Properties

Label 7440.2.a.bu.1.2
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7440,2,Mod(1,7440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3720)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.65544\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -0.259511 q^{7} +1.00000 q^{9} -4.00000 q^{11} +2.25951 q^{13} -1.00000 q^{15} +3.31088 q^{17} -6.10275 q^{19} -0.259511 q^{21} +0.791864 q^{23} +1.00000 q^{25} +1.00000 q^{27} -2.53235 q^{29} +1.00000 q^{31} -4.00000 q^{33} +0.259511 q^{35} -4.36226 q^{37} +2.25951 q^{39} +10.2055 q^{41} +10.1027 q^{43} -1.00000 q^{45} +7.41363 q^{47} -6.93265 q^{49} +3.31088 q^{51} -0.689115 q^{53} +4.00000 q^{55} -6.10275 q^{57} -5.05137 q^{59} -1.48098 q^{61} -0.259511 q^{63} -2.25951 q^{65} -5.84324 q^{67} +0.791864 q^{69} -9.05137 q^{71} +0.362259 q^{73} +1.00000 q^{75} +1.03804 q^{77} -4.79186 q^{79} +1.00000 q^{81} -18.0354 q^{83} -3.31088 q^{85} -2.53235 q^{87} -9.15412 q^{89} -0.586367 q^{91} +1.00000 q^{93} +6.10275 q^{95} +9.68648 q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{5} + 2 q^{7} + 3 q^{9} - 12 q^{11} + 4 q^{13} - 3 q^{15} - 2 q^{17} + 2 q^{21} - 4 q^{23} + 3 q^{25} + 3 q^{27} - 4 q^{29} + 3 q^{31} - 12 q^{33} - 2 q^{35} + 8 q^{37} + 4 q^{39} - 6 q^{41}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.259511 −0.0980858 −0.0490429 0.998797i \(-0.515617\pi\)
−0.0490429 + 0.998797i \(0.515617\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 2.25951 0.626675 0.313338 0.949642i \(-0.398553\pi\)
0.313338 + 0.949642i \(0.398553\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 3.31088 0.803008 0.401504 0.915857i \(-0.368488\pi\)
0.401504 + 0.915857i \(0.368488\pi\)
\(18\) 0 0
\(19\) −6.10275 −1.40007 −0.700033 0.714110i \(-0.746832\pi\)
−0.700033 + 0.714110i \(0.746832\pi\)
\(20\) 0 0
\(21\) −0.259511 −0.0566298
\(22\) 0 0
\(23\) 0.791864 0.165115 0.0825575 0.996586i \(-0.473691\pi\)
0.0825575 + 0.996586i \(0.473691\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.53235 −0.470246 −0.235123 0.971966i \(-0.575549\pi\)
−0.235123 + 0.971966i \(0.575549\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) 0.259511 0.0438653
\(36\) 0 0
\(37\) −4.36226 −0.717151 −0.358575 0.933501i \(-0.616737\pi\)
−0.358575 + 0.933501i \(0.616737\pi\)
\(38\) 0 0
\(39\) 2.25951 0.361811
\(40\) 0 0
\(41\) 10.2055 1.59383 0.796915 0.604091i \(-0.206464\pi\)
0.796915 + 0.604091i \(0.206464\pi\)
\(42\) 0 0
\(43\) 10.1027 1.54065 0.770327 0.637649i \(-0.220093\pi\)
0.770327 + 0.637649i \(0.220093\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 7.41363 1.08139 0.540695 0.841219i \(-0.318161\pi\)
0.540695 + 0.841219i \(0.318161\pi\)
\(48\) 0 0
\(49\) −6.93265 −0.990379
\(50\) 0 0
\(51\) 3.31088 0.463617
\(52\) 0 0
\(53\) −0.689115 −0.0946573 −0.0473286 0.998879i \(-0.515071\pi\)
−0.0473286 + 0.998879i \(0.515071\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) −6.10275 −0.808329
\(58\) 0 0
\(59\) −5.05137 −0.657633 −0.328816 0.944394i \(-0.606650\pi\)
−0.328816 + 0.944394i \(0.606650\pi\)
\(60\) 0 0
\(61\) −1.48098 −0.189620 −0.0948100 0.995495i \(-0.530224\pi\)
−0.0948100 + 0.995495i \(0.530224\pi\)
\(62\) 0 0
\(63\) −0.259511 −0.0326953
\(64\) 0 0
\(65\) −2.25951 −0.280258
\(66\) 0 0
\(67\) −5.84324 −0.713865 −0.356933 0.934130i \(-0.616177\pi\)
−0.356933 + 0.934130i \(0.616177\pi\)
\(68\) 0 0
\(69\) 0.791864 0.0953292
\(70\) 0 0
\(71\) −9.05137 −1.07420 −0.537100 0.843518i \(-0.680480\pi\)
−0.537100 + 0.843518i \(0.680480\pi\)
\(72\) 0 0
\(73\) 0.362259 0.0423992 0.0211996 0.999775i \(-0.493251\pi\)
0.0211996 + 0.999775i \(0.493251\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 1.03804 0.118296
\(78\) 0 0
\(79\) −4.79186 −0.539127 −0.269563 0.962983i \(-0.586879\pi\)
−0.269563 + 0.962983i \(0.586879\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −18.0354 −1.97964 −0.989821 0.142316i \(-0.954545\pi\)
−0.989821 + 0.142316i \(0.954545\pi\)
\(84\) 0 0
\(85\) −3.31088 −0.359116
\(86\) 0 0
\(87\) −2.53235 −0.271497
\(88\) 0 0
