Properties

Label 7488.2.a.cl.1.1
Level $7488$
Weight $2$
Character 7488.1
Self dual yes
Analytic conductor $59.792$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7488.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(59.7919810335\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 7488.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.82843 q^{5} +2.82843 q^{7} +O(q^{10})\) \(q-2.82843 q^{5} +2.82843 q^{7} -2.00000 q^{11} +1.00000 q^{13} -7.65685 q^{17} +2.82843 q^{19} +4.00000 q^{23} +3.00000 q^{25} +2.00000 q^{29} -1.17157 q^{31} -8.00000 q^{35} +7.65685 q^{37} -5.17157 q^{41} +1.65685 q^{43} +11.6569 q^{47} +1.00000 q^{49} -2.00000 q^{53} +5.65685 q^{55} +7.65685 q^{59} -13.3137 q^{61} -2.82843 q^{65} -6.82843 q^{67} -2.00000 q^{71} +0.343146 q^{73} -5.65685 q^{77} -11.3137 q^{79} +3.65685 q^{83} +21.6569 q^{85} -14.8284 q^{89} +2.82843 q^{91} -8.00000 q^{95} +3.65685 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + O(q^{10}) \) \( 2 q - 4 q^{11} + 2 q^{13} - 4 q^{17} + 8 q^{23} + 6 q^{25} + 4 q^{29} - 8 q^{31} - 16 q^{35} + 4 q^{37} - 16 q^{41} - 8 q^{43} + 12 q^{47} + 2 q^{49} - 4 q^{53} + 4 q^{59} - 4 q^{61} - 8 q^{67} - 4 q^{71} + 12 q^{73} - 4 q^{83} + 32 q^{85} - 24 q^{89} - 16 q^{95} - 4 q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.82843 −1.26491 −0.632456 0.774597i \(-0.717953\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) 2.82843 1.06904 0.534522 0.845154i \(-0.320491\pi\)
0.534522 + 0.845154i \(0.320491\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.65685 −1.85706 −0.928530 0.371257i \(-0.878927\pi\)
−0.928530 + 0.371257i \(0.878927\pi\)
\(18\) 0 0
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −1.17157 −0.210421 −0.105210 0.994450i \(-0.533552\pi\)
−0.105210 + 0.994450i \(0.533552\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.00000 −1.35225
\(36\) 0 0
\(37\) 7.65685 1.25878 0.629390 0.777090i \(-0.283305\pi\)
0.629390 + 0.777090i \(0.283305\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.17157 −0.807664 −0.403832 0.914833i \(-0.632322\pi\)
−0.403832 + 0.914833i \(0.632322\pi\)
\(42\) 0 0
\(43\) 1.65685 0.252668 0.126334 0.991988i \(-0.459679\pi\)
0.126334 + 0.991988i \(0.459679\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.6569 1.70033 0.850163 0.526519i \(-0.176503\pi\)
0.850163 + 0.526519i \(0.176503\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 5.65685 0.762770
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.65685 0.996838 0.498419 0.866936i \(-0.333914\pi\)
0.498419 + 0.866936i \(0.333914\pi\)
\(60\) 0 0
\(61\) −13.3137 −1.70465 −0.852323 0.523016i \(-0.824807\pi\)
−0.852323 + 0.523016i \(0.824807\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.82843 −0.350823
\(66\) 0 0
\(67\) −6.82843 −0.834225 −0.417113 0.908855i \(-0.636958\pi\)
−0.417113 + 0.908855i \(0.636958\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 0.343146 0.0401622 0.0200811 0.999798i \(-0.493608\pi\)
0.0200811 + 0.999798i \(0.493608\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.65685 −0.644658
\(78\) 0 0
\(79\) −11.3137 −1.27289 −0.636446 0.771321i \(-0.719596\pi\)
−0.636446 + 0.771321i \(0.719596\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.65685 0.401392 0.200696 0.979654i \(-0.435680\pi\)
0.200696 + 0.979654i \(0.435680\pi\)
\(84\) 0 0
\(85\) 21.6569 2.34902
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.8284 −1.57181 −0.785905 0.618347i \(-0.787803\pi\)
−0.785905 + 0.618347i \(0.787803\pi\)
\(90\) 0 0
\(91\) 2.82843 0.296500
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) 3.65685 0.371297 0.185649 0.982616i \(-0.440561\pi\)
0.185649 + 0.982616i \(0.440561\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.65685 0.761885 0.380943 0.924599i \(-0.375599\pi\)
