Properties

Label 7440.2.a.bu.1.1
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7440,2,Mod(1,7440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3720)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.210756\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -2.95558 q^{7} +1.00000 q^{9} -4.00000 q^{11} +4.95558 q^{13} -1.00000 q^{15} +0.421512 q^{17} +5.06814 q^{19} -2.95558 q^{21} -7.48965 q^{23} +1.00000 q^{25} +1.00000 q^{27} +8.44523 q^{29} +1.00000 q^{31} -4.00000 q^{33} +2.95558 q^{35} +4.11256 q^{37} +4.95558 q^{39} -12.1363 q^{41} -1.06814 q^{43} -1.00000 q^{45} -6.64663 q^{47} +1.73546 q^{49} +0.421512 q^{51} -3.57849 q^{53} +4.00000 q^{55} +5.06814 q^{57} +0.534070 q^{59} +3.91116 q^{61} -2.95558 q^{63} -4.95558 q^{65} +8.02372 q^{67} -7.48965 q^{69} -3.46593 q^{71} -8.11256 q^{73} +1.00000 q^{75} +11.8223 q^{77} +3.48965 q^{79} +1.00000 q^{81} +1.80361 q^{83} -0.421512 q^{85} +8.44523 q^{87} +7.60221 q^{89} -14.6466 q^{91} +1.00000 q^{93} -5.06814 q^{95} -18.0474 q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{5} + 2 q^{7} + 3 q^{9} - 12 q^{11} + 4 q^{13} - 3 q^{15} - 2 q^{17} + 2 q^{21} - 4 q^{23} + 3 q^{25} + 3 q^{27} - 4 q^{29} + 3 q^{31} - 12 q^{33} - 2 q^{35} + 8 q^{37} + 4 q^{39} - 6 q^{41}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.95558 −1.11710 −0.558552 0.829469i \(-0.688643\pi\)
−0.558552 + 0.829469i \(0.688643\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 4.95558 1.37443 0.687216 0.726454i \(-0.258833\pi\)
0.687216 + 0.726454i \(0.258833\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 0.421512 0.102232 0.0511158 0.998693i \(-0.483722\pi\)
0.0511158 + 0.998693i \(0.483722\pi\)
\(18\) 0 0
\(19\) 5.06814 1.16271 0.581356 0.813650i \(-0.302523\pi\)
0.581356 + 0.813650i \(0.302523\pi\)
\(20\) 0 0
\(21\) −2.95558 −0.644961
\(22\) 0 0
\(23\) −7.48965 −1.56170 −0.780850 0.624718i \(-0.785214\pi\)
−0.780850 + 0.624718i \(0.785214\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.44523 1.56824 0.784120 0.620609i \(-0.213114\pi\)
0.784120 + 0.620609i \(0.213114\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) 2.95558 0.499585
\(36\) 0 0
\(37\) 4.11256 0.676100 0.338050 0.941128i \(-0.390233\pi\)
0.338050 + 0.941128i \(0.390233\pi\)
\(38\) 0 0
\(39\) 4.95558 0.793528
\(40\) 0 0
\(41\) −12.1363 −1.89537 −0.947684 0.319209i \(-0.896583\pi\)
−0.947684 + 0.319209i \(0.896583\pi\)
\(42\) 0 0
\(43\) −1.06814 −0.162890 −0.0814449 0.996678i \(-0.525953\pi\)
−0.0814449 + 0.996678i \(0.525953\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −6.64663 −0.969510 −0.484755 0.874650i \(-0.661091\pi\)