\(89\) −9.15412 −0.970335 −0.485168 0.874421i \(-0.661241\pi\)
−0.485168 + 0.874421i \(0.661241\pi\)
\(90\) 0 0
\(91\) −0.586367 −0.0614679
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) 6.10275 0.626129
\(96\) 0 0
\(97\) 9.68648 0.983513 0.491756 0.870733i \(-0.336355\pi\)
0.491756 + 0.870733i \(0.336355\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −16.8273 −1.67438 −0.837188 0.546916i \(-0.815802\pi\)
−0.837188 + 0.546916i \(0.815802\pi\)
\(102\) 0 0
\(103\) −7.94599 −0.782941 −0.391471 0.920191i \(-0.628034\pi\)
−0.391471 + 0.920191i \(0.628034\pi\)
\(104\) 0 0
\(105\) 0.259511 0.0253256
\(106\) 0 0
\(107\) −7.20814 −0.696837 −0.348418 0.937339i \(-0.613281\pi\)
−0.348418 + 0.937339i \(0.613281\pi\)
\(108\) 0 0
\(109\) 3.31088 0.317125 0.158563 0.987349i \(-0.449314\pi\)
0.158563 + 0.987349i \(0.449314\pi\)
\(110\) 0 0
\(111\) −4.36226 −0.414047
\(112\) 0 0
\(113\) −0.416273 −0.0391596 −0.0195798 0.999808i \(-0.506233\pi\)
−0.0195798 + 0.999808i \(0.506233\pi\)
\(114\) 0 0
\(115\) −0.791864 −0.0738417
\(116\) 0 0
\(117\) 2.25951 0.208892
\(118\) 0 0
\(119\) −0.859209 −0.0787636
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 10.2055 0.920199
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.72452 0.774176 0.387088 0.922043i \(-0.373481\pi\)
0.387088 + 0.922043i \(0.373481\pi\)
\(128\) 0 0
\(129\) 10.1027 0.889497
\(130\) 0 0
\(131\) −21.0514 −1.83927 −0.919634 0.392777i \(-0.871514\pi\)
−0.919634 + 0.392777i \(0.871514\pi\)
\(132\) 0 0
\(133\) 1.58373 0.137327
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 9.20814 0.786704 0.393352 0.919388i \(-0.371315\pi\)
0.393352 + 0.919388i \(0.371315\pi\)
\(138\) 0 0
\(139\) −13.5837 −1.15216 −0.576078 0.817394i \(-0.695418\pi\)
−0.576078 + 0.817394i \(0.695418\pi\)
\(140\) 0 0
\(141\) 7.41363 0.624341
\(142\) 0 0
\(143\) −9.03804 −0.755799
\(144\) 0 0
\(145\) 2.53235 0.210300
\(146\) 0 0
\(147\) −6.93265 −0.571796
\(148\) 0 0
\(149\) −0.416273 −0.0341024 −0.0170512 0.999855i \(-0.505428\pi\)
−0.0170512 + 0.999855i \(0.505428\pi\)
\(150\) 0 0
\(151\) −3.20814 −0.261074 −0.130537 0.991443i \(-0.541670\pi\)
−0.130537 + 0.991443i \(0.541670\pi\)
\(152\) 0 0
\(153\) 3.31088 0.267669
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) 10.7245 0.855910 0.427955 0.903800i \(-0.359234\pi\)
0.427955 + 0.903800i \(0.359234\pi\)
\(158\) 0 0
\(159\) −0.689115 −0.0546504
\(160\) 0 0
\(161\) −0.205497 −0.0161954
\(162\) 0 0
\(163\) 15.9460 1.24899 0.624493 0.781030i \(-0.285306\pi\)
0.624493 + 0.781030i \(0.285306\pi\)
\(164\) 0 0
\(165\) 4.00000 0.311400
\(166\) 0 0
\(167\) −1.58373 −0.122553 −0.0612763 0.998121i \(-0.519517\pi\)
−0.0612763 + 0.998121i \(0.519517\pi\)
\(168\) 0 0
\(169\) −7.89461 −0.607278
\(170\) 0 0
\(171\) −6.10275 −0.466689
\(172\) 0 0
\(173\) −0.621770 −0.0472723 −0.0236361 0.999721i \(-0.507524\pi\)
−0.0236361 + 0.999721i \(0.507524\pi\)
\(174\) 0 0
\(175\) −0.259511 −0.0196172
\(176\) 0 0
\(177\) −5.05137 −0.379685
\(178\) 0 0
\(179\) −5.37823 −0.401988 −0.200994 0.979592i \(-0.564417\pi\)
−0.200994 + 0.979592i \(0.564417\pi\)
\(180\) 0 0
\(181\) 6.51902 0.484555 0.242278 0.970207i \(-0.422106\pi\)
0.242278 + 0.970207i \(0.422106\pi\)
\(182\) 0 0
\(183\) −1.48098 −0.109477
\(184\) 0 0
\(185\) 4.36226 0.320720
\(186\) 0 0
\(187\) −13.2435 −0.968463
\(188\) 0 0
\(189\) −0.259511 −0.0188766
\(190\) 0 0
\(191\) −24.1922 −1.75048 −0.875242 0.483686i \(-0.839298\pi\)
−0.875242 + 0.483686i \(0.839298\pi\)
\(192\) 0 0
\(193\) −14.7245 −1.05989 −0.529947 0.848031i \(-0.677788\pi\)
−0.529947 + 0.848031i \(0.677788\pi\)
\(194\) 0 0
\(195\) −2.25951 −0.161807
\(196\) 0 0
\(197\) −4.37559 −0.311748 −0.155874 0.987777i \(-0.549819\pi\)
−0.155874 + 0.987777i \(0.549819\pi\)
\(198\) 0 0
\(199\) 15.9593 1.13133 0.565663 0.824636i \(-0.308620\pi\)
0.565663 + 0.824636i \(0.308620\pi\)
\(200\) 0 0
\(201\) −5.84324 −0.412150
\(202\) 0 0
\(203\) 0.657172 0.0461245
\(204\) 0 0
\(205\) −10.2055 −0.712783
\(206\) 0 0
\(207\) 0.791864 0.0550383
\(208\) 0 0
\(209\) 24.4110 1.68854
\(210\) 0 0
