Properties

Label 7448.2.a.t.1.1
Level $7448$
Weight $2$
Character 7448.1
Self dual yes
Analytic conductor $59.473$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7448 = 2^{3} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7448.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(59.4725794254\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1064)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7448.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.00000 q^{3} +1.00000 q^{5} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{3} +1.00000 q^{5} +1.00000 q^{9} -3.00000 q^{11} +4.00000 q^{13} +2.00000 q^{15} +2.00000 q^{17} +1.00000 q^{19} -7.00000 q^{23} -4.00000 q^{25} -4.00000 q^{27} +2.00000 q^{29} +6.00000 q^{31} -6.00000 q^{33} -10.0000 q^{37} +8.00000 q^{39} +8.00000 q^{41} +7.00000 q^{43} +1.00000 q^{45} +9.00000 q^{47} +4.00000 q^{51} +6.00000 q^{53} -3.00000 q^{55} +2.00000 q^{57} +14.0000 q^{59} +5.00000 q^{61} +4.00000 q^{65} +14.0000 q^{67} -14.0000 q^{69} +8.00000 q^{71} +1.00000 q^{73} -8.00000 q^{75} +10.0000 q^{79} -11.0000 q^{81} +17.0000 q^{83} +2.00000 q^{85} +4.00000 q^{87} +12.0000 q^{93} +1.00000 q^{95} +12.0000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.00000 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 8.00000 1.28103
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 7.00000 1.06749 0.533745 0.845645i \(-0.320784\pi\)
0.533745 + 0.845645i \(0.320784\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 14.0000 1.82264 0.911322 0.411693i \(-0.135063\pi\)
0.911322 + 0.411693i \(0.135063\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 14.0000 1.71037 0.855186 0.518321i \(-0.173443\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) 0 0
\(69\) −14.0000 −1.68540
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 0 0
\(75\) −8.00000 −0.923760
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 17.0000 1.86599 0.932996 0.359886i \(-0.117184\pi\)
0.932996 + 0.359886i \(0.117184\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 4.00000 0.428845
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 12.0000 1.24434
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 11.0000 1.09454 0.547270 0.836956i \(-0.315667\pi\)
0.547270 + 0.836956i \(0.315667\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) −20.0000 −1.89832
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) −7.00000 −0.652753
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 16.0000 1.44267
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 14.0000 1.23263
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) −7.00000 −0.598050 −0.299025 0.954245i \(-0.596661\pi\)
−0.299025 + 0.954245i \(0.596661\pi\)
\(138\) 0 0
\(139\) 9.00000 0.763370 0.381685 0.924292i \(-0.375344\pi\)
0.381685 + 0.924292i \(0.375344\pi\)
\(140\) 0 0
\(141\) 18.0000 1.51587
\(142\) 0 0
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.00000 0.245770 0.122885 0.992421i \(-0.460785\pi\)
0.122885 + 0.992421i \(0.460785\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) 0 0
\(165\) −6.00000 −0.467099
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) −12.0000 −0.912343 −0.456172 0.889892i \(-0.650780\pi\)
−0.456172 + 0.889892i \(0.650780\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 28.0000 2.10461
\(178\) 0 0
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) −10.0000 −0.735215
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.0000 0.940647 0.470323 0.882494i \(-0.344137\pi\)
0.470323 + 0.882494i \(0.344137\pi\)
\(192\) 0 0
\(193\) −24.0000 −1.72756 −0.863779 0.503871i \(-0.831909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) 8.00000 0.572892