0.380943 + 0.924599i \(0.375599\pi\)
\(102\) 0 0
\(103\) 2.34315 0.230877 0.115439 0.993315i \(-0.463173\pi\)
0.115439 + 0.993315i \(0.463173\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.3137 −1.09374 −0.546869 0.837218i \(-0.684180\pi\)
−0.546869 + 0.837218i \(0.684180\pi\)
\(108\) 0 0
\(109\) −5.31371 −0.508961 −0.254480 0.967078i \(-0.581904\pi\)
−0.254480 + 0.967078i \(0.581904\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.31371 0.499872 0.249936 0.968262i \(-0.419590\pi\)
0.249936 + 0.968262i \(0.419590\pi\)
\(114\) 0 0
\(115\) −11.3137 −1.05501
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −21.6569 −1.98528
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) 5.65685 0.501965 0.250982 0.967992i \(-0.419246\pi\)
0.250982 + 0.967992i \(0.419246\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.8284 0.925135 0.462567 0.886584i \(-0.346928\pi\)
0.462567 + 0.886584i \(0.346928\pi\)
\(138\) 0 0
\(139\) 7.31371 0.620341 0.310170 0.950681i \(-0.399614\pi\)
0.310170 + 0.950681i \(0.399614\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) −5.65685 −0.469776
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.17157 −0.751365 −0.375682 0.926749i \(-0.622592\pi\)
−0.375682 + 0.926749i \(0.622592\pi\)
\(150\) 0 0
\(151\) −3.51472 −0.286024 −0.143012 0.989721i \(-0.545679\pi\)
−0.143012 + 0.989721i \(0.545679\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.31371 0.266163
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.3137 0.891645
\(162\) 0 0
\(163\) −18.8284 −1.47476 −0.737378 0.675480i \(-0.763936\pi\)
−0.737378 + 0.675480i \(0.763936\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.65685 0.282976 0.141488 0.989940i \(-0.454811\pi\)
0.141488 + 0.989940i \(0.454811\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.6569 −0.886254 −0.443127 0.896459i \(-0.646131\pi\)
−0.443127 + 0.896459i \(0.646131\pi\)
\(174\) 0 0
\(175\) 8.48528 0.641427
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −23.3137 −1.74255 −0.871274 0.490797i \(-0.836706\pi\)
−0.871274 + 0.490797i \(0.836706\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −21.6569 −1.59224
\(186\) 0 0
\(187\) 15.3137 1.11985
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.31371 −0.239772 −0.119886 0.992788i \(-0.538253\pi\)
−0.119886 + 0.992788i \(0.538253\pi\)
\(192\) 0 0
\(193\) 5.31371 0.382489 0.191245 0.981542i \(-0.438748\pi\)
0.191245 + 0.981542i \(0.438748\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.485281 0.0345749 0.0172874 0.999851i \(-0.494497\pi\)
0.0172874 + 0.999851i \(0.494497\pi\)
\(198\) 0 0
\(199\) 21.6569 1.53521 0.767607 0.640921i \(-0.221447\pi\)
0.767607 + 0.640921i \(0.221447\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.65685 0.397033
\(204\) 0 0
\(205\) 14.6274 1.02162
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.68629 −0.319602
\(216\) 0 0
\(217\) −3.31371 −0.224949
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.65685 −0.515056
\(222\) 0 0
\(223\) −12.4853 −0.836076 −0.418038 0.908429i \(-0.637282\pi\)
−0.418038 + 0.908429i \(0.637282\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.3137 −1.14915 −0.574576 0.818452i \(-0.694833\pi\)
−0.574576 + 0.818452i \(0.694833\pi\)
\(228\) 0 0
\(229\) 1.31371 0.0868123 0.0434062 0.999058i \(-0.486179\pi\)
0.0434062 + 0.999058i \(0.486179\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.97056 −0.456657 −0.228328 0.973584i \(-0.573326\pi\)
−0.228328 + 0.973584i \(0.573326\pi\)
\(234\) 0 0
\(235\) −32.9706 −2.15076
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 0.343146 0.0221040 0.0110520 0.999939i \(-0.496482\pi\)