\(211\) −9.89725 −0.681355 −0.340677 0.940180i \(-0.610656\pi\)
−0.340677 + 0.940180i \(0.610656\pi\)
\(212\) 0 0
\(213\) −9.05137 −0.620190
\(214\) 0 0
\(215\) −10.1027 −0.689002
\(216\) 0 0
\(217\) −0.259511 −0.0176167
\(218\) 0 0
\(219\) 0.362259 0.0244792
\(220\) 0 0
\(221\) 7.48098 0.503225
\(222\) 0 0
\(223\) 13.7892 0.923395 0.461697 0.887038i \(-0.347241\pi\)
0.461697 + 0.887038i \(0.347241\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 16.1382 1.07113 0.535563 0.844495i \(-0.320099\pi\)
0.535563 + 0.844495i \(0.320099\pi\)
\(228\) 0 0
\(229\) 2.20550 0.145743 0.0728717 0.997341i \(-0.476784\pi\)
0.0728717 + 0.997341i \(0.476784\pi\)
\(230\) 0 0
\(231\) 1.03804 0.0682982
\(232\) 0 0
\(233\) −13.9327 −0.912759 −0.456379 0.889785i \(-0.650854\pi\)
−0.456379 + 0.889785i \(0.650854\pi\)
\(234\) 0 0
\(235\) −7.41363 −0.483612
\(236\) 0 0
\(237\) −4.79186 −0.311265
\(238\) 0 0
\(239\) −20.9300 −1.35385 −0.676925 0.736052i \(-0.736688\pi\)
−0.676925 + 0.736052i \(0.736688\pi\)
\(240\) 0 0
\(241\) 0.416273 0.0268145 0.0134072 0.999910i \(-0.495732\pi\)
0.0134072 + 0.999910i \(0.495732\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 6.93265 0.442911
\(246\) 0 0
\(247\) −13.7892 −0.877387
\(248\) 0 0
\(249\) −18.0354 −1.14295
\(250\) 0 0
\(251\) −28.2055 −1.78032 −0.890158 0.455653i \(-0.849406\pi\)
−0.890158 + 0.455653i \(0.849406\pi\)
\(252\) 0 0
\(253\) −3.16745 −0.199136
\(254\) 0 0
\(255\) −3.31088 −0.207336
\(256\) 0 0
\(257\) −12.3489 −0.770305 −0.385152 0.922853i \(-0.625851\pi\)
−0.385152 + 0.922853i \(0.625851\pi\)
\(258\) 0 0
\(259\) 1.13205 0.0703423
\(260\) 0 0
\(261\) −2.53235 −0.156749
\(262\) 0 0
\(263\) −21.2435 −1.30993 −0.654966 0.755658i \(-0.727317\pi\)
−0.654966 + 0.755658i \(0.727317\pi\)
\(264\) 0 0
\(265\) 0.689115 0.0423320
\(266\) 0 0
\(267\) −9.15412 −0.560223
\(268\) 0 0
\(269\) −1.98667 −0.121129 −0.0605646 0.998164i \(-0.519290\pi\)
−0.0605646 + 0.998164i \(0.519290\pi\)
\(270\) 0 0
\(271\) −2.62177 −0.159261 −0.0796306 0.996824i \(-0.525374\pi\)
−0.0796306 + 0.996824i \(0.525374\pi\)
\(272\) 0 0
\(273\) −0.586367 −0.0354885
\(274\) 0 0
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 16.9079 1.01590 0.507950 0.861387i \(-0.330403\pi\)
0.507950 + 0.861387i \(0.330403\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 25.3463 1.51203 0.756016 0.654553i \(-0.227143\pi\)
0.756016 + 0.654553i \(0.227143\pi\)
\(282\) 0 0
\(283\) −0.805196 −0.0478639 −0.0239320 0.999714i \(-0.507619\pi\)
−0.0239320 + 0.999714i \(0.507619\pi\)
\(284\) 0 0
\(285\) 6.10275 0.361496
\(286\) 0 0
\(287\) −2.64843 −0.156332
\(288\) 0 0
\(289\) −6.03804 −0.355179
\(290\) 0 0
\(291\) 9.68648 0.567831
\(292\) 0 0
\(293\) −7.31088 −0.427106 −0.213553 0.976931i \(-0.568504\pi\)
−0.213553 + 0.976931i \(0.568504\pi\)
\(294\) 0 0
\(295\) 5.05137 0.294102
\(296\) 0 0
\(297\) −4.00000 −0.232104
\(298\) 0 0
\(299\) 1.78922 0.103474
\(300\) 0 0
\(301\) −2.62177 −0.151116
\(302\) 0 0
\(303\) −16.8273 −0.966701
\(304\) 0 0
\(305\) 1.48098 0.0848006
\(306\) 0 0
\(307\) 11.4270 0.652171 0.326086 0.945340i \(-0.394270\pi\)
0.326086 + 0.945340i \(0.394270\pi\)
\(308\) 0 0
\(309\) −7.94599 −0.452031
\(310\) 0 0
\(311\) 18.6351 1.05670 0.528350 0.849027i \(-0.322811\pi\)
0.528350 + 0.849027i \(0.322811\pi\)
\(312\) 0 0
\(313\) −15.2976 −0.864669 −0.432334 0.901713i \(-0.642310\pi\)
−0.432334 + 0.901713i \(0.642310\pi\)
\(314\) 0 0
\(315\) 0.259511 0.0146218
\(316\) 0 0
\(317\) 34.6838 1.94804 0.974019 0.226466i \(-0.0727171\pi\)
0.974019 + 0.226466i \(0.0727171\pi\)
\(318\) 0 0
\(319\) 10.1294 0.567138
\(320\) 0 0
\(321\) −7.20814 −0.402319
\(322\) 0 0
\(323\) −20.2055 −1.12426
\(324\) 0 0
\(325\) 2.25951 0.125335
\(326\) 0 0
\(327\) 3.31088 0.183092
\(328\) 0 0
\(329\) −1.92392 −0.106069
\(330\) 0 0
\(331\) −6.17009 −0.339139 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(332\) 0 0
\(333\) −4.36226 −0.239050
\(334\) 0 0
\(335\) 5.84324 0.319250
\(336\) 0 0
\(337\) −20.3623 −1.10920 −0.554601 0.832116i \(-0.687129\pi\)
−0.554601 + 0.832116i \(0.687129\pi\)