−0.484755 + 0.874650i \(0.661091\pi\)
\(48\) 0 0
\(49\) 1.73546 0.247924
\(50\) 0 0
\(51\) 0.421512 0.0590235
\(52\) 0 0
\(53\) −3.57849 −0.491543 −0.245772 0.969328i \(-0.579041\pi\)
−0.245772 + 0.969328i \(0.579041\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 5.06814 0.671292
\(58\) 0 0
\(59\) 0.534070 0.0695300 0.0347650 0.999396i \(-0.488932\pi\)
0.0347650 + 0.999396i \(0.488932\pi\)
\(60\) 0 0
\(61\) 3.91116 0.500773 0.250387 0.968146i \(-0.419442\pi\)
0.250387 + 0.968146i \(0.419442\pi\)
\(62\) 0 0
\(63\) −2.95558 −0.372368
\(64\) 0 0
\(65\) −4.95558 −0.614664
\(66\) 0 0
\(67\) 8.02372 0.980254 0.490127 0.871651i \(-0.336950\pi\)
0.490127 + 0.871651i \(0.336950\pi\)
\(68\) 0 0
\(69\) −7.48965 −0.901648
\(70\) 0 0
\(71\) −3.46593 −0.411330 −0.205665 0.978622i \(-0.565936\pi\)
−0.205665 + 0.978622i \(0.565936\pi\)
\(72\) 0 0
\(73\) −8.11256 −0.949503 −0.474752 0.880120i \(-0.657462\pi\)
−0.474752 + 0.880120i \(0.657462\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 11.8223 1.34728
\(78\) 0 0
\(79\) 3.48965 0.392617 0.196308 0.980542i \(-0.437105\pi\)
0.196308 + 0.980542i \(0.437105\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.80361 0.197971 0.0989857 0.995089i \(-0.468440\pi\)
0.0989857 + 0.995089i \(0.468440\pi\)
\(84\) 0 0
\(85\) −0.421512 −0.0457194
\(86\) 0 0
\(87\) 8.44523 0.905424
\(88\) 0 0
\(89\) 7.60221 0.805833 0.402916 0.915237i \(-0.367997\pi\)
0.402916 + 0.915237i \(0.367997\pi\)
\(90\) 0 0
\(91\) −14.6466 −1.53538
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) −5.06814 −0.519980
\(96\) 0 0
\(97\) −18.0474 −1.83244 −0.916220 0.400675i \(-0.868776\pi\)
−0.916220 + 0.400675i \(0.868776\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 11.2933 1.12372 0.561861 0.827232i \(-0.310086\pi\)
0.561861 + 0.827232i \(0.310086\pi\)
\(102\) 0 0
\(103\) 17.0919 1.68411 0.842056 0.539391i \(-0.181345\pi\)
0.842056 + 0.539391i \(0.181345\pi\)
\(104\) 0 0
\(105\) 2.95558 0.288435
\(106\) 0 0
\(107\) −15.4897 −1.49744 −0.748721 0.662886i \(-0.769332\pi\)
−0.748721 + 0.662886i \(0.769332\pi\)
\(108\) 0 0
\(109\) 0.421512 0.0403735 0.0201868 0.999796i \(-0.493574\pi\)
0.0201868 + 0.999796i \(0.493574\pi\)
\(110\) 0 0
\(111\) 4.11256 0.390347
\(112\) 0 0
\(113\) −16.9793 −1.59728 −0.798639 0.601810i \(-0.794446\pi\)
−0.798639 + 0.601810i \(0.794446\pi\)
\(114\) 0 0
\(115\) 7.48965 0.698414
\(116\) 0 0
\(117\) 4.95558 0.458144
\(118\) 0 0
\(119\) −1.24581 −0.114203
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −12.1363 −1.09429
