# Properties

 Label 7448.2.a.g Level $7448$ Weight $2$ Character orbit 7448.a Self dual yes Analytic conductor $59.473$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7448,2,Mod(1,7448)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7448, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7448.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7448 = 2^{3} \cdot 7^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7448.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$59.4725794254$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 152) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} - 2 q^{9}+O(q^{10})$$ q - q^3 - 2 * q^9 $$q - q^{3} - 2 q^{9} + 2 q^{11} - q^{13} + 5 q^{17} - q^{19} - q^{23} - 5 q^{25} + 5 q^{27} - 3 q^{29} - 4 q^{31} - 2 q^{33} + 2 q^{37} + q^{39} + 8 q^{41} - 8 q^{43} + 8 q^{47} - 5 q^{51} + 9 q^{53} + q^{57} - q^{59} - 14 q^{61} + 13 q^{67} + q^{69} + 10 q^{71} - 9 q^{73} + 5 q^{75} - 10 q^{79} + q^{81} - 10 q^{83} + 3 q^{87} + 12 q^{89} + 4 q^{93} - 14 q^{97} - 4 q^{99}+O(q^{100})$$ q - q^3 - 2 * q^9 + 2 * q^11 - q^13 + 5 * q^17 - q^19 - q^23 - 5 * q^25 + 5 * q^27 - 3 * q^29 - 4 * q^31 - 2 * q^33 + 2 * q^37 + q^39 + 8 * q^41 - 8 * q^43 + 8 * q^47 - 5 * q^51 + 9 * q^53 + q^57 - q^59 - 14 * q^61 + 13 * q^67 + q^69 + 10 * q^71 - 9 * q^73 + 5 * q^75 - 10 * q^79 + q^81 - 10 * q^83 + 3 * q^87 + 12 * q^89 + 4 * q^93 - 14 * q^97 - 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 0 0 0 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$7$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7448.2.a.g 1
7.b odd 2 1 152.2.a.b 1
21.c even 2 1 1368.2.a.g 1
28.d even 2 1 304.2.a.b 1
35.c odd 2 1 3800.2.a.d 1
35.f even 4 2 3800.2.d.f 2
56.e even 2 1 1216.2.a.l 1
56.h odd 2 1 1216.2.a.f 1
84.h odd 2 1 2736.2.a.k 1
133.c even 2 1 2888.2.a.b 1
140.c even 2 1 7600.2.a.o 1
532.b odd 2 1 5776.2.a.l 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.2.a.b 1 7.b odd 2 1
304.2.a.b 1 28.d even 2 1
1216.2.a.f 1 56.h odd 2 1
1216.2.a.l 1 56.e even 2 1
1368.2.a.g 1 21.c even 2 1
2736.2.a.k 1 84.h odd 2 1
2888.2.a.b 1 133.c even 2 1
3800.2.a.d 1 35.c odd 2 1
3800.2.d.f 2 35.f even 4 2
5776.2.a.l 1 532.b odd 2 1
7448.2.a.g 1 1.a even 1 1 trivial
7600.2.a.o 1 140.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7448))$$:

 $$T_{3} + 1$$ T3 + 1 $$T_{5}$$ T5 $$T_{11} - 2$$ T11 - 2 $$T_{13} + 1$$ T13 + 1 $$T_{17} - 5$$ T17 - 5

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T - 2$$
$13$ $$T + 1$$
$17$ $$T - 5$$
$19$ $$T + 1$$
$23$ $$T + 1$$
$29$ $$T + 3$$
$31$ $$T + 4$$
$37$ $$T - 2$$
$41$ $$T - 8$$
$43$ $$T + 8$$
$47$ $$T - 8$$
$53$ $$T - 9$$
$59$ $$T + 1$$
$61$ $$T + 14$$
$67$ $$T - 13$$
$71$ $$T - 10$$
$73$ $$T + 9$$
$79$ $$T + 10$$
$83$ $$T + 10$$
$89$ $$T - 12$$
$97$ $$T + 14$$