\(338\) 0 0
\(339\) −0.416273 −0.0226088
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 3.61567 0.195228
\(344\) 0 0
\(345\) −0.791864 −0.0426325
\(346\) 0 0
\(347\) −27.8653 −1.49589 −0.747944 0.663762i \(-0.768959\pi\)
−0.747944 + 0.663762i \(0.768959\pi\)
\(348\) 0 0
\(349\) −11.1054 −0.594458 −0.297229 0.954806i \(-0.596062\pi\)
−0.297229 + 0.954806i \(0.596062\pi\)
\(350\) 0 0
\(351\) 2.25951 0.120604
\(352\) 0 0
\(353\) −16.8946 −0.899209 −0.449605 0.893228i \(-0.648435\pi\)
−0.449605 + 0.893228i \(0.648435\pi\)
\(354\) 0 0
\(355\) 9.05137 0.480397
\(356\) 0 0
\(357\) −0.859209 −0.0454742
\(358\) 0 0
\(359\) 1.88392 0.0994295 0.0497147 0.998763i \(-0.484169\pi\)
0.0497147 + 0.998763i \(0.484169\pi\)
\(360\) 0 0
\(361\) 18.2435 0.960186
\(362\) 0 0
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) −0.362259 −0.0189615
\(366\) 0 0
\(367\) 5.58373 0.291468 0.145734 0.989324i \(-0.453446\pi\)
0.145734 + 0.989324i \(0.453446\pi\)
\(368\) 0 0
\(369\) 10.2055 0.531277
\(370\) 0 0
\(371\) 0.178833 0.00928453
\(372\) 0 0
\(373\) 37.5518 1.94436 0.972179 0.234240i \(-0.0752601\pi\)
0.972179 + 0.234240i \(0.0752601\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −5.72188 −0.294692
\(378\) 0 0
\(379\) −14.1027 −0.724410 −0.362205 0.932099i \(-0.617976\pi\)
−0.362205 + 0.932099i \(0.617976\pi\)
\(380\) 0 0
\(381\) 8.72452 0.446971
\(382\) 0 0
\(383\) 23.6191 1.20688 0.603441 0.797408i \(-0.293796\pi\)
0.603441 + 0.797408i \(0.293796\pi\)
\(384\) 0 0
\(385\) −1.03804 −0.0529035
\(386\) 0 0
\(387\) 10.1027 0.513552
\(388\) 0 0
\(389\) −14.3977 −0.729990 −0.364995 0.931009i \(-0.618929\pi\)
−0.364995 + 0.931009i \(0.618929\pi\)
\(390\) 0 0
\(391\) 2.62177 0.132589
\(392\) 0 0
\(393\) −21.0514 −1.06190
\(394\) 0 0
\(395\) 4.79186 0.241105
\(396\) 0 0
\(397\) −21.3730 −1.07268 −0.536339 0.844003i \(-0.680193\pi\)
−0.536339 + 0.844003i \(0.680193\pi\)
\(398\) 0 0
\(399\) 1.58373 0.0792855
\(400\) 0 0
\(401\) 6.32686 0.315948 0.157974 0.987443i \(-0.449504\pi\)
0.157974 + 0.987443i \(0.449504\pi\)
\(402\) 0 0
\(403\) 2.25951 0.112554
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 17.4490 0.864917
\(408\) 0 0
\(409\) 15.7626 0.779408 0.389704 0.920940i \(-0.372577\pi\)
0.389704 + 0.920940i \(0.372577\pi\)
\(410\) 0 0
\(411\) 9.20814 0.454204
\(412\) 0 0
\(413\) 1.31088 0.0645044
\(414\) 0 0
\(415\) 18.0354 0.885323
\(416\) 0 0
\(417\) −13.5837 −0.665198
\(418\) 0 0
\(419\) −13.7759 −0.672996 −0.336498 0.941684i \(-0.609243\pi\)
−0.336498 + 0.941684i \(0.609243\pi\)
\(420\) 0 0
\(421\) 16.5544 0.806813 0.403407 0.915021i \(-0.367826\pi\)
0.403407 + 0.915021i \(0.367826\pi\)
\(422\) 0 0
\(423\) 7.41363 0.360463
\(424\) 0 0
\(425\) 3.31088 0.160602
\(426\) 0 0
\(427\) 0.384330 0.0185990
\(428\) 0 0
\(429\) −9.03804 −0.436361
\(430\) 0 0
\(431\) 33.4624 1.61183 0.805913 0.592034i \(-0.201675\pi\)
0.805913 + 0.592034i \(0.201675\pi\)
\(432\) 0 0
\(433\) −2.25951 −0.108585 −0.0542926 0.998525i \(-0.517290\pi\)
−0.0542926 + 0.998525i \(0.517290\pi\)
\(434\) 0 0
\(435\) 2.53235 0.121417
\(436\) 0 0
\(437\) −4.83255 −0.231172
\(438\) 0 0
\(439\) −12.2055 −0.582537 −0.291268 0.956641i \(-0.594077\pi\)
−0.291268 + 0.956641i \(0.594077\pi\)
\(440\) 0 0
\(441\) −6.93265 −0.330126
\(442\) 0 0
\(443\) −32.1382 −1.52693 −0.763465 0.645849i \(-0.776503\pi\)
−0.763465 + 0.645849i \(0.776503\pi\)
\(444\) 0 0
\(445\) 9.15412 0.433947
\(446\) 0 0
\(447\) −0.416273 −0.0196890
\(448\) 0 0
\(449\) −33.0461 −1.55954 −0.779771 0.626065i \(-0.784664\pi\)
−0.779771 + 0.626065i \(0.784664\pi\)
\(450\) 0 0
\(451\) −40.8220 −1.92223
\(452\) 0 0
\(453\) −3.20814 −0.150731
\(454\) 0 0
\(455\) 0.586367 0.0274893
\(456\) 0 0
\(457\) −0.675783 −0.0316118 −0.0158059 0.999875i \(-0.505031\pi\)
−0.0158059 + 0.999875i \(0.505031\pi\)
\(458\) 0 0
\(459\) 3.31088 0.154539
\(460\) 0 0
\(461\) 21.9867 1.02402 0.512011 0.858979i \(-0.328901\pi\)
0.512011 + 0.858979i \(0.328901\pi\)
\(462\) 0 0
\(463\) −26.1027 −1.21310 −0.606549 0.795046i \(-0.707447\pi\)