0.0110520 + 0.999939i \(0.496482\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.82843 −0.180702
\(246\) 0 0
\(247\) 2.82843 0.179969
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.34315 0.270918 0.135459 0.990783i \(-0.456749\pi\)
0.135459 + 0.990783i \(0.456749\pi\)
\(258\) 0 0
\(259\) 21.6569 1.34569
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 5.65685 0.347498
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −27.7990 −1.68867 −0.844334 0.535817i \(-0.820004\pi\)
−0.844334 + 0.535817i \(0.820004\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 −0.361814
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −21.1716 −1.26299 −0.631495 0.775380i \(-0.717558\pi\)
−0.631495 + 0.775380i \(0.717558\pi\)
\(282\) 0 0
\(283\) −28.9706 −1.72212 −0.861061 0.508502i \(-0.830199\pi\)
−0.861061 + 0.508502i \(0.830199\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.6274 −0.863429
\(288\) 0 0
\(289\) 41.6274 2.44867
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.14214 0.125145 0.0625724 0.998040i \(-0.480070\pi\)
0.0625724 + 0.998040i \(0.480070\pi\)
\(294\) 0 0
\(295\) −21.6569 −1.26091
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) 4.68629 0.270113
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 37.6569 2.15623
\(306\) 0 0
\(307\) 22.8284 1.30289 0.651444 0.758697i \(-0.274164\pi\)
0.651444 + 0.758697i \(0.274164\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.6274 0.602626 0.301313 0.953525i \(-0.402575\pi\)
0.301313 + 0.953525i \(0.402575\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.48528 0.476581 0.238290 0.971194i \(-0.423413\pi\)
0.238290 + 0.971194i \(0.423413\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −21.6569 −1.20502
\(324\) 0 0
\(325\) 3.00000 0.166410
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 32.9706 1.81773
\(330\) 0 0
\(331\) −26.1421 −1.43690 −0.718451 0.695578i \(-0.755148\pi\)
−0.718451 + 0.695578i \(0.755148\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 19.3137 1.05522
\(336\) 0 0
\(337\) 9.31371 0.507350 0.253675 0.967290i \(-0.418361\pi\)
0.253675 + 0.967290i \(0.418361\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.34315 0.126888
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.68629 −0.466305 −0.233152 0.972440i \(-0.574904\pi\)
−0.233152 + 0.972440i \(0.574904\pi\)
\(348\) 0 0
\(349\) −3.65685 −0.195747 −0.0978735 0.995199i \(-0.531204\pi\)
−0.0978735 + 0.995199i \(0.531204\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 33.4558 1.78067 0.890337 0.455301i \(-0.150468\pi\)
0.890337 + 0.455301i \(0.150468\pi\)
\(354\) 0 0
\(355\) 5.65685 0.300235
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −34.9706 −1.84568 −0.922838 0.385189i \(-0.874136\pi\)
−0.922838 + 0.385189i \(0.874136\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.970563 −0.0508016
\(366\) 0 0
\(367\) −24.0000 −1.25279 −0.626395 0.779506i \(-0.715470\pi\)
−0.626395 + 0.779506i \(0.715470\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.65685 −0.293689
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −0.485281 −0.0249272 −0.0124636 0.999922i \(-0.503967\pi\)
−0.0124636 + 0.999922i \(0.503967\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −30.9706 −1.58252 −0.791261 0.611479i \(-0.790575\pi\)
−0.791261 + 0.611479i \(0.790575\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −26.9706 −1.36746 −0.683731 0.729734i \(-0.739644\pi\)
−0.683731 + 0.729734i \(0.739644\pi\)
\(390\) 0 0
\(391\) −30.6274 −1.54890
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 32.0000 1.61009
\(396\) 0 0
\(397\) −30.9706 −1.55437 −0.777184 0.629273i \(-0.783353\pi\)
−0.777184 + 0.629273i \(0.783353\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.1421 −1.30548 −0.652738 0.757584i \(-0.726380\pi\)
