Properties

Label 7440.2.a.bz
Level $7440$
Weight $2$
Character orbit 7440.a
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7440,2,Mod(1,7440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7440.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,4,0,-4,0,4,0,-6,0,2,0,4,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.8468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + q^{5} + ( - \beta_{3} + \beta_1 - 1) q^{7} + q^{9} + (\beta_{3} - \beta_{2} - \beta_1 - 2) q^{11} + (2 \beta_{3} + \beta_{2} + 1) q^{13} + q^{15} + ( - \beta_{3} - \beta_{2} - 3) q^{17}+ \cdots + (\beta_{3} - \beta_{2} - \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{5} - 4 q^{7} + 4 q^{9} - 6 q^{11} + 2 q^{13} + 4 q^{15} - 10 q^{17} - 16 q^{19} - 4 q^{21} - 6 q^{23} + 4 q^{25} + 4 q^{27} + 4 q^{31} - 6 q^{33} - 4 q^{35} + 8 q^{37} + 2 q^{39} - 6 q^{41}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} - \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{3} - 3\beta_{2} + 5\beta _1 + 2 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.704624
−1.89122
1.31743
2.27841
0 1.00000 0 1.00000 0 −4.20813 0 1.00000 0
1.2 0 1.00000 0 1.00000 0 −2.31451 0 1.00000 0
1.3 0 1.00000 0 1.00000 0 −0.946946 0 1.00000 0
1.4 0 1.00000 0 1.00000 0 3.46958 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7440.2.a.bz 4
4.b odd 2 1 465.2.a.h 4
12.b even 2 1 1395.2.a.k 4
20.d odd 2 1 2325.2.a.v 4
20.e even 4 2 2325.2.c.p 8
60.h even 2 1 6975.2.a.bo 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.a.h 4 4.b odd 2 1
1395.2.a.k 4 12.b even 2 1
2325.2.a.v 4 20.d odd 2 1
2325.2.c.p 8 20.e even 4 2
6975.2.a.bo 4 60.h even 2 1
7440.2.a.bz 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7440))\):

\( T_{7}^{4} + 4T_{7}^{3} - 10T_{7}^{2} - 46T_{7} - 32 \) Copy content Toggle raw display
\( T_{11}^{4} + 6T_{11}^{3} - 12T_{11}^{2} - 56T_{11} + 32 \) Copy content Toggle raw display
\( T_{13}^{4} - 2T_{13}^{3} - 50T_{13}^{2} + 94T_{13} + 4 \) Copy content Toggle raw display
\( T_{17}^{4} + 10T_{17}^{3} + 20T_{17}^{2} - 52T_{17} - 136 \) Copy content Toggle raw display
\( T_{19} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 4 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$11$ \( T^{4} + 6 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$13$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{4} + 10 T^{3} + \cdots - 136 \) Copy content Toggle raw display
$19$ \( (T + 4)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 2048 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$31$ \( (T - 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 388 \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots - 704 \) Copy content Toggle raw display
$43$ \( T^{4} + 2 T^{3} + \cdots + 928 \) Copy content Toggle raw display
$47$ \( T^{4} - 2 T^{3} + \cdots - 736 \) Copy content Toggle raw display
$53$ \( T^{4} + 6 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$59$ \( T^{4} + 4 T^{3} + \cdots - 808 \) Copy content Toggle raw display
$61$ \( T^{4} - 168 T^{2} + \cdots + 848 \) Copy content Toggle raw display
$67$ \( T^{4} - 2 T^{3} + \cdots + 184 \) Copy content Toggle raw display
$71$ \( T^{4} + 22 T^{3} + \cdots - 1808 \) Copy content Toggle raw display
$73$ \( T^{4} + 32 T^{3} + \cdots + 788 \) Copy content Toggle raw display
$79$ \( T^{4} + 24 T^{3} + \cdots - 24064 \) Copy content Toggle raw display
$83$ \( T^{4} - 6 T^{3} + \cdots - 464 \) Copy content Toggle raw display
$89$ \( T^{4} + 14 T^{3} + \cdots - 92 \) Copy content Toggle raw display
$97$ \( T^{4} + 14 T^{3} + \cdots - 64 \) Copy content Toggle raw display
show more
show less