−0.606549 + 0.795046i \(0.707447\pi\)
\(464\) 0 0
\(465\) −1.00000 −0.0463739
\(466\) 0 0
\(467\) −16.6572 −0.770802 −0.385401 0.922749i \(-0.625937\pi\)
−0.385401 + 0.922749i \(0.625937\pi\)
\(468\) 0 0
\(469\) 1.51638 0.0700200
\(470\) 0 0
\(471\) 10.7245 0.494160
\(472\) 0 0
\(473\) −40.4110 −1.85810
\(474\) 0 0
\(475\) −6.10275 −0.280013
\(476\) 0 0
\(477\) −0.689115 −0.0315524
\(478\) 0 0
\(479\) −40.4243 −1.84703 −0.923517 0.383557i \(-0.874699\pi\)
−0.923517 + 0.383557i \(0.874699\pi\)
\(480\) 0 0
\(481\) −9.85657 −0.449421
\(482\) 0 0
\(483\) −0.205497 −0.00935044
\(484\) 0 0
\(485\) −9.68648 −0.439840
\(486\) 0 0
\(487\) 17.7626 0.804898 0.402449 0.915442i \(-0.368159\pi\)
0.402449 + 0.915442i \(0.368159\pi\)
\(488\) 0 0
\(489\) 15.9460 0.721102
\(490\) 0 0
\(491\) 1.06471 0.0480495 0.0240248 0.999711i \(-0.492352\pi\)
0.0240248 + 0.999711i \(0.492352\pi\)
\(492\) 0 0
\(493\) −8.38433 −0.377611
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 2.34893 0.105364
\(498\) 0 0
\(499\) 30.4871 1.36479 0.682395 0.730984i \(-0.260939\pi\)
0.682395 + 0.730984i \(0.260939\pi\)
\(500\) 0 0
\(501\) −1.58373 −0.0707557
\(502\) 0 0
\(503\) −3.75382 −0.167375 −0.0836873 0.996492i \(-0.526670\pi\)
−0.0836873 + 0.996492i \(0.526670\pi\)
\(504\) 0 0
\(505\) 16.8273 0.748804
\(506\) 0 0
\(507\) −7.89461 −0.350612
\(508\) 0 0
\(509\) 12.6084 0.558859 0.279430 0.960166i \(-0.409855\pi\)
0.279430 + 0.960166i \(0.409855\pi\)
\(510\) 0 0
\(511\) −0.0940100 −0.00415876
\(512\) 0 0
\(513\) −6.10275 −0.269443
\(514\) 0 0
\(515\) 7.94599 0.350142
\(516\) 0 0
\(517\) −29.6545 −1.30420
\(518\) 0 0
\(519\) −0.621770 −0.0272927
\(520\) 0 0
\(521\) 15.9947 0.700741 0.350371 0.936611i \(-0.386056\pi\)
0.350371 + 0.936611i \(0.386056\pi\)
\(522\) 0 0
\(523\) 10.9353 0.478167 0.239084 0.970999i \(-0.423153\pi\)
0.239084 + 0.970999i \(0.423153\pi\)
\(524\) 0 0
\(525\) −0.259511 −0.0113260
\(526\) 0 0
\(527\) 3.31088 0.144224
\(528\) 0 0
\(529\) −22.3730 −0.972737
\(530\) 0 0
\(531\) −5.05137 −0.219211
\(532\) 0 0
\(533\) 23.0594 0.998815
\(534\) 0 0
\(535\) 7.20814 0.311635
\(536\) 0 0
\(537\) −5.37823 −0.232088
\(538\) 0 0
\(539\) 27.7306 1.19444
\(540\) 0 0
\(541\) −14.1382 −0.607847 −0.303923 0.952697i \(-0.598297\pi\)
−0.303923 + 0.952697i \(0.598297\pi\)
\(542\) 0 0
\(543\) 6.51902 0.279758
\(544\) 0 0
\(545\) −3.31088 −0.141823
\(546\) 0 0
\(547\) −12.8052 −0.547511 −0.273755 0.961799i \(-0.588266\pi\)
−0.273755 + 0.961799i \(0.588266\pi\)
\(548\) 0 0
\(549\) −1.48098 −0.0632066
\(550\) 0 0
\(551\) 15.4543 0.658376
\(552\) 0 0
\(553\) 1.24354 0.0528807
\(554\) 0 0
\(555\) 4.36226 0.185168
\(556\) 0 0
\(557\) 28.0087 1.18677 0.593384 0.804919i \(-0.297792\pi\)
0.593384 + 0.804919i \(0.297792\pi\)
\(558\) 0 0
\(559\) 22.8273 0.965491
\(560\) 0 0
\(561\) −13.2435 −0.559143
\(562\) 0 0
\(563\) −1.82991 −0.0771213 −0.0385607 0.999256i \(-0.512277\pi\)
−0.0385607 + 0.999256i \(0.512277\pi\)
\(564\) 0 0
\(565\) 0.416273 0.0175127
\(566\) 0 0
\(567\) −0.259511 −0.0108984
\(568\) 0 0
\(569\) 15.9814 0.669975 0.334987 0.942223i \(-0.391268\pi\)
0.334987 + 0.942223i \(0.391268\pi\)
\(570\) 0 0
\(571\) 3.45431 0.144559 0.0722793 0.997384i \(-0.476973\pi\)
0.0722793 + 0.997384i \(0.476973\pi\)
\(572\) 0 0
\(573\) −24.1922 −1.01064
\(574\) 0 0
\(575\) 0.791864 0.0330230
\(576\) 0 0
\(577\) −35.4490 −1.47576 −0.737881 0.674930i \(-0.764174\pi\)
−0.737881 + 0.674930i \(0.764174\pi\)
\(578\) 0 0
\(579\) −14.7245 −0.611930
\(580\) 0 0
\(581\) 4.68038 0.194175
\(582\) 0 0
\(583\) 2.75646 0.114161
\(584\) 0 0
\(585\) −2.25951 −0.0934193
\(586\) 0 0
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) 0 0
\(589\) −6.10275 −0.251459
\(590\) 0 0
\(591\) −4.37559 −0.179988
\(592\) 0 0
\(593\) −14.8325 −0.609100 −0.304550 0.952496i \(-0.598506\pi\)
−0.304550 + 0.952496i \(0.598506\pi\)
\(594\) 0 0
\(595\) 0.859209 0.0352242
\(596\) 0 0
\(597\) 15.9593 0.653171
\(598\) 0 0
\(599\) 20.7112 0.846236 0.423118 0.906075i \(-0.360936\pi\)
0.423118 + 0.906075i \(0.360936\pi\)
\(600\) 0 0