−0.652738 + 0.757584i \(0.726380\pi\)
\(402\) 0 0
\(403\) −1.17157 −0.0583602
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.3137 −0.759072
\(408\) 0 0
\(409\) −34.9706 −1.72918 −0.864592 0.502475i \(-0.832423\pi\)
−0.864592 + 0.502475i \(0.832423\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 21.6569 1.06566
\(414\) 0 0
\(415\) −10.3431 −0.507725
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.6274 0.714596 0.357298 0.933990i \(-0.383698\pi\)
0.357298 + 0.933990i \(0.383698\pi\)
\(420\) 0 0
\(421\) −37.3137 −1.81856 −0.909279 0.416186i \(-0.863366\pi\)
−0.909279 + 0.416186i \(0.863366\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −22.9706 −1.11424
\(426\) 0 0
\(427\) −37.6569 −1.82234
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.34315 −0.401875 −0.200938 0.979604i \(-0.564399\pi\)
−0.200938 + 0.979604i \(0.564399\pi\)
\(432\) 0 0
\(433\) −21.3137 −1.02427 −0.512136 0.858905i \(-0.671146\pi\)
−0.512136 + 0.858905i \(0.671146\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.3137 0.541208
\(438\) 0 0
\(439\) 16.9706 0.809961 0.404980 0.914325i \(-0.367278\pi\)
0.404980 + 0.914325i \(0.367278\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.9411 −1.23250 −0.616250 0.787551i \(-0.711349\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(444\) 0 0
\(445\) 41.9411 1.98820
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.7990 1.50069 0.750344 0.661048i \(-0.229888\pi\)
0.750344 + 0.661048i \(0.229888\pi\)
\(450\) 0 0
\(451\) 10.3431 0.487040
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) −7.65685 −0.358173 −0.179086 0.983833i \(-0.557314\pi\)
−0.179086 + 0.983833i \(0.557314\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.17157 0.240864 0.120432 0.992722i \(-0.461572\pi\)
0.120432 + 0.992722i \(0.461572\pi\)
\(462\) 0 0
\(463\) −24.4853 −1.13793 −0.568964 0.822363i \(-0.692656\pi\)
−0.568964 + 0.822363i \(0.692656\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −19.3137 −0.891824
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.31371 −0.152364
\(474\) 0 0
\(475\) 8.48528 0.389331
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −25.3137 −1.15661 −0.578306 0.815820i \(-0.696286\pi\)
−0.578306 + 0.815820i \(0.696286\pi\)
\(480\) 0 0
\(481\) 7.65685 0.349123
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.3431 −0.469658
\(486\) 0 0
\(487\) −7.79899 −0.353406 −0.176703 0.984264i \(-0.556543\pi\)
−0.176703 + 0.984264i \(0.556543\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.6274 1.38220 0.691098 0.722761i \(-0.257127\pi\)
0.691098 + 0.722761i \(0.257127\pi\)
\(492\) 0 0
\(493\) −15.3137 −0.689695
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.65685 −0.253745
\(498\) 0 0
\(499\) −26.1421 −1.17028 −0.585141 0.810931i \(-0.698961\pi\)
−0.585141 + 0.810931i \(0.698961\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.31371 0.326102 0.163051 0.986618i \(-0.447866\pi\)
0.163051 + 0.986618i \(0.447866\pi\)
\(504\) 0 0
\(505\) −21.6569 −0.963717
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.7990 0.522981 0.261491 0.965206i \(-0.415786\pi\)
0.261491 + 0.965206i \(0.415786\pi\)
\(510\) 0 0
\(511\) 0.970563 0.0429352
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.62742 −0.292039
\(516\) 0 0
\(517\) −23.3137 −1.02534
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −25.3137 −1.10901 −0.554507 0.832179i \(-0.687093\pi\)
−0.554507 + 0.832179i \(0.687093\pi\)
\(522\) 0 0
\(523\) 15.3137 0.669622 0.334811 0.942285i \(-0.391328\pi\)
0.334811 + 0.942285i \(0.391328\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.97056 0.390764