\(196\) 0 0
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) 0 0
\(199\) 1.00000 0.0708881 0.0354441 0.999372i \(-0.488715\pi\)
0.0354441 + 0.999372i \(0.488715\pi\)
\(200\) 0 0
\(201\) 28.0000 1.97497
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) 0 0
\(207\) −7.00000 −0.486534
\(208\) 0 0
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 7.00000 0.477396
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 0 0
\(227\) −8.00000 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) 0 0
\(237\) 20.0000 1.29914
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) 34.0000 2.15466
\(250\) 0 0
\(251\) −15.0000 −0.946792 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(252\) 0 0
\(253\) 21.0000 1.32026
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) 10.0000 0.623783 0.311891 0.950118i \(-0.399037\pi\)
0.311891 + 0.950118i \(0.399037\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 15.0000 0.911185 0.455593 0.890188i \(-0.349427\pi\)
0.455593 + 0.890188i \(0.349427\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) −5.00000 −0.300421 −0.150210 0.988654i \(-0.547995\pi\)
−0.150210 + 0.988654i \(0.547995\pi\)
\(278\) 0 0
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −13.0000 −0.772770 −0.386385 0.922338i \(-0.626276\pi\)
−0.386385 + 0.922338i \(0.626276\pi\)
\(284\) 0 0
\(285\) 2.00000 0.118470
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 24.0000 1.40690
\(292\) 0 0
\(293\) −24.0000 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(294\) 0 0
\(295\) 14.0000 0.815112
\(296\) 0 0
\(297\) 12.0000 0.696311
\(298\) 0 0
\(299\) −28.0000 −1.61928
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 22.0000 1.26387
\(304\) 0 0
\(305\) 5.00000 0.286299
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 7.00000 0.395663 0.197832 0.980236i \(-0.436610\pi\)
0.197832 + 0.980236i \(0.436610\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.00000 −0.224662 −0.112331 0.993671i \(-0.535832\pi\)
−0.112331 + 0.993671i \(0.535832\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) −36.0000 −2.00932
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −16.0000 −0.887520
\(326\) 0 0
\(327\) −32.0000 −1.76960
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.00000 0.329790 0.164895 0.986311i \(-0.447272\pi\)
0.164895 + 0.986311i \(0.447272\pi\)
\(332\) 0 0
\(333\) −10.0000 −0.547997
\(334\) 0 0
\(335\) 14.0000 0.764902
\(336\) 0 0
\(337\) 28.0000 1.52526 0.762629 0.646837i \(-0.223908\pi\)
0.762629 + 0.646837i \(0.223908\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) −18.0000 −0.974755
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −14.0000 −0.753735
\(346\) 0 0
\(347\) 13.0000 0.697877 0.348938 0.937146i \(-0.386542\pi\)
0.348938 + 0.937146i \(0.386542\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 0 0
\(355\) 8.00000 0.424596
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.0000 −1.31945 −0.659725 0.751507i \(-0.729327\pi\)
−0.659725 + 0.751507i \(0.729327\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −4.00000 −0.209946
\(364\) 0 0
\(365\) 1.00000 0.0523424
\(366\) 0 0
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) 0 0
\(369\) 8.00000 0.416463
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) −18.0000 −0.929516
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) 18.0000 0.924598 0.462299 0.886724i \(-0.347025\pi\)
0.462299 + 0.886724i \(0.347025\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7.00000 0.355830
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −14.0000 −0.708010
\(392\) 0 0
\(393\) −24.0000 −1.21064