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.22512 −0.729861 −0.364931 0.931035i \(-0.618907\pi\)
−0.364931 + 0.931035i \(0.618907\pi\)
\(128\) 0 0
\(129\) −1.06814 −0.0940445
\(130\) 0 0
\(131\) −15.4659 −1.35126 −0.675632 0.737239i \(-0.736129\pi\)
−0.675632 + 0.737239i \(0.736129\pi\)
\(132\) 0 0
\(133\) −14.9793 −1.29887
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 17.4897 1.49424 0.747121 0.664688i \(-0.231436\pi\)
0.747121 + 0.664688i \(0.231436\pi\)
\(138\) 0 0
\(139\) 2.97930 0.252701 0.126351 0.991986i \(-0.459674\pi\)
0.126351 + 0.991986i \(0.459674\pi\)
\(140\) 0 0
\(141\) −6.64663 −0.559747
\(142\) 0 0
\(143\) −19.8223 −1.65763
\(144\) 0 0
\(145\) −8.44523 −0.701339
\(146\) 0 0
\(147\) 1.73546 0.143139
\(148\) 0 0
\(149\) −16.9793 −1.39100 −0.695499 0.718527i \(-0.744817\pi\)
−0.695499 + 0.718527i \(0.744817\pi\)
\(150\) 0 0
\(151\) −11.4897 −0.935015 −0.467507 0.883989i \(-0.654848\pi\)
−0.467507 + 0.883989i \(0.654848\pi\)
\(152\) 0 0
\(153\) 0.421512 0.0340772
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −6.22512 −0.496818 −0.248409 0.968655i \(-0.579908\pi\)
−0.248409 + 0.968655i \(0.579908\pi\)
\(158\) 0 0
\(159\) −3.57849 −0.283793
\(160\) 0 0
\(161\) 22.1363 1.74458
\(162\) 0 0
\(163\) −9.09186 −0.712130 −0.356065 0.934461i \(-0.615882\pi\)
−0.356065 + 0.934461i \(0.615882\pi\)
\(164\) 0 0
\(165\) 4.00000 0.311400
\(166\) 0 0
\(167\) 14.9793 1.15913 0.579567 0.814925i \(-0.303222\pi\)
0.579567 + 0.814925i \(0.303222\pi\)
\(168\) 0 0
\(169\) 11.5578 0.889061
\(170\) 0 0
\(171\) 5.06814 0.387570
\(172\) 0 0
\(173\) 5.15698 0.392078 0.196039 0.980596i \(-0.437192\pi\)
0.196039 + 0.980596i \(0.437192\pi\)
\(174\) 0 0
\(175\) −2.95558 −0.223421
\(176\) 0 0
\(177\) 0.534070 0.0401432
\(178\) 0 0
\(179\) −11.1570 −0.833912 −0.416956 0.908927i \(-0.636903\pi\)
−0.416956 + 0.908927i \(0.636903\pi\)
\(180\) 0 0
\(181\) 11.9112 0.885350 0.442675 0.896682i \(-0.354030\pi\)
0.442675 + 0.896682i \(0.354030\pi\)
\(182\) 0 0
\(183\) 3.91116 0.289122
\(184\) 0 0
\(185\) −4.11256 −0.302361
\(186\) 0 0
\(187\) −1.68605 −0.123296
\(188\) 0 0
\(189\) −2.95558 −0.214987
\(190\) 0 0
\(191\) −18.2201 −1.31836 −0.659181 0.751985i \(-0.729097\pi\)
−0.659181 + 0.751985i \(0.729097\pi\)
\(192\) 0 0
\(193\) 2.22512 0.160167 0.0800837 0.996788i \(-0.474481\pi\)
0.0800837 + 0.996788i \(0.474481\pi\)
\(194\) 0 0
\(195\) −4.95558 −0.354877
\(196\) 0 0
\(197\) 20.4690 1.45835 0.729176 0.684326i \(-0.239903\pi\)
0.729176 + 0.684326i \(0.239903\pi\)
\(198\) 0 0
\(199\) −25.4483 −1.80398 −0.901990 0.431758i \(-0.857894\pi\)
−0.901990 + 0.431758i \(0.857894\pi\)