\(601\) 30.7245 1.25328 0.626640 0.779309i \(-0.284430\pi\)
0.626640 + 0.779309i \(0.284430\pi\)
\(602\) 0 0
\(603\) −5.84324 −0.237955
\(604\) 0 0
\(605\) −5.00000 −0.203279
\(606\) 0 0
\(607\) −25.3950 −1.03075 −0.515376 0.856964i \(-0.672348\pi\)
−0.515376 + 0.856964i \(0.672348\pi\)
\(608\) 0 0
\(609\) 0.657172 0.0266300
\(610\) 0 0
\(611\) 16.7512 0.677680
\(612\) 0 0
\(613\) 30.4383 1.22939 0.614697 0.788764i \(-0.289278\pi\)
0.614697 + 0.788764i \(0.289278\pi\)
\(614\) 0 0
\(615\) −10.2055 −0.411525
\(616\) 0 0
\(617\) −30.2055 −1.21603 −0.608014 0.793926i \(-0.708033\pi\)
−0.608014 + 0.793926i \(0.708033\pi\)
\(618\) 0 0
\(619\) −10.8679 −0.436820 −0.218410 0.975857i \(-0.570087\pi\)
−0.218410 + 0.975857i \(0.570087\pi\)
\(620\) 0 0
\(621\) 0.791864 0.0317764
\(622\) 0 0
\(623\) 2.37559 0.0951761
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 24.4110 0.974881
\(628\) 0 0
\(629\) −14.4429 −0.575878
\(630\) 0 0
\(631\) 44.2055 1.75979 0.879897 0.475165i \(-0.157612\pi\)
0.879897 + 0.475165i \(0.157612\pi\)
\(632\) 0 0
\(633\) −9.89725 −0.393380
\(634\) 0 0
\(635\) −8.72452 −0.346222
\(636\) 0 0
\(637\) −15.6644 −0.620646
\(638\) 0 0
\(639\) −9.05137 −0.358067
\(640\) 0 0
\(641\) 29.3596 1.15964 0.579818 0.814746i \(-0.303124\pi\)
0.579818 + 0.814746i \(0.303124\pi\)
\(642\) 0 0
\(643\) 44.9300 1.77187 0.885933 0.463812i \(-0.153519\pi\)
0.885933 + 0.463812i \(0.153519\pi\)
\(644\) 0 0
\(645\) −10.1027 −0.397795
\(646\) 0 0
\(647\) −36.0708 −1.41809 −0.709045 0.705163i \(-0.750874\pi\)
−0.709045 + 0.705163i \(0.750874\pi\)
\(648\) 0 0
\(649\) 20.2055 0.793135
\(650\) 0 0
\(651\) −0.259511 −0.0101710
\(652\) 0 0
\(653\) −22.1382 −0.866333 −0.433166 0.901314i \(-0.642604\pi\)
−0.433166 + 0.901314i \(0.642604\pi\)
\(654\) 0 0
\(655\) 21.0514 0.822545
\(656\) 0 0
\(657\) 0.362259 0.0141331
\(658\) 0 0
\(659\) −14.9486 −0.582316 −0.291158 0.956675i \(-0.594041\pi\)
−0.291158 + 0.956675i \(0.594041\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) 7.48098 0.290537
\(664\) 0 0
\(665\) −1.58373 −0.0614143
\(666\) 0 0
\(667\) −2.00528 −0.0776447
\(668\) 0 0
\(669\) 13.7892 0.533122
\(670\) 0 0
\(671\) 5.92392 0.228690
\(672\) 0 0
\(673\) −17.5350 −0.675924 −0.337962 0.941160i \(-0.609738\pi\)
−0.337962 + 0.941160i \(0.609738\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 7.72188 0.296776 0.148388 0.988929i \(-0.452592\pi\)
0.148388 + 0.988929i \(0.452592\pi\)
\(678\) 0 0
\(679\) −2.51374 −0.0964686
\(680\) 0 0
\(681\) 16.1382 0.618415
\(682\) 0 0
\(683\) 46.5544 1.78136 0.890678 0.454635i \(-0.150230\pi\)
0.890678 + 0.454635i \(0.150230\pi\)
\(684\) 0 0
\(685\) −9.20814 −0.351825
\(686\) 0 0
\(687\) 2.20550 0.0841450
\(688\) 0 0
\(689\) −1.55706 −0.0593194
\(690\) 0 0
\(691\) −26.2816 −0.999798 −0.499899 0.866084i \(-0.666630\pi\)
−0.499899 + 0.866084i \(0.666630\pi\)
\(692\) 0 0
\(693\) 1.03804 0.0394320
\(694\) 0 0
\(695\) 13.5837 0.515260
\(696\) 0 0
\(697\) 33.7892 1.27986
\(698\) 0 0
\(699\) −13.9327 −0.526981
\(700\) 0 0
\(701\) 35.2702 1.33214 0.666069 0.745890i \(-0.267976\pi\)
0.666069 + 0.745890i \(0.267976\pi\)
\(702\) 0 0
\(703\) 26.6218 1.00406
\(704\) 0 0
\(705\) −7.41363 −0.279214
\(706\) 0 0
\(707\) 4.36685 0.164232
\(708\) 0 0
\(709\) −46.2055 −1.73528 −0.867642 0.497190i \(-0.834365\pi\)
−0.867642 + 0.497190i \(0.834365\pi\)
\(710\) 0 0
\(711\) −4.79186 −0.179709
\(712\) 0 0
\(713\) 0.791864 0.0296555
\(714\) 0 0
\(715\) 9.03804 0.338004
\(716\) 0 0
\(717\) −20.9300 −0.781646
\(718\) 0 0
\(719\) 21.4490 0.799914 0.399957 0.916534i \(-0.369025\pi\)
0.399957 + 0.916534i \(0.369025\pi\)
\(720\) 0 0
\(721\) 2.06207 0.0767954
\(722\) 0 0
\(723\) 0.416273 0.0154813
\(724\) 0 0
\(725\) −2.53235 −0.0940492
\(726\) 0 0
\(727\) 16.4917 0.611642 0.305821 0.952089i \(-0.401069\pi\)
0.305821 + 0.952089i \(0.401069\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 33.4490 1.23716
\(732\) 0 0
\(733\) −37.2383 −1.37543 −0.687713 0.725982i \(-0.741385\pi\)
−0.687713 + 0.725982i \(0.741385\pi\)
\(734\) 0 0
\(735\) 6.93265 0.255715
\(736\) 0 0
