.977884i | \(0.432931\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 12.0000 | 0.417281 | 0.208640 | − | 0.977992i | \(-0.433096\pi\) | ||||
0.208640 | + | 0.977992i | \(0.433096\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −46.0000 | −1.59765 | −0.798823 | − | 0.601566i | \(-0.794544\pi\) | ||||
−0.798823 | + | 0.601566i | \(0.794544\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 16.0000 | 0.552381 | 0.276191 | − | 0.961103i | \(-0.410928\pi\) | ||||
0.276191 | + | 0.961103i | \(0.410928\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 35.0000 | 1.20690 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −2.00000 | −0.0688021 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 10.0000 | 0.343604 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −24.0000 | −0.822709 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 26.0000 | 0.890223 | 0.445112 | − | 0.895475i | \(-0.353164\pi\) | ||||
0.445112 | + | 0.895475i | \(0.353164\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 28.0000 | 0.956462 | 0.478231 | − | 0.878234i | \(-0.341278\pi\) | ||||
0.478231 | + | 0.878234i | \(0.341278\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 8.00000 | 0.272956 | 0.136478 | − | 0.990643i | \(-0.456422\pi\) | ||||
0.136478 | + | 0.990643i | \(0.456422\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 8.00000 | 0.272323 | 0.136162 | − | 0.990687i | \(-0.456523\pi\) | ||||
0.136162 | + | 0.990687i | \(0.456523\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −32.0000 | −1.08803 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 16.0000 | 0.542763 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −2.00000 | −0.0677674 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 24.0000 | 0.811348 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −6.00000 | −0.202606 | −0.101303 | − | 0.994856i | \(-0.532301\pi\) | ||||
−0.101303 | + | 0.994856i | \(0.532301\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −36.0000 | −1.21287 | −0.606435 | − | 0.795133i | \(-0.707401\pi\) | ||||
−0.606435 | + | 0.795133i | \(0.707401\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −20.0000 | −0.673054 | −0.336527 | − | 0.941674i | \(-0.609252\pi\) | ||||
−0.336527 | + | 0.941674i | \(0.609252\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 44.0000 | 1.47738 | 0.738688 | − | 0.674048i | \(-0.235446\pi\) | ||||
0.738688 | + | 0.674048i | \(0.235446\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 16.0000 | 0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −48.0000 | −1.60626 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 24.0000 | 0.802232 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −16.0000 | −0.533630 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −36.0000 | −1.19668 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 12.0000 | 0.398453 | 0.199227 | − | 0.979953i | \(-0.436157\pi\) | ||||
0.199227 | + | 0.979953i | \(0.436157\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 12.0000 | 0.397578 | 0.198789 | − | 0.980042i | \(-0.436299\pi\) | ||||
0.198789 | + | 0.980042i | \(0.436299\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 48.0000 | 1.58857 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −8.00000 | −0.264183 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −12.0000 | −0.395843 | −0.197922 | − | 0.980218i | \(-0.563419\pi\) | ||||
−0.197922 | + | 0.980218i | \(0.563419\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −16.0000 | −0.526646 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 6.00000 | 0.197279 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −30.0000 | −0.984268 | −0.492134 | − | 0.870519i | \(-0.663783\pi\) | ||||
−0.492134 | + | 0.870519i | \(0.663783\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 18.0000 | 0.589926 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 30.0000 | 0.980057 | 0.490029 | − | 0.871706i | \(-0.336986\pi\) | ||||
0.490029 | + | 0.871706i | \(0.336986\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 26.0000 | 0.847576 | 0.423788 | − | 0.905761i | \(-0.360700\pi\) | ||||
0.423788 | + | 0.905761i | \(0.360700\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −24.0000 | −0.781548 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −36.0000 | −1.16984 | −0.584921 | − | 0.811090i | \(-0.698875\pi\) | ||||