\(200\) 0 0
\(201\) 8.02372 0.565950
\(202\) 0 0
\(203\) −24.9606 −1.75189
\(204\) 0 0
\(205\) 12.1363 0.847635
\(206\) 0 0
\(207\) −7.48965 −0.520567
\(208\) 0 0
\(209\) −20.2726 −1.40228
\(210\) 0 0
\(211\) −21.0681 −1.45039 −0.725195 0.688543i \(-0.758251\pi\)
−0.725195 + 0.688543i \(0.758251\pi\)
\(212\) 0 0
\(213\) −3.46593 −0.237482
\(214\) 0 0
\(215\) 1.06814 0.0728466
\(216\) 0 0
\(217\) −2.95558 −0.200638
\(218\) 0 0
\(219\) −8.11256 −0.548196
\(220\) 0 0
\(221\) 2.08884 0.140510
\(222\) 0 0
\(223\) −25.1156 −1.68186 −0.840932 0.541141i \(-0.817993\pi\)
−0.840932 + 0.541141i \(0.817993\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −14.8717 −0.987072 −0.493536 0.869725i \(-0.664296\pi\)
−0.493536 + 0.869725i \(0.664296\pi\)
\(228\) 0 0
\(229\) −20.1363 −1.33064 −0.665321 0.746557i \(-0.731706\pi\)
−0.665321 + 0.746557i \(0.731706\pi\)
\(230\) 0 0
\(231\) 11.8223 0.777852
\(232\) 0 0
\(233\) −5.26454 −0.344891 −0.172446 0.985019i \(-0.555167\pi\)
−0.172446 + 0.985019i \(0.555167\pi\)
\(234\) 0 0
\(235\) 6.64663 0.433578
\(236\) 0 0
\(237\) 3.48965 0.226677
\(238\) 0 0
\(239\) 18.3614 1.18770 0.593850 0.804576i \(-0.297607\pi\)
0.593850 + 0.804576i \(0.297607\pi\)
\(240\) 0 0
\(241\) 16.9793 1.09373 0.546867 0.837220i \(-0.315820\pi\)
0.546867 + 0.837220i \(0.315820\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −1.73546 −0.110875
\(246\) 0 0
\(247\) 25.1156 1.59807
\(248\) 0 0
\(249\) 1.80361 0.114299
\(250\) 0 0
\(251\) −5.86372 −0.370115 −0.185057 0.982728i \(-0.559247\pi\)
−0.185057 + 0.982728i \(0.559247\pi\)
\(252\) 0 0
\(253\) 29.9586 1.88348
\(254\) 0 0
\(255\) −0.421512 −0.0263961
\(256\) 0 0
\(257\) −20.2438 −1.26278 −0.631388 0.775467i \(-0.717514\pi\)
−0.631388 + 0.775467i \(0.717514\pi\)
\(258\) 0 0
\(259\) −12.1550 −0.755275
\(260\) 0 0
\(261\) 8.44523 0.522747
\(262\) 0 0
\(263\) −9.68605 −0.597267 −0.298634 0.954368i \(-0.596531\pi\)
−0.298634 + 0.954368i \(0.596531\pi\)
\(264\) 0 0
\(265\) 3.57849 0.219825
\(266\) 0 0
\(267\) 7.60221 0.465248
\(268\) 0 0
\(269\) −18.3564 −1.11921 −0.559605 0.828760i \(-0.689047\pi\)
−0.559605 + 0.828760i \(0.689047\pi\)
\(270\) 0 0
\(271\) 3.15698 0.191773 0.0958863 0.995392i \(-0.469431\pi\)
0.0958863 + 0.995392i \(0.469431\pi\)
\(272\) 0 0
\(273\) −14.6466 −0.886454
\(274\) 0 0
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) −18.9142 −1.13644 −0.568222 0.822875i \(-0.692368\pi\)
−0.568222 + 0.822875i \(0.692368\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 2.61791 0.156171 0.0780856 0.996947i \(-0.475119\pi\)
0.0780856 + 0.996947i \(0.475119\pi\)
\(282\) 0 0