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) −6.00000 −0.301131 −0.150566 0.988600i \(-0.548110\pi\)
−0.150566 + 0.988600i \(0.548110\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 24.0000 1.19553
\(404\) 0 0
\(405\) −11.0000 −0.546594
\(406\) 0 0
\(407\) 30.0000 1.48704
\(408\) 0 0
\(409\) −34.0000 −1.68119 −0.840596 0.541663i \(-0.817795\pi\)
−0.840596 + 0.541663i \(0.817795\pi\)
\(410\) 0 0
\(411\) −14.0000 −0.690569
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 17.0000 0.834497
\(416\) 0 0
\(417\) 18.0000 0.881464
\(418\) 0 0
\(419\) −23.0000 −1.12362 −0.561812 0.827265i \(-0.689895\pi\)
−0.561812 + 0.827265i \(0.689895\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 9.00000 0.437595
\(424\) 0 0
\(425\) −8.00000 −0.388057
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −24.0000 −1.15873
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) 4.00000 0.191785
\(436\) 0 0
\(437\) −7.00000 −0.334855
\(438\) 0 0
\(439\) 26.0000 1.24091 0.620456 0.784241i \(-0.286947\pi\)
0.620456 + 0.784241i \(0.286947\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) −32.0000 −1.51017 −0.755087 0.655625i \(-0.772405\pi\)
−0.755087 + 0.655625i \(0.772405\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 0 0
\(453\) −24.0000 −1.12762
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.00000 −0.0467780 −0.0233890 0.999726i \(-0.507446\pi\)
−0.0233890 + 0.999726i \(0.507446\pi\)
\(458\) 0 0
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) 7.00000 0.326023 0.163011 0.986624i \(-0.447879\pi\)
0.163011 + 0.986624i \(0.447879\pi\)
\(462\) 0 0
\(463\) 33.0000 1.53364 0.766820 0.641862i \(-0.221838\pi\)
0.766820 + 0.641862i \(0.221838\pi\)
\(464\) 0 0
\(465\) 12.0000 0.556487
\(466\) 0 0
\(467\) −29.0000 −1.34196 −0.670980 0.741475i \(-0.734126\pi\)
−0.670980 + 0.741475i \(0.734126\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 14.0000 0.645086
\(472\) 0 0
\(473\) −21.0000 −0.965581
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 7.00000 0.319838 0.159919 0.987130i \(-0.448877\pi\)
0.159919 + 0.987130i \(0.448877\pi\)
\(480\) 0 0
\(481\) −40.0000 −1.82384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.0000 0.544892
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 0 0
\(489\) 22.0000 0.994874
\(490\) 0 0
\(491\) −27.0000 −1.21849 −0.609246 0.792981i \(-0.708528\pi\)
−0.609246 + 0.792981i \(0.708528\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.0000 0.581960 0.290980 0.956729i \(-0.406019\pi\)
0.290980 + 0.956729i \(0.406019\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) 0 0
\(503\) 9.00000 0.401290 0.200645 0.979664i \(-0.435696\pi\)
0.200645 + 0.979664i \(0.435696\pi\)
\(504\) 0 0
\(505\) 11.0000 0.489494
\(506\) 0 0
\(507\) 6.00000 0.266469
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −27.0000 −1.18746
\(518\) 0 0
\(519\) −24.0000 −1.05348
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) −40.0000 −1.74908 −0.874539 0.484955i \(-0.838836\pi\)
−0.874539 + 0.484955i \(0.838836\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) 14.0000 0.607548
\(532\) 0 0
\(533\) 32.0000 1.38607
\(534\) 0 0
\(535\) −18.0000 −0.778208
\(536\) 0 0
\(537\) −36.0000 −1.55351
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 33.0000 1.41878 0.709390 0.704816i \(-0.248970\pi\)
0.709390 + 0.704816i \(0.248970\pi\)
\(542\) 0 0
\(543\) −32.0000 −1.37325
\(544\) 0 0
\(545\) −16.0000 −0.685365
\(546\) 0 0
\(547\) −34.0000 −1.45374 −0.726868 0.686778i \(-0.759025\pi\)
−0.726868 + 0.686778i \(0.759025\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −20.0000 −0.848953
\(556\) 0 0