\(737\) 23.3730 0.860954
\(738\) 0 0
\(739\) 13.6244 0.501182 0.250591 0.968093i \(-0.419375\pi\)
0.250591 + 0.968093i \(0.419375\pi\)
\(740\) 0 0
\(741\) −13.7892 −0.506560
\(742\) 0 0
\(743\) 48.4110 1.77603 0.888014 0.459817i \(-0.152085\pi\)
0.888014 + 0.459817i \(0.152085\pi\)
\(744\) 0 0
\(745\) 0.416273 0.0152510
\(746\) 0 0
\(747\) −18.0354 −0.659881
\(748\) 0 0
\(749\) 1.87059 0.0683498
\(750\) 0 0
\(751\) −34.6218 −1.26337 −0.631683 0.775227i \(-0.717636\pi\)
−0.631683 + 0.775227i \(0.717636\pi\)
\(752\) 0 0
\(753\) −28.2055 −1.02787
\(754\) 0 0
\(755\) 3.20814 0.116756
\(756\) 0 0
\(757\) 34.6705 1.26012 0.630060 0.776546i \(-0.283030\pi\)
0.630060 + 0.776546i \(0.283030\pi\)
\(758\) 0 0
\(759\) −3.16745 −0.114971
\(760\) 0 0
\(761\) −4.63510 −0.168022 −0.0840112 0.996465i \(-0.526773\pi\)
−0.0840112 + 0.996465i \(0.526773\pi\)
\(762\) 0 0
\(763\) −0.859209 −0.0311055
\(764\) 0 0
\(765\) −3.31088 −0.119705
\(766\) 0 0
\(767\) −11.4136 −0.412122
\(768\) 0 0
\(769\) −25.1001 −0.905133 −0.452567 0.891731i \(-0.649492\pi\)
−0.452567 + 0.891731i \(0.649492\pi\)
\(770\) 0 0
\(771\) −12.3489 −0.444736
\(772\) 0 0
\(773\) −21.9327 −0.788863 −0.394431 0.918925i \(-0.629058\pi\)
−0.394431 + 0.918925i \(0.629058\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) 1.13205 0.0406121
\(778\) 0 0
\(779\) −62.2816 −2.23147
\(780\) 0 0
\(781\) 36.2055 1.29553
\(782\) 0 0
\(783\) −2.53235 −0.0904989
\(784\) 0 0
\(785\) −10.7245 −0.382774
\(786\) 0 0
\(787\) 8.49236 0.302720 0.151360 0.988479i \(-0.451635\pi\)
0.151360 + 0.988479i \(0.451635\pi\)
\(788\) 0 0
\(789\) −21.2435 −0.756290
\(790\) 0 0
\(791\) 0.108027 0.00384100
\(792\) 0 0
\(793\) −3.34629 −0.118830
\(794\) 0 0
\(795\) 0.689115 0.0244404
\(796\) 0 0
\(797\) −34.1115 −1.20829 −0.604145 0.796874i \(-0.706485\pi\)
−0.604145 + 0.796874i \(0.706485\pi\)
\(798\) 0 0
\(799\) 24.5457 0.868364
\(800\) 0 0
\(801\) −9.15412 −0.323445
\(802\) 0 0
\(803\) −1.44904 −0.0511354
\(804\) 0 0
\(805\) 0.205497 0.00724282
\(806\) 0 0
\(807\) −1.98667 −0.0699340
\(808\) 0 0
\(809\) 24.2682 0.853226 0.426613 0.904434i \(-0.359707\pi\)
0.426613 + 0.904434i \(0.359707\pi\)
\(810\) 0 0
\(811\) 30.6484 1.07621 0.538106 0.842877i \(-0.319140\pi\)
0.538106 + 0.842877i \(0.319140\pi\)
\(812\) 0 0
\(813\) −2.62177 −0.0919495
\(814\) 0 0
\(815\) −15.9460 −0.558564
\(816\) 0 0
\(817\) −61.6545 −2.15702
\(818\) 0 0
\(819\) −0.586367 −0.0204893
\(820\) 0 0
\(821\) 8.42960 0.294195 0.147098 0.989122i \(-0.453007\pi\)
0.147098 + 0.989122i \(0.453007\pi\)
\(822\) 0 0
\(823\) 10.1027 0.352160 0.176080 0.984376i \(-0.443658\pi\)
0.176080 + 0.984376i \(0.443658\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) −16.5864 −0.576764 −0.288382 0.957515i \(-0.593117\pi\)
−0.288382 + 0.957515i \(0.593117\pi\)
\(828\) 0 0
\(829\) −33.3463 −1.15816 −0.579082 0.815269i \(-0.696589\pi\)
−0.579082 + 0.815269i \(0.696589\pi\)
\(830\) 0 0
\(831\) 16.9079 0.586530
\(832\) 0 0
\(833\) −22.9532 −0.795282
\(834\) 0 0
\(835\) 1.58373 0.0548071
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) 18.2949 0.631611 0.315805 0.948824i \(-0.397725\pi\)
0.315805 + 0.948824i \(0.397725\pi\)
\(840\) 0 0
\(841\) −22.5872 −0.778869
\(842\) 0 0
\(843\) 25.3463 0.872973
\(844\) 0 0
\(845\) 7.89461 0.271583
\(846\) 0 0
\(847\) −1.29755 −0.0445844
\(848\) 0 0
\(849\) −0.805196 −0.0276343
\(850\) 0 0
\(851\) −3.45431 −0.118412
\(852\) 0 0
\(853\) 20.4163 0.699040 0.349520 0.936929i \(-0.386345\pi\)
0.349520 + 0.936929i \(0.386345\pi\)
\(854\) 0 0
\(855\) 6.10275 0.208710
\(856\) 0 0
\(857\) −4.62177 −0.157877 −0.0789383 0.996880i \(-0.525153\pi\)
−0.0789383 + 0.996880i \(0.525153\pi\)
\(858\) 0 0
\(859\) 18.9620 0.646974 0.323487 0.946233i \(-0.395145\pi\)
0.323487 + 0.946233i \(0.395145\pi\)
\(860\) 0 0
\(861\) −2.64843 −0.0902584
\(862\) 0 0
\(863\) −12.6165 −0.429470 −0.214735 0.976672i \(-0.568889\pi\)
−0.214735 + 0.976672i \(0.568889\pi\)
\(864\) 0 0
\(865\) 0.621770 0.0211408
\(866\) 0 0
\(867\) −6.03804 −0.205063
\(868\) 0 0
\(869\) 19.1675 0.650211