\(283\) 23.8461 1.41750 0.708750 0.705459i \(-0.249259\pi\)
0.708750 + 0.705459i \(0.249259\pi\)
\(284\) 0 0
\(285\) −5.06814 −0.300211
\(286\) 0 0
\(287\) 35.8698 2.11733
\(288\) 0 0
\(289\) −16.8223 −0.989549
\(290\) 0 0
\(291\) −18.0474 −1.05796
\(292\) 0 0
\(293\) −4.42151 −0.258307 −0.129154 0.991625i \(-0.541226\pi\)
−0.129154 + 0.991625i \(0.541226\pi\)
\(294\) 0 0
\(295\) −0.534070 −0.0310948
\(296\) 0 0
\(297\) −4.00000 −0.232104
\(298\) 0 0
\(299\) −37.1156 −2.14645
\(300\) 0 0
\(301\) 3.15698 0.181965
\(302\) 0 0
\(303\) 11.2933 0.648781
\(304\) 0 0
\(305\) −3.91116 −0.223953
\(306\) 0 0
\(307\) −19.0030 −1.08456 −0.542280 0.840198i \(-0.682439\pi\)
−0.542280 + 0.840198i \(0.682439\pi\)
\(308\) 0 0
\(309\) 17.0919 0.972322
\(310\) 0 0
\(311\) −3.51337 −0.199225 −0.0996126 0.995026i \(-0.531760\pi\)
−0.0996126 + 0.995026i \(0.531760\pi\)
\(312\) 0 0
\(313\) −28.7779 −1.62662 −0.813312 0.581828i \(-0.802338\pi\)
−0.813312 + 0.581828i \(0.802338\pi\)
\(314\) 0 0
\(315\) 2.95558 0.166528
\(316\) 0 0
\(317\) −23.6734 −1.32963 −0.664815 0.747008i \(-0.731489\pi\)
−0.664815 + 0.747008i \(0.731489\pi\)
\(318\) 0 0
\(319\) −33.7809 −1.89137
\(320\) 0 0
\(321\) −15.4897 −0.864548
\(322\) 0 0
\(323\) 2.13628 0.118866
\(324\) 0 0
\(325\) 4.95558 0.274886
\(326\) 0 0
\(327\) 0.421512 0.0233097
\(328\) 0 0
\(329\) 19.6447 1.08304
\(330\) 0 0
\(331\) −3.66732 −0.201574 −0.100787 0.994908i \(-0.532136\pi\)
−0.100787 + 0.994908i \(0.532136\pi\)
\(332\) 0 0
\(333\) 4.11256 0.225367
\(334\) 0 0
\(335\) −8.02372 −0.438383
\(336\) 0 0
\(337\) −11.8874 −0.647550 −0.323775 0.946134i \(-0.604952\pi\)
−0.323775 + 0.946134i \(0.604952\pi\)
\(338\) 0 0
\(339\) −16.9793 −0.922189
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 15.5598 0.840148
\(344\) 0 0
\(345\) 7.48965 0.403229
\(346\) 0 0
\(347\) −10.5291 −0.565230 −0.282615 0.959233i \(-0.591202\pi\)
−0.282615 + 0.959233i \(0.591202\pi\)
\(348\) 0 0
\(349\) −30.5578 −1.63572 −0.817861 0.575416i \(-0.804840\pi\)
−0.817861 + 0.575416i \(0.804840\pi\)
\(350\) 0 0
\(351\) 4.95558 0.264509
\(352\) 0 0
\(353\) 2.55779 0.136138 0.0680688 0.997681i \(-0.478316\pi\)
0.0680688 + 0.997681i \(0.478316\pi\)
\(354\) 0 0
\(355\) 3.46593 0.183952
\(356\) 0 0
\(357\) −1.24581 −0.0659354
\(358\) 0 0
\(359\) 29.4245 1.55297 0.776484 0.630137i \(-0.217001\pi\)
0.776484 + 0.630137i \(0.217001\pi\)
\(360\) 0 0
\(361\) 6.68605 0.351897
\(362\) 0 0
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) 8.11256 0.424631
\(366\) 0 0
\(367\) −10.9793 −0.573115 −0.286558 0.958063i \(-0.592511\pi\)