\(557\) 35.0000 1.48300 0.741499 0.670954i \(-0.234115\pi\)
0.741499 + 0.670954i \(0.234115\pi\)
\(558\) 0 0
\(559\) 28.0000 1.18427
\(560\) 0 0
\(561\) −12.0000 −0.506640
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 2.00000 0.0841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 21.0000 0.878823 0.439411 0.898286i \(-0.355187\pi\)
0.439411 + 0.898286i \(0.355187\pi\)
\(572\) 0 0
\(573\) 26.0000 1.08617
\(574\) 0 0
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) −5.00000 −0.208153 −0.104076 0.994569i \(-0.533189\pi\)
−0.104076 + 0.994569i \(0.533189\pi\)
\(578\) 0 0
\(579\) −48.0000 −1.99481
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 11.0000 0.451716 0.225858 0.974160i \(-0.427481\pi\)
0.225858 + 0.974160i \(0.427481\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.00000 0.0818546
\(598\) 0 0
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) 0 0
\(601\) −6.00000 −0.244745 −0.122373 0.992484i \(-0.539050\pi\)
−0.122373 + 0.992484i \(0.539050\pi\)
\(602\) 0 0
\(603\) 14.0000 0.570124
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) 14.0000 0.568242 0.284121 0.958788i \(-0.408298\pi\)
0.284121 + 0.958788i \(0.408298\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) 18.0000 0.727013 0.363507 0.931592i \(-0.381579\pi\)
0.363507 + 0.931592i \(0.381579\pi\)
\(614\) 0 0
\(615\) 16.0000 0.645182
\(616\) 0 0
\(617\) 5.00000 0.201292 0.100646 0.994922i \(-0.467909\pi\)
0.100646 + 0.994922i \(0.467909\pi\)
\(618\) 0 0
\(619\) −43.0000 −1.72832 −0.864158 0.503221i \(-0.832148\pi\)
−0.864158 + 0.503221i \(0.832148\pi\)
\(620\) 0 0
\(621\) 28.0000 1.12360
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −6.00000 −0.239617
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) 25.0000 0.995234 0.497617 0.867397i \(-0.334208\pi\)
0.497617 + 0.867397i \(0.334208\pi\)
\(632\) 0 0
\(633\) 44.0000 1.74884
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −10.0000 −0.394976 −0.197488 0.980305i \(-0.563278\pi\)
−0.197488 + 0.980305i \(0.563278\pi\)
\(642\) 0 0
\(643\) 36.0000 1.41970 0.709851 0.704352i \(-0.248762\pi\)
0.709851 + 0.704352i \(0.248762\pi\)
\(644\) 0 0
\(645\) 14.0000 0.551249
\(646\) 0 0
\(647\) −7.00000 −0.275198 −0.137599 0.990488i \(-0.543939\pi\)
−0.137599 + 0.990488i \(0.543939\pi\)
\(648\) 0 0
\(649\) −42.0000 −1.64864
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) 1.00000 0.0390137
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 16.0000 0.622328 0.311164 0.950356i \(-0.399281\pi\)
0.311164 + 0.950356i \(0.399281\pi\)
\(662\) 0 0
\(663\) 16.0000 0.621389
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −14.0000 −0.542082
\(668\) 0 0
\(669\) 40.0000 1.54649
\(670\) 0 0
\(671\) −15.0000 −0.579069
\(672\) 0 0
\(673\) −50.0000 −1.92736 −0.963679 0.267063i \(-0.913947\pi\)
−0.963679 + 0.267063i \(0.913947\pi\)
\(674\) 0 0
\(675\) 16.0000 0.615840
\(676\) 0 0
\(677\) −32.0000 −1.22986 −0.614930 0.788582i \(-0.710816\pi\)
−0.614930 + 0.788582i \(0.710816\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −16.0000 −0.613121
\(682\) 0 0
\(683\) −14.0000 −0.535695 −0.267848 0.963461i \(-0.586312\pi\)
−0.267848 + 0.963461i \(0.586312\pi\)
\(684\) 0 0
\(685\) −7.00000 −0.267456
\(686\) 0 0
\(687\) 12.0000 0.457829
\(688\) 0 0
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.00000 0.341389
\(696\) 0 0
\(697\) 16.0000 0.606043
\(698\) 0 0
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) −33.0000 −1.24639 −0.623196 0.782065i \(-0.714166\pi\)
−0.623196 + 0.782065i \(0.714166\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) 0 0
\(705\) 18.0000 0.677919