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.17157 −0.224006
\(534\) 0 0
\(535\) 32.0000 1.38348
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.0294 0.643790
\(546\) 0 0
\(547\) −23.3137 −0.996822 −0.498411 0.866941i \(-0.666083\pi\)
−0.498411 + 0.866941i \(0.666083\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.65685 0.240990
\(552\) 0 0
\(553\) −32.0000 −1.36078
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.79899 −0.330454 −0.165227 0.986256i \(-0.552836\pi\)
−0.165227 + 0.986256i \(0.552836\pi\)
\(558\) 0 0
\(559\) 1.65685 0.0700775
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) −15.0294 −0.632293
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.9706 1.80142 0.900710 0.434421i \(-0.143047\pi\)
0.900710 + 0.434421i \(0.143047\pi\)
\(570\) 0 0
\(571\) 12.9706 0.542801 0.271401 0.962466i \(-0.412513\pi\)
0.271401 + 0.962466i \(0.412513\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) −31.9411 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.3431 0.429106
\(582\) 0 0
\(583\) 4.00000 0.165663
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.9706 −0.452804 −0.226402 0.974034i \(-0.572696\pi\)
−0.226402 + 0.974034i \(0.572696\pi\)
\(588\) 0 0
\(589\) −3.31371 −0.136539
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20.4853 0.841230 0.420615 0.907239i \(-0.361814\pi\)
0.420615 + 0.907239i \(0.361814\pi\)
\(594\) 0 0
\(595\) 61.2548 2.51120
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 23.3137 0.952572 0.476286 0.879290i \(-0.341983\pi\)
0.476286 + 0.879290i \(0.341983\pi\)
\(600\) 0 0
\(601\) −0.627417 −0.0255929 −0.0127964 0.999918i \(-0.504073\pi\)
−0.0127964 + 0.999918i \(0.504073\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.7990 0.804943
\(606\) 0 0
\(607\) 41.9411 1.70234 0.851169 0.524892i \(-0.175894\pi\)
0.851169 + 0.524892i \(0.175894\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.6569 0.471586
\(612\) 0 0
\(613\) 47.6569 1.92484 0.962421 0.271561i \(-0.0875400\pi\)
0.962421 + 0.271561i \(0.0875400\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.8284 1.40214 0.701070 0.713093i \(-0.252706\pi\)
0.701070 + 0.713093i \(0.252706\pi\)
\(618\) 0 0
\(619\) −23.7990 −0.956562 −0.478281 0.878207i \(-0.658740\pi\)
−0.478281 + 0.878207i \(0.658740\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −41.9411 −1.68034
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −58.6274 −2.33763
\(630\) 0 0
\(631\) 43.1127 1.71629 0.858145 0.513408i \(-0.171617\pi\)
0.858145 + 0.513408i \(0.171617\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.2843 −1.19616 −0.598078 0.801438i \(-0.704069\pi\)
−0.598078 + 0.801438i \(0.704069\pi\)
\(642\) 0 0
\(643\) −22.8284 −0.900265 −0.450133 0.892962i \(-0.648623\pi\)
−0.450133 + 0.892962i \(0.648623\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.3137 −0.444788 −0.222394 0.974957i \(-0.571387\pi\)
−0.222394 + 0.974957i \(0.571387\pi\)
\(648\) 0 0
\(649\) −15.3137 −0.601116
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.3137 −0.990602 −0.495301 0.868721i \(-0.664942\pi\)
−0.495301 + 0.868721i \(0.664942\pi\)
\(654\) 0 0
\(655\) 22.6274 0.884126
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −47.3137 −1.84308 −0.921540 0.388283i \(-0.873068\pi\)
−0.921540 + 0.388283i \(0.873068\pi\)
\(660\) 0 0
\(661\) 34.9706 1.36020 0.680099 0.733121i \(-0.261937\pi\)
0.680099 + 0.733121i \(0.261937\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −22.6274 −0.877454
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 26.6274 1.02794
\(672\) 0 0
\(673\) 16.6274 0.640940 0.320470 0.947259i \(-0.396159\pi\)
0.320470 + 0.947259i \(0.396159\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.6863 1.02564 0.512819 0.858497i \(-0.328601\pi\)