−0.286558 + 0.958063i \(0.592511\pi\)
\(368\) 0 0
\(369\) −12.1363 −0.631790
\(370\) 0 0
\(371\) 10.5765 0.549105
\(372\) 0 0
\(373\) −7.51837 −0.389287 −0.194643 0.980874i \(-0.562355\pi\)
−0.194643 + 0.980874i \(0.562355\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 41.8510 2.15544
\(378\) 0 0
\(379\) −2.93186 −0.150600 −0.0752998 0.997161i \(-0.523991\pi\)
−0.0752998 + 0.997161i \(0.523991\pi\)
\(380\) 0 0
\(381\) −8.22512 −0.421386
\(382\) 0 0
\(383\) −12.7829 −0.653176 −0.326588 0.945167i \(-0.605899\pi\)
−0.326588 + 0.945167i \(0.605899\pi\)
\(384\) 0 0
\(385\) −11.8223 −0.602522
\(386\) 0 0
\(387\) −1.06814 −0.0542966
\(388\) 0 0
\(389\) 13.9162 0.705578 0.352789 0.935703i \(-0.385233\pi\)
0.352789 + 0.935703i \(0.385233\pi\)
\(390\) 0 0
\(391\) −3.15698 −0.159655
\(392\) 0 0
\(393\) −15.4659 −0.780153
\(394\) 0 0
\(395\) −3.48965 −0.175583
\(396\) 0 0
\(397\) 34.0949 1.71117 0.855587 0.517659i \(-0.173197\pi\)
0.855587 + 0.517659i \(0.173197\pi\)
\(398\) 0 0
\(399\) −14.9793 −0.749903
\(400\) 0 0
\(401\) 17.6910 0.883449 0.441724 0.897151i \(-0.354367\pi\)
0.441724 + 0.897151i \(0.354367\pi\)
\(402\) 0 0
\(403\) 4.95558 0.246855
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −16.4502 −0.815408
\(408\) 0 0
\(409\) 9.59721 0.474552 0.237276 0.971442i \(-0.423746\pi\)
0.237276 + 0.971442i \(0.423746\pi\)
\(410\) 0 0
\(411\) 17.4897 0.862701
\(412\) 0 0
\(413\) −1.57849 −0.0776723
\(414\) 0 0
\(415\) −1.80361 −0.0885355
\(416\) 0 0
\(417\) 2.97930 0.145897
\(418\) 0 0
\(419\) 8.75919 0.427914 0.213957 0.976843i \(-0.431365\pi\)
0.213957 + 0.976843i \(0.431365\pi\)
\(420\) 0 0
\(421\) 2.10756 0.102716 0.0513581 0.998680i \(-0.483645\pi\)
0.0513581 + 0.998680i \(0.483645\pi\)
\(422\) 0 0
\(423\) −6.64663 −0.323170
\(424\) 0 0
\(425\) 0.421512 0.0204463
\(426\) 0 0
\(427\) −11.5598 −0.559416
\(428\) 0 0
\(429\) −19.8223 −0.957031
\(430\) 0 0
\(431\) −16.8066 −0.809547 −0.404773 0.914417i \(-0.632650\pi\)
−0.404773 + 0.914417i \(0.632650\pi\)
\(432\) 0 0
\(433\) −4.95558 −0.238150 −0.119075 0.992885i \(-0.537993\pi\)
−0.119075 + 0.992885i \(0.537993\pi\)
\(434\) 0 0
\(435\) −8.44523 −0.404918
\(436\) 0 0
\(437\) −37.9586 −1.81581
\(438\) 0 0
\(439\) 10.1363 0.483778 0.241889 0.970304i \(-0.422233\pi\)
0.241889 + 0.970304i \(0.422233\pi\)
\(440\) 0 0
\(441\) 1.73546 0.0826412
\(442\) 0 0
\(443\) −1.12825 −0.0536050 −0.0268025 0.999641i \(-0.508533\pi\)
−0.0268025 + 0.999641i \(0.508533\pi\)
\(444\) 0 0
\(445\) −7.60221 −0.360379
\(446\) 0 0
\(447\) −16.9793 −0.803094
\(448\) 0 0
\(449\) 33.7859 1.59446 0.797228 0.603678i \(-0.206299\pi\)