−0.584921 | + | 0.811090i | \(0.698875\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 14.0000 | 0.454459 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −28.0000 | −0.907009 | −0.453504 | − | 0.891254i | \(-0.649826\pi\) | ||||
−0.453504 | + | 0.891254i | \(0.649826\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 8.00000 | 0.258874 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 36.0000 | 1.16250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −27.0000 | −0.870968 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −4.00000 | −0.128765 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 58.0000 | 1.86515 | 0.932577 | − | 0.360971i | \(-0.117555\pi\) | ||||
0.932577 | + | 0.360971i | \(0.117555\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −48.0000 | −1.54039 | −0.770197 | − | 0.637806i | \(-0.779842\pi\) | ||||
−0.770197 | + | 0.637806i | \(0.779842\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −40.0000 | −1.28234 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −18.0000 | −0.575871 | −0.287936 | − | 0.957650i | \(-0.592969\pi\) | ||||
−0.287936 | + | 0.957650i | \(0.592969\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 24.0000 | 0.767043 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −32.0000 | −1.02064 | −0.510321 | − | 0.859984i | \(-0.670473\pi\) | ||||
−0.510321 | + | 0.859984i | \(0.670473\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 36.0000 | 1.14706 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −32.0000 | −1.01754 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 48.0000 | 1.52477 | 0.762385 | − | 0.647124i | \(-0.224028\pi\) | ||||
0.762385 | + | 0.647124i | \(0.224028\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 16.0000 | 0.507234 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −38.0000 | −1.20347 | −0.601736 | − | 0.798695i | \(-0.705524\pi\) | ||||
−0.601736 | + | 0.798695i | \(0.705524\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 7488.2.a.s.1.1 | 1 | ||
3.2 | odd | 2 | 7488.2.a.bu.1.1 | 1 | |||
4.3 | odd | 2 | 7488.2.a.j.1.1 | 1 | |||
8.3 | odd | 2 | 234.2.a.d.1.1 | yes | 1 | ||
8.5 | even | 2 | 1872.2.a.p.1.1 | 1 | |||
12.11 | even | 2 | 7488.2.a.bp.1.1 | 1 | |||
24.5 | odd | 2 | 1872.2.a.g.1.1 | 1 | |||
24.11 | even | 2 | 234.2.a.a.1.1 | ✓ | 1 | ||
40.3 | even | 4 | 5850.2.e.bd.5149.1 | 2 | |||
40.19 | odd | 2 | 5850.2.a.v.1.1 | 1 | |||
40.27 | even | 4 | 5850.2.e.bd.5149.2 | 2 | |||
72.11 | even | 6 | 2106.2.e.z.1405.1 | 2 | |||
72.43 | odd | 6 | 2106.2.e.e.1405.1 | 2 | |||
72.59 | even | 6 | 2106.2.e.z.703.1 | 2 | |||
72.67 | odd | 6 | 2106.2.e.e.703.1 | 2 | |||
104.51 | odd | 2 | 3042.2.a.b.1.1 | 1 | |||
104.83 | even | 4 | 3042.2.b.b.1351.1 | 2 | |||
104.99 | even | 4 | 3042.2.b.b.1351.2 | 2 | |||
120.59 | even | 2 | 5850.2.a.bv.1.1 | 1 | |||
120.83 | odd | 4 | 5850.2.e.d.5149.2 | 2 | |||
120.107 | odd | 4 | 5850.2.e.d.5149.1 | 2 | |||
312.83 | odd | 4 | 3042.2.b.c.1351.2 | 2 | |||
312.155 | even | 2 | 3042.2.a.o.1.1 | 1 | |||
312.203 | odd | 4 | 3042.2.b.c.1351.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
234.2.a.a.1.1 | ✓ | 1 | 24.11 | even | 2 | ||
234.2.a.d.1.1 | yes | 1 | 8.3 | odd | 2 | ||
1872.2.a.g.1.1 | 1 | 24.5 | odd | 2 | |||
1872.2.a.p.1.1 | 1 | 8.5 | even | 2 | |||
2106.2.e.e.703.1 | 2 | 72.67 | odd | 6 | |||
2106.2.e.e.1405.1 | 2 | 72.43 | odd | 6 | |||
2106.2.e.z.703.1 | 2 | 72.59 | even | 6 | |||
2106.2.e.z.1405.1 | 2 | 72.11 | even | 6 | |||
3042.2.a.b.1.1 | 1 | 104.51 | odd | 2 | |||
3042.2.a.o.1.1 | 1 | 312.155 | even | 2 | |||
3042.2.b.b.1351.1 | 2 | 104.83 | even | 4 | |||
3042.2.b.b.1351.2 | 2 | 104.99 | even | 4 | |||
3042.2.b.c.1351.1 | 2 | 312.203 | odd | 4 | |||
3042.2.b.c.1351.2 | 2 | 312.83 | odd | 4 | |||
5850.2.a.v.1.1 | 1 | 40.19 | odd | 2 | |||
5850.2.a.bv.1.1 | 1 | 120.59 | even | 2 | |||
5850.2.e.d.5149.1 | 2 | 120.107 | odd | 4 | |||
5850.2.e.d.5149.2 | 2 | 120.83 | odd | 4 | |||
5850.2.e.bd.5149.1 | 2 | 40.3 | even | 4 | |||
5850.2.e.bd.5149.2 | 2 | 40.27 | even | 4 | |||
7488.2.a.j.1.1 | 1 | 4.3 | odd | 2 | |||
7488.2.a.s.1.1 | 1 | 1.1 | even | 1 | trivial | ||
7488.2.a.bp.1.1 | 1 | 12.11 | even | 2 | |||
7488.2.a.bu.1.1 | 1 | 3.2 | odd | 2 |