0.512819 + 0.858497i \(0.328601\pi\)
\(678\) 0 0
\(679\) 10.3431 0.396934
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 47.9411 1.83442 0.917208 0.398408i \(-0.130437\pi\)
0.917208 + 0.398408i \(0.130437\pi\)
\(684\) 0 0
\(685\) −30.6274 −1.17021
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.00000 −0.0761939
\(690\) 0 0
\(691\) 5.85786 0.222844 0.111422 0.993773i \(-0.464460\pi\)
0.111422 + 0.993773i \(0.464460\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.6863 −0.784676
\(696\) 0 0
\(697\) 39.5980 1.49988
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5.02944 0.189959 0.0949796 0.995479i \(-0.469721\pi\)
0.0949796 + 0.995479i \(0.469721\pi\)
\(702\) 0 0
\(703\) 21.6569 0.816804
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.6569 0.814490
\(708\) 0 0
\(709\) 4.62742 0.173786 0.0868931 0.996218i \(-0.472306\pi\)
0.0868931 + 0.996218i \(0.472306\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.68629 −0.175503
\(714\) 0 0
\(715\) 5.65685 0.211554
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 29.9411 1.11662 0.558308 0.829634i \(-0.311451\pi\)
0.558308 + 0.829634i \(0.311451\pi\)
\(720\) 0 0
\(721\) 6.62742 0.246818
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) −10.3431 −0.383606 −0.191803 0.981433i \(-0.561433\pi\)
−0.191803 + 0.981433i \(0.561433\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.6863 −0.469219
\(732\) 0 0
\(733\) 36.6274 1.35286 0.676432 0.736505i \(-0.263525\pi\)
0.676432 + 0.736505i \(0.263525\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.6569 0.503057
\(738\) 0 0
\(739\) 18.1421 0.667369 0.333685 0.942685i \(-0.391708\pi\)
0.333685 + 0.942685i \(0.391708\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.00000 −0.0733729 −0.0366864 0.999327i \(-0.511680\pi\)
−0.0366864 + 0.999327i \(0.511680\pi\)
\(744\) 0 0
\(745\) 25.9411 0.950409
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −32.0000 −1.16925
\(750\) 0 0
\(751\) −0.970563 −0.0354163 −0.0177082 0.999843i \(-0.505637\pi\)
−0.0177082 + 0.999843i \(0.505637\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.94113 0.361795
\(756\) 0 0
\(757\) −51.9411 −1.88783 −0.943916 0.330185i \(-0.892889\pi\)
−0.943916 + 0.330185i \(0.892889\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −32.4853 −1.17759 −0.588795 0.808282i \(-0.700398\pi\)
−0.588795 + 0.808282i \(0.700398\pi\)
\(762\) 0 0
\(763\) −15.0294 −0.544102
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.65685 0.276473
\(768\) 0 0
\(769\) 42.0000 1.51456 0.757279 0.653091i \(-0.226528\pi\)
0.757279 + 0.653091i \(0.226528\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34.1421 1.22801 0.614004 0.789303i \(-0.289558\pi\)
0.614004 + 0.789303i \(0.289558\pi\)
\(774\) 0 0
\(775\) −3.51472 −0.126252
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.6274 −0.524082
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −28.2843 −1.00951
\(786\) 0 0
\(787\) 40.7696 1.45328 0.726639 0.687020i \(-0.241081\pi\)
0.726639 + 0.687020i \(0.241081\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.0294 0.534385
\(792\) 0 0
\(793\) −13.3137 −0.472784
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24.3431 0.862278 0.431139 0.902285i \(-0.358112\pi\)
0.431139 + 0.902285i \(0.358112\pi\)
\(798\) 0 0
\(799\) −89.2548 −3.15761
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.686292 −0.0242187
\(804\) 0 0
\(805\) −32.0000 −1.12785
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −18.6863 −0.656975 −0.328488 0.944508i \(-0.606539\pi\)
−0.328488 + 0.944508i \(0.606539\pi\)
\(810\) 0 0
\(811\) 30.1421 1.05843 0.529217 0.848487i \(-0.322486\pi\)
