Defining parameters
Level: | \( N \) | \(=\) | \( 7448 = 2^{3} \cdot 7^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7448.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 50 \) | ||
Sturm bound: | \(2240\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7448))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1152 | 185 | 967 |
Cusp forms | 1089 | 185 | 904 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(136\) | \(23\) | \(113\) | \(129\) | \(23\) | \(106\) | \(7\) | \(0\) | \(7\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(148\) | \(23\) | \(125\) | \(140\) | \(23\) | \(117\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(149\) | \(23\) | \(126\) | \(141\) | \(23\) | \(118\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(143\) | \(23\) | \(120\) | \(135\) | \(23\) | \(112\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(152\) | \(26\) | \(126\) | \(144\) | \(26\) | \(118\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(140\) | \(20\) | \(120\) | \(132\) | \(20\) | \(112\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(139\) | \(19\) | \(120\) | \(131\) | \(19\) | \(112\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(145\) | \(28\) | \(117\) | \(137\) | \(28\) | \(109\) | \(8\) | \(0\) | \(8\) | |||
Plus space | \(+\) | \(558\) | \(85\) | \(473\) | \(527\) | \(85\) | \(442\) | \(31\) | \(0\) | \(31\) | |||||
Minus space | \(-\) | \(594\) | \(100\) | \(494\) | \(562\) | \(100\) | \(462\) | \(32\) | \(0\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7448))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7448))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7448)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(392))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(532))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(931))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1064))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1862))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3724))\)\(^{\oplus 2}\)