\(870\) 0 0
\(871\) −13.2029 −0.447362
\(872\) 0 0
\(873\) 9.68648 0.327838
\(874\) 0 0
\(875\) 0.259511 0.00877306
\(876\) 0 0
\(877\) −13.7945 −0.465807 −0.232904 0.972500i \(-0.574823\pi\)
−0.232904 + 0.972500i \(0.574823\pi\)
\(878\) 0 0
\(879\) −7.31088 −0.246590
\(880\) 0 0
\(881\) −24.5271 −0.826338 −0.413169 0.910654i \(-0.635578\pi\)
−0.413169 + 0.910654i \(0.635578\pi\)
\(882\) 0 0
\(883\) 15.4543 0.520079 0.260040 0.965598i \(-0.416264\pi\)
0.260040 + 0.965598i \(0.416264\pi\)
\(884\) 0 0
\(885\) 5.05137 0.169800
\(886\) 0 0
\(887\) 4.68384 0.157268 0.0786339 0.996904i \(-0.474944\pi\)
0.0786339 + 0.996904i \(0.474944\pi\)
\(888\) 0 0
\(889\) −2.26410 −0.0759356
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 0 0
\(893\) −45.2435 −1.51402
\(894\) 0 0
\(895\) 5.37823 0.179774
\(896\) 0 0
\(897\) 1.78922 0.0597405
\(898\) 0 0
\(899\) −2.53235 −0.0844587
\(900\) 0 0
\(901\) −2.28158 −0.0760105
\(902\) 0 0
\(903\) −2.62177 −0.0872470
\(904\) 0 0
\(905\) −6.51902 −0.216700
\(906\) 0 0
\(907\) −35.3189 −1.17275 −0.586373 0.810041i \(-0.699445\pi\)
−0.586373 + 0.810041i \(0.699445\pi\)
\(908\) 0 0
\(909\) −16.8273 −0.558125
\(910\) 0 0
\(911\) −53.8600 −1.78446 −0.892231 0.451579i \(-0.850861\pi\)
−0.892231 + 0.451579i \(0.850861\pi\)
\(912\) 0 0
\(913\) 72.1416 2.38754
\(914\) 0 0
\(915\) 1.48098 0.0489597
\(916\) 0 0
\(917\) 5.46305 0.180406
\(918\) 0 0
\(919\) −8.93001 −0.294574 −0.147287 0.989094i \(-0.547054\pi\)
−0.147287 + 0.989094i \(0.547054\pi\)
\(920\) 0 0
\(921\) 11.4270 0.376531
\(922\) 0 0
\(923\) −20.4517 −0.673175
\(924\) 0 0
\(925\) −4.36226 −0.143430
\(926\) 0 0
\(927\) −7.94599 −0.260980
\(928\) 0 0
\(929\) 13.4676 0.441859 0.220930 0.975290i \(-0.429091\pi\)
0.220930 + 0.975290i \(0.429091\pi\)
\(930\) 0 0
\(931\) 42.3082 1.38660
\(932\) 0 0
\(933\) 18.6351 0.610086
\(934\) 0 0
\(935\) 13.2435 0.433110
\(936\) 0 0
\(937\) 44.3082 1.44749 0.723744 0.690069i \(-0.242420\pi\)
0.723744 + 0.690069i \(0.242420\pi\)
\(938\) 0 0
\(939\) −15.2976 −0.499217
\(940\) 0 0
\(941\) 7.25687 0.236567 0.118284 0.992980i \(-0.462261\pi\)
0.118284 + 0.992980i \(0.462261\pi\)
\(942\) 0 0
\(943\) 8.08136 0.263165
\(944\) 0 0
\(945\) 0.259511 0.00844188
\(946\) 0 0
\(947\) 13.2029 0.429035 0.214518 0.976720i \(-0.431182\pi\)
0.214518 + 0.976720i \(0.431182\pi\)
\(948\) 0 0
\(949\) 0.818528 0.0265705
\(950\) 0 0
\(951\) 34.6838 1.12470
\(952\) 0 0
\(953\) −22.2462 −0.720624 −0.360312 0.932832i \(-0.617330\pi\)
−0.360312 + 0.932832i \(0.617330\pi\)
\(954\) 0 0
\(955\) 24.1922 0.782840
\(956\) 0 0
\(957\) 10.1294 0.327437
\(958\) 0 0
\(959\) −2.38961 −0.0771645
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −7.20814 −0.232279
\(964\) 0 0
\(965\) 14.7245 0.473999
\(966\) 0 0
\(967\) 4.69785 0.151073 0.0755364 0.997143i \(-0.475933\pi\)
0.0755364 + 0.997143i \(0.475933\pi\)
\(968\) 0 0
\(969\) −20.2055 −0.649094
\(970\) 0 0
\(971\) 8.01333 0.257160 0.128580 0.991699i \(-0.458958\pi\)
0.128580 + 0.991699i \(0.458958\pi\)
\(972\) 0 0
\(973\) 3.52512 0.113010
\(974\) 0 0
\(975\) 2.25951 0.0723622
\(976\) 0 0
\(977\) 58.6165 1.87531 0.937654 0.347571i \(-0.112993\pi\)
0.937654 + 0.347571i \(0.112993\pi\)
\(978\) 0 0
\(979\) 36.6165 1.17027
\(980\) 0 0
\(981\) 3.31088 0.105708
\(982\) 0 0
\(983\) 40.2763 1.28461 0.642307 0.766447i \(-0.277977\pi\)
0.642307 + 0.766447i \(0.277977\pi\)
\(984\) 0 0
\(985\) 4.37559 0.139418
\(986\) 0 0
\(987\) −1.92392 −0.0612389
\(988\) 0 0
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) 47.8653 1.52049 0.760246 0.649636i \(-0.225078\pi\)
0.760246 + 0.649636i \(0.225078\pi\)
\(992\) 0 0
\(993\) −6.17009 −0.195802
\(994\) 0 0
\(995\) −15.9593 −0.505944
\(996\) 0 0
\(997\) 21.5518 0.682552 0.341276 0.939963i \(-0.389141\pi\)
0.341276 + 0.939963i \(0.389141\pi\)
\(998\) 0 0
\(999\) −4.36226 −0.138016
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bu.1.2 3
4.3 odd 2 3720.2.a.l.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3720.2.a.l.1.2 3 4.3 odd 2
7440.2.a.bu.1.2 3 1.1 even 1 trivial