0.529217 + 0.848487i \(0.322486\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 53.2548 1.86544
\(816\) 0 0
\(817\) 4.68629 0.163953
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.7990 −0.830590 −0.415295 0.909687i \(-0.636322\pi\)
−0.415295 + 0.909687i \(0.636322\pi\)
\(822\) 0 0
\(823\) 15.0294 0.523893 0.261947 0.965082i \(-0.415636\pi\)
0.261947 + 0.965082i \(0.415636\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26.0000 −0.904109 −0.452054 0.891990i \(-0.649309\pi\)
−0.452054 + 0.891990i \(0.649309\pi\)
\(828\) 0 0
\(829\) 17.3137 0.601330 0.300665 0.953730i \(-0.402791\pi\)
0.300665 + 0.953730i \(0.402791\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.65685 −0.265294
\(834\) 0 0
\(835\) −10.3431 −0.357939
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −43.2548 −1.49332 −0.746661 0.665204i \(-0.768344\pi\)
−0.746661 + 0.665204i \(0.768344\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.82843 −0.0973009
\(846\) 0 0
\(847\) −19.7990 −0.680301
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.6274 1.04989
\(852\) 0 0
\(853\) −3.65685 −0.125208 −0.0626042 0.998038i \(-0.519941\pi\)
−0.0626042 + 0.998038i \(0.519941\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49.5980 1.69423 0.847117 0.531406i \(-0.178336\pi\)
0.847117 + 0.531406i \(0.178336\pi\)
\(858\) 0 0
\(859\) 0.686292 0.0234160 0.0117080 0.999931i \(-0.496273\pi\)
0.0117080 + 0.999931i \(0.496273\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.3431 0.964812 0.482406 0.875948i \(-0.339763\pi\)
0.482406 + 0.875948i \(0.339763\pi\)
\(864\) 0 0
\(865\) 32.9706 1.12103
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.6274 0.767583
\(870\) 0 0
\(871\) −6.82843 −0.231372
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 16.0000 0.540899
\(876\) 0 0
\(877\) −42.2843 −1.42784 −0.713919 0.700228i \(-0.753082\pi\)
−0.713919 + 0.700228i \(0.753082\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 25.5980 0.862418 0.431209 0.902252i \(-0.358087\pi\)
0.431209 + 0.902252i \(0.358087\pi\)
\(882\) 0 0
\(883\) −27.5980 −0.928746 −0.464373 0.885640i \(-0.653720\pi\)
−0.464373 + 0.885640i \(0.653720\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.00000 0.268614 0.134307 0.990940i \(-0.457119\pi\)
0.134307 + 0.990940i \(0.457119\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 32.9706 1.10332
\(894\) 0 0
\(895\) 65.9411 2.20417
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.34315 −0.0781483
\(900\) 0 0
\(901\) 15.3137 0.510174
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 39.5980 1.31628
\(906\) 0 0
\(907\) 12.9706 0.430680 0.215340 0.976539i \(-0.430914\pi\)
0.215340 + 0.976539i \(0.430914\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) −7.31371 −0.242048
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −22.6274 −0.747223
\(918\) 0 0
\(919\) 3.31371 0.109309 0.0546546 0.998505i \(-0.482594\pi\)
0.0546546 + 0.998505i \(0.482594\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.00000 −0.0658308
\(924\) 0 0
\(925\) 22.9706 0.755267
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −11.7990 −0.387112 −0.193556 0.981089i \(-0.562002\pi\)
−0.193556 + 0.981089i \(0.562002\pi\)
\(930\) 0 0
\(931\) 2.82843 0.0926980
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −43.3137 −1.41651
\(936\) 0 0
\(937\) −21.3137 −0.696289 −0.348144 0.937441i \(-0.613188\pi\)
−0.348144 + 0.937441i \(0.613188\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 34.1421 1.11300 0.556501 0.830847i \(-0.312144\pi\)
0.556501 + 0.830847i \(0.312144\pi\)
\(942\) 0 0
\(943\) −20.6863 −0.673638
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.0294 −0.683365 −0.341682 0.939815i \(-0.610997\pi\)
−0.341682 + 0.939815i \(0.610997\pi\)