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −13.0000 −0.488225 −0.244113 0.969747i \(-0.578497\pi\)
−0.244113 + 0.969747i \(0.578497\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 0 0
\(713\) −42.0000 −1.57291
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 0 0
\(717\) −48.0000 −1.79259
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 20.0000 0.743808
\(724\) 0 0
\(725\) −8.00000 −0.297113
\(726\) 0 0
\(727\) −49.0000 −1.81731 −0.908655 0.417548i \(-0.862889\pi\)
−0.908655 + 0.417548i \(0.862889\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 14.0000 0.517809
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −42.0000 −1.54709
\(738\) 0 0
\(739\) 28.0000 1.03000 0.514998 0.857191i \(-0.327793\pi\)
0.514998 + 0.857191i \(0.327793\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) 3.00000 0.109911
\(746\) 0 0
\(747\) 17.0000 0.621997
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 30.0000 1.09472 0.547358 0.836899i \(-0.315634\pi\)
0.547358 + 0.836899i \(0.315634\pi\)
\(752\) 0 0
\(753\) −30.0000 −1.09326
\(754\) 0 0
\(755\) −12.0000 −0.436725
\(756\) 0 0
\(757\) −23.0000 −0.835949 −0.417975 0.908459i \(-0.637260\pi\)
−0.417975 + 0.908459i \(0.637260\pi\)
\(758\) 0 0
\(759\) 42.0000 1.52450
\(760\) 0 0
\(761\) 21.0000 0.761249 0.380625 0.924730i \(-0.375709\pi\)
0.380625 + 0.924730i \(0.375709\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.00000 0.0723102
\(766\) 0 0
\(767\) 56.0000 2.02204
\(768\) 0 0
\(769\) 15.0000 0.540914 0.270457 0.962732i \(-0.412825\pi\)
0.270457 + 0.962732i \(0.412825\pi\)
\(770\) 0 0
\(771\) 20.0000 0.720282
\(772\) 0 0
\(773\) 22.0000 0.791285 0.395643 0.918405i \(-0.370522\pi\)
0.395643 + 0.918405i \(0.370522\pi\)
\(774\) 0 0
\(775\) −24.0000 −0.862105
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.00000 0.286630
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) 7.00000 0.249841
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 0 0
\(789\) 32.0000 1.13923
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) 0 0
\(795\) 12.0000 0.425596
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) 18.0000 0.636794
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.00000 −0.105868
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 48.0000 1.68968
\(808\) 0 0
\(809\) −41.0000 −1.44148 −0.720742 0.693204i \(-0.756199\pi\)
−0.720742 + 0.693204i \(0.756199\pi\)
\(810\) 0 0
\(811\) 42.0000 1.47482 0.737410 0.675446i \(-0.236049\pi\)
0.737410 + 0.675446i \(0.236049\pi\)
\(812\) 0 0
\(813\) 30.0000 1.05215
\(814\) 0 0
\(815\) 11.0000 0.385313
\(816\) 0 0
\(817\) 7.00000 0.244899
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.0000 1.08191 0.540954 0.841052i \(-0.318063\pi\)
0.540954 + 0.841052i \(0.318063\pi\)
\(822\) 0 0
\(823\) 23.0000 0.801730 0.400865 0.916137i \(-0.368710\pi\)
0.400865 + 0.916137i \(0.368710\pi\)
\(824\) 0 0
\(825\) 24.0000 0.835573
\(826\) 0 0
\(827\) 8.00000 0.278187 0.139094 0.990279i \(-0.455581\pi\)
0.139094 + 0.990279i \(0.455581\pi\)
\(828\) 0 0
\(829\) 4.00000 0.138926 0.0694629 0.997585i \(-0.477871\pi\)
0.0694629 + 0.997585i \(0.477871\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −12.0000 −0.415277
\(836\) 0 0
\(837\) −24.0000 −0.829561
\(838\) 0 0
\(839\) 54.0000 1.86429 0.932144 0.362089i \(-0.117936\pi\)
0.932144 + 0.362089i \(0.117936\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −20.0000 −0.688837
\(844\) 0 0
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −26.0000 −0.892318
\(850\) 0 0
\(851\) 70.0000 2.39957
\(852\) 0 0
\(853\) 37.0000 1.26686 0.633428 0.773802i \(-0.281647\pi\)
0.633428 + 0.773802i \(0.281647\pi\)
\(854\) 0 0