0.797228 + 0.603678i \(0.206299\pi\)
\(450\) 0 0
\(451\) 48.5451 2.28590
\(452\) 0 0
\(453\) −11.4897 −0.539831
\(454\) 0 0
\(455\) 14.6466 0.686645
\(456\) 0 0
\(457\) −19.9349 −0.932515 −0.466257 0.884649i \(-0.654398\pi\)
−0.466257 + 0.884649i \(0.654398\pi\)
\(458\) 0 0
\(459\) 0.421512 0.0196745
\(460\) 0 0
\(461\) 38.3564 1.78644 0.893218 0.449624i \(-0.148442\pi\)
0.893218 + 0.449624i \(0.148442\pi\)
\(462\) 0 0
\(463\) −14.9319 −0.693942 −0.346971 0.937876i \(-0.612790\pi\)
−0.346971 + 0.937876i \(0.612790\pi\)
\(464\) 0 0
\(465\) −1.00000 −0.0463739
\(466\) 0 0
\(467\) 8.96058 0.414646 0.207323 0.978273i \(-0.433525\pi\)
0.207323 + 0.978273i \(0.433525\pi\)
\(468\) 0 0
\(469\) −23.7148 −1.09505
\(470\) 0 0
\(471\) −6.22512 −0.286838
\(472\) 0 0
\(473\) 4.27256 0.196453
\(474\) 0 0
\(475\) 5.06814 0.232542
\(476\) 0 0
\(477\) −3.57849 −0.163848
\(478\) 0 0
\(479\) 20.6290 0.942561 0.471281 0.881983i \(-0.343792\pi\)
0.471281 + 0.881983i \(0.343792\pi\)
\(480\) 0 0
\(481\) 20.3801 0.929254
\(482\) 0 0
\(483\) 22.1363 1.00724
\(484\) 0 0
\(485\) 18.0474 0.819492
\(486\) 0 0
\(487\) 11.5972 0.525520 0.262760 0.964861i \(-0.415367\pi\)
0.262760 + 0.964861i \(0.415367\pi\)
\(488\) 0 0
\(489\) −9.09186 −0.411148
\(490\) 0 0
\(491\) −20.8905 −0.942774 −0.471387 0.881927i \(-0.656246\pi\)
−0.471387 + 0.881927i \(0.656246\pi\)
\(492\) 0 0
\(493\) 3.55977 0.160324
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 10.2438 0.459499
\(498\) 0 0
\(499\) 7.37209 0.330020 0.165010 0.986292i \(-0.447234\pi\)
0.165010 + 0.986292i \(0.447234\pi\)
\(500\) 0 0
\(501\) 14.9793 0.669226
\(502\) 0 0
\(503\) 15.3120 0.682727 0.341364 0.939931i \(-0.389111\pi\)
0.341364 + 0.939931i \(0.389111\pi\)
\(504\) 0 0
\(505\) −11.2933 −0.502543
\(506\) 0 0
\(507\) 11.5578 0.513300
\(508\) 0 0
\(509\) 23.1994 1.02830 0.514148 0.857701i \(-0.328108\pi\)
0.514148 + 0.857701i \(0.328108\pi\)
\(510\) 0 0
\(511\) 23.9773 1.06069
\(512\) 0 0
\(513\) 5.06814 0.223764
\(514\) 0 0
\(515\) −17.0919 −0.753157
\(516\) 0 0
\(517\) 26.5865 1.16927
\(518\) 0 0
\(519\) 5.15698 0.226366
\(520\) 0 0
\(521\) −45.2519 −1.98252 −0.991260 0.131922i \(-0.957885\pi\)
−0.991260 + 0.131922i \(0.957885\pi\)
\(522\) 0 0
\(523\) 32.8905 1.43820 0.719100 0.694907i \(-0.244554\pi\)
0.719100 + 0.694907i \(0.244554\pi\)
\(524\) 0 0
\(525\) −2.95558 −0.128992
\(526\) 0 0
\(527\) 0.421512 0.0183613
\(528\) 0 0
\(529\) 33.0949 1.43891
\(530\) 0 0
\(531\) 0.534070 0.0231767
\(532\) 0 0
\(533\) −60.1423 −2.60505
\(534\) 0 0
\(535\) 15.4897 0.669676
\(536\) 0 0
\(537\) −11.1570 −0.481459