\(948\) 0 0
\(949\) 0.343146 0.0111390
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −40.3431 −1.30684 −0.653421 0.756994i \(-0.726667\pi\)
−0.653421 + 0.756994i \(0.726667\pi\)
\(954\) 0 0
\(955\) 9.37258 0.303290
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 30.6274 0.989011
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −15.0294 −0.483815
\(966\) 0 0
\(967\) 18.1421 0.583412 0.291706 0.956508i \(-0.405777\pi\)
0.291706 + 0.956508i \(0.405777\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.3137 −0.491440 −0.245720 0.969341i \(-0.579024\pi\)
−0.245720 + 0.969341i \(0.579024\pi\)
\(972\) 0 0
\(973\) 20.6863 0.663172
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −42.1421 −1.34825 −0.674123 0.738619i \(-0.735478\pi\)
−0.674123 + 0.738619i \(0.735478\pi\)
\(978\) 0 0
\(979\) 29.6569 0.947837
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.3137 −0.807382 −0.403691 0.914895i \(-0.632273\pi\)
−0.403691 + 0.914895i \(0.632273\pi\)
\(984\) 0 0
\(985\) −1.37258 −0.0437341
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.62742 0.210740
\(990\) 0 0
\(991\) 4.68629 0.148865 0.0744325 0.997226i \(-0.476285\pi\)
0.0744325 + 0.997226i \(0.476285\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −61.2548 −1.94191
\(996\) 0 0
\(997\) 39.2548 1.24321 0.621607 0.783330i \(-0.286480\pi\)
0.621607 + 0.783330i \(0.286480\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7488.2.a.cl.1.1 2
3.2 odd 2 2496.2.a.bf.1.2 2
4.3 odd 2 7488.2.a.co.1.1 2
8.3 odd 2 1872.2.a.w.1.2 2
8.5 even 2 117.2.a.c.1.1 2
12.11 even 2 2496.2.a.bi.1.2 2
24.5 odd 2 39.2.a.b.1.2 2
24.11 even 2 624.2.a.k.1.1 2
40.13 odd 4 2925.2.c.u.2224.3 4
40.29 even 2 2925.2.a.v.1.2 2
40.37 odd 4 2925.2.c.u.2224.2 4
56.13 odd 2 5733.2.a.u.1.1 2
72.5 odd 6 1053.2.e.m.703.1 4
72.13 even 6 1053.2.e.e.703.2 4
72.29 odd 6 1053.2.e.m.352.1 4
72.61 even 6 1053.2.e.e.352.2 4
104.5 odd 4 1521.2.b.j.1351.3 4
104.21 odd 4 1521.2.b.j.1351.2 4
104.77 even 2 1521.2.a.f.1.2 2
120.29 odd 2 975.2.a.l.1.1 2
120.53 even 4 975.2.c.h.274.2 4
120.77 even 4 975.2.c.h.274.3 4
168.125 even 2 1911.2.a.h.1.2 2
264.197 even 2 4719.2.a.p.1.1 2
312.5 even 4 507.2.b.e.337.2 4
312.29 odd 6 507.2.e.h.22.1 4
312.77 odd 2 507.2.a.h.1.1 2
312.101 odd 6 507.2.e.d.22.2 4
312.125 even 4 507.2.b.e.337.3 4
312.149 even 12 507.2.j.f.361.2 8
312.155 even 2 8112.2.a.bm.1.2 2
312.173 odd 6 507.2.e.d.484.2 4
312.197 even 12 507.2.j.f.316.3 8
312.245 even 12 507.2.j.f.316.2 8
312.269 odd 6 507.2.e.h.484.1 4
312.293 even 12 507.2.j.f.361.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.a.b.1.2 2 24.5 odd 2
117.2.a.c.1.1 2 8.5 even 2
507.2.a.h.1.1 2 312.77 odd 2
507.2.b.e.337.2 4 312.5 even 4
507.2.b.e.337.3 4 312.125 even 4
507.2.e.d.22.2 4 312.101 odd 6
507.2.e.d.484.2 4 312.173 odd 6
507.2.e.h.22.1 4 312.29 odd 6
507.2.e.h.484.1 4 312.269 odd 6
507.2.j.f.316.2 8 312.245 even 12
507.2.j.f.316.3 8 312.197 even 12
507.2.j.f.361.2 8 312.149 even 12
507.2.j.f.361.3 8 312.293 even 12
624.2.a.k.1.1 2 24.11 even 2
975.2.a.l.1.1 2 120.29 odd 2
975.2.c.h.274.2 4 120.53 even 4
975.2.c.h.274.3 4 120.77 even 4
1053.2.e.e.352.2 4 72.61 even 6
1053.2.e.e.703.2 4 72.13 even 6
1053.2.e.m.352.1 4 72.29 odd 6
1053.2.e.m.703.1 4 72.5 odd 6
1521.2.a.f.1.2 2 104.77 even 2
1521.2.b.j.1351.2 4 104.21 odd 4
1521.2.b.j.1351.3 4 104.5 odd 4
1872.2.a.w.1.2 2 8.3 odd 2
1911.2.a.h.1.2 2 168.125 even 2
2496.2.a.bf.1.2 2 3.2 odd 2
2496.2.a.bi.1.2 2 12.11 even 2
2925.2.a.v.1.2 2 40.29 even 2
2925.2.c.u.2224.2 4 40.37 odd 4
2925.2.c.u.2224.3 4 40.13 odd 4
4719.2.a.p.1.1 2 264.197 even 2
5733.2.a.u.1.1 2 56.13 odd 2
7488.2.a.cl.1.1 2 1.1 even 1 trivial
7488.2.a.co.1.1 2 4.3 odd 2
8112.2.a.bm.1.2 2 312.155 even 2