\(855\) 1.00000 0.0341993
\(856\) 0 0
\(857\) −32.0000 −1.09310 −0.546550 0.837427i \(-0.684059\pi\)
−0.546550 + 0.837427i \(0.684059\pi\)
\(858\) 0 0
\(859\) −17.0000 −0.580033 −0.290016 0.957022i \(-0.593661\pi\)
−0.290016 + 0.957022i \(0.593661\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.0000 −1.02121 −0.510606 0.859815i \(-0.670579\pi\)
−0.510606 + 0.859815i \(0.670579\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) 0 0
\(867\) −26.0000 −0.883006
\(868\) 0 0
\(869\) −30.0000 −1.01768
\(870\) 0 0
\(871\) 56.0000 1.89749
\(872\) 0 0
\(873\) 12.0000 0.406138
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −8.00000 −0.270141 −0.135070 0.990836i \(-0.543126\pi\)
−0.135070 + 0.990836i \(0.543126\pi\)
\(878\) 0 0
\(879\) −48.0000 −1.61900
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −36.0000 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(884\) 0 0
\(885\) 28.0000 0.941210
\(886\) 0 0
\(887\) 32.0000 1.07445 0.537227 0.843437i \(-0.319472\pi\)
0.537227 + 0.843437i \(0.319472\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 33.0000 1.10554
\(892\) 0 0
\(893\) 9.00000 0.301174
\(894\) 0 0
\(895\) −18.0000 −0.601674
\(896\) 0 0
\(897\) −56.0000 −1.86979
\(898\) 0 0
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.0000 −0.531858
\(906\) 0 0
\(907\) −38.0000 −1.26177 −0.630885 0.775877i \(-0.717308\pi\)
−0.630885 + 0.775877i \(0.717308\pi\)
\(908\) 0 0
\(909\) 11.0000 0.364847
\(910\) 0 0
\(911\) −58.0000 −1.92163 −0.960813 0.277198i \(-0.910594\pi\)
−0.960813 + 0.277198i \(0.910594\pi\)
\(912\) 0 0
\(913\) −51.0000 −1.68785
\(914\) 0 0
\(915\) 10.0000 0.330590
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 39.0000 1.28649 0.643246 0.765660i \(-0.277587\pi\)
0.643246 + 0.765660i \(0.277587\pi\)
\(920\) 0 0
\(921\) −32.0000 −1.05444
\(922\) 0 0
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) 40.0000 1.31519
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 51.0000 1.67326 0.836628 0.547772i \(-0.184524\pi\)
0.836628 + 0.547772i \(0.184524\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −48.0000 −1.57145
\(934\) 0 0
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) 14.0000 0.456873
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) −56.0000 −1.82361
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) −8.00000 −0.259418
\(952\) 0 0
\(953\) 46.0000 1.49009 0.745043 0.667016i \(-0.232429\pi\)
0.745043 + 0.667016i \(0.232429\pi\)
\(954\) 0 0
\(955\) 13.0000 0.420670
\(956\) 0 0
\(957\) −12.0000 −0.387905
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) −18.0000 −0.580042
\(964\) 0 0
\(965\) −24.0000 −0.772587
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −32.0000 −1.02482
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −16.0000 −0.510841
\(982\) 0 0
\(983\) 8.00000 0.255160 0.127580 0.991828i \(-0.459279\pi\)
0.127580 + 0.991828i \(0.459279\pi\)
\(984\) 0 0
\(985\) −3.00000 −0.0955879
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −49.0000 −1.55811
\(990\) 0 0
\(991\) −38.0000 −1.20711 −0.603555 0.797321i \(-0.706250\pi\)
−0.603555 + 0.797321i \(0.706250\pi\)
\(992\) 0 0
\(993\) 12.0000 0.380808
\(994\) 0 0
\(995\) 1.00000 0.0317021
\(996\) 0 0
\(997\) −62.0000 −1.96356 −0.981780 0.190022i \(-0.939144\pi\)
−0.981780 + 0.190022i \(0.939144\pi\)
\(998\) 0 0
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7448.2.a.t.1.1 1
7.2 even 3 1064.2.q.a.305.1 2
7.4 even 3 1064.2.q.a.457.1 yes 2
7.6 odd 2 7448.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1064.2.q.a.305.1 2 7.2 even 3
1064.2.q.a.457.1 yes 2 7.4 even 3
7448.2.a.a.1.1 1 7.6 odd 2
7448.2.a.t.1.1 1 1.1 even 1 trivial