# Properties

 Label 7448.2.a.v Level $7448$ Weight $2$ Character orbit 7448.a Self dual yes Analytic conductor $59.473$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7448 = 2^{3} \cdot 7^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7448.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$59.4725794254$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1064) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + 2 q^{3} + q^{5} + q^{9} + O(q^{10})$$ $$q + 2 q^{3} + q^{5} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{15} + 7 q^{17} + q^{19} - 3 q^{23} - 4 q^{25} - 4 q^{27} + 4 q^{29} - 4 q^{31} + 8 q^{33} + 10 q^{37} - 4 q^{39} - 9 q^{43} + q^{45} + 4 q^{47} + 14 q^{51} + 6 q^{53} + 4 q^{55} + 2 q^{57} + 12 q^{59} + 2 q^{61} - 2 q^{65} + 16 q^{67} - 6 q^{69} + 6 q^{71} - 2 q^{73} - 8 q^{75} + 4 q^{79} - 11 q^{81} + 9 q^{83} + 7 q^{85} + 8 q^{87} + 4 q^{89} - 8 q^{93} + q^{95} + 4 q^{97} + 4 q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 2.00000 0 1.00000 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$7$$ $$-1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7448.2.a.v 1
7.b odd 2 1 7448.2.a.c 1
7.d odd 6 2 1064.2.q.j 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1064.2.q.j 2 7.d odd 6 2
7448.2.a.c 1 7.b odd 2 1
7448.2.a.v 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7448))$$:

 $$T_{3} - 2$$ $$T_{5} - 1$$ $$T_{11} - 4$$ $$T_{13} + 2$$ $$T_{17} - 7$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$-2 + T$$
$5$ $$-1 + T$$
$7$ $$T$$
$11$ $$-4 + T$$
$13$ $$2 + T$$
$17$ $$-7 + T$$
$19$ $$-1 + T$$
$23$ $$3 + T$$
$29$ $$-4 + T$$
$31$ $$4 + T$$
$37$ $$-10 + T$$
$41$ $$T$$
$43$ $$9 + T$$
$47$ $$-4 + T$$
$53$ $$-6 + T$$
$59$ $$-12 + T$$
$61$ $$-2 + T$$
$67$ $$-16 + T$$
$71$ $$-6 + T$$
$73$ $$2 + T$$
$79$ $$-4 + T$$
$83$ $$-9 + T$$
$89$ $$-4 + T$$
$97$ $$-4 + T$$