\(538\) 0 0
\(539\) −6.94186 −0.299007
\(540\) 0 0
\(541\) 16.8717 0.725373 0.362686 0.931911i \(-0.381860\pi\)
0.362686 + 0.931911i \(0.381860\pi\)
\(542\) 0 0
\(543\) 11.9112 0.511157
\(544\) 0 0
\(545\) −0.421512 −0.0180556
\(546\) 0 0
\(547\) 11.8461 0.506501 0.253250 0.967401i \(-0.418500\pi\)
0.253250 + 0.967401i \(0.418500\pi\)
\(548\) 0 0
\(549\) 3.91116 0.166924
\(550\) 0 0
\(551\) 42.8016 1.82341
\(552\) 0 0
\(553\) −10.3140 −0.438594
\(554\) 0 0
\(555\) −4.11256 −0.174568
\(556\) 0 0
\(557\) 40.9092 1.73338 0.866689 0.498849i \(-0.166244\pi\)
0.866689 + 0.498849i \(0.166244\pi\)
\(558\) 0 0
\(559\) −5.29326 −0.223881
\(560\) 0 0
\(561\) −1.68605 −0.0711850
\(562\) 0 0
\(563\) −4.33268 −0.182601 −0.0913003 0.995823i \(-0.529102\pi\)
−0.0913003 + 0.995823i \(0.529102\pi\)
\(564\) 0 0
\(565\) 16.9793 0.714325
\(566\) 0 0
\(567\) −2.95558 −0.124123
\(568\) 0 0
\(569\) −28.8955 −1.21136 −0.605681 0.795708i \(-0.707099\pi\)
−0.605681 + 0.795708i \(0.707099\pi\)
\(570\) 0 0
\(571\) 30.8016 1.28901 0.644504 0.764601i \(-0.277064\pi\)
0.644504 + 0.764601i \(0.277064\pi\)
\(572\) 0 0
\(573\) −18.2201 −0.761156
\(574\) 0 0
\(575\) −7.48965 −0.312340
\(576\) 0 0
\(577\) −1.54977 −0.0645176 −0.0322588 0.999480i \(-0.510270\pi\)
−0.0322588 + 0.999480i \(0.510270\pi\)
\(578\) 0 0
\(579\) 2.22512 0.0924727
\(580\) 0 0
\(581\) −5.33070 −0.221155
\(582\) 0 0
\(583\) 14.3140 0.592823
\(584\) 0 0
\(585\) −4.95558 −0.204888
\(586\) 0 0
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) 0 0
\(589\) 5.06814 0.208829
\(590\) 0 0
\(591\) 20.4690 0.841980
\(592\) 0 0
\(593\) −47.9586 −1.96942 −0.984712 0.174190i \(-0.944269\pi\)
−0.984712 + 0.174190i \(0.944269\pi\)
\(594\) 0 0
\(595\) 1.24581 0.0510733
\(596\) 0 0
\(597\) −25.4483 −1.04153
\(598\) 0 0
\(599\) 20.1313 0.822542 0.411271 0.911513i \(-0.365085\pi\)
0.411271 + 0.911513i \(0.365085\pi\)
\(600\) 0 0
\(601\) 13.7749 0.561889 0.280945 0.959724i \(-0.409352\pi\)
0.280945 + 0.959724i \(0.409352\pi\)
\(602\) 0 0
\(603\) 8.02372 0.326751
\(604\) 0 0
\(605\) −5.00000 −0.203279
\(606\) 0 0
\(607\) 33.5421 1.36143 0.680716 0.732548i \(-0.261669\pi\)
0.680716 + 0.732548i \(0.261669\pi\)
\(608\) 0 0
\(609\) −24.9606 −1.01145
\(610\) 0 0
\(611\) −32.9379 −1.33253
\(612\) 0 0
\(613\) 43.5321 1.75824 0.879122 0.476596i \(-0.158130\pi\)
0.879122 + 0.476596i \(0.158130\pi\)
\(614\) 0 0
\(615\) 12.1363 0.489382
\(616\) 0 0
\(617\) −7.86372 −0.316581 −0.158291 0.987393i \(-0.550598\pi\)
−0.158291 + 0.987393i \(0.550598\pi\)
\(618\) 0 0
\(619\) −24.1550 −0.970872 −0.485436 0.874272i \(-0.661339\pi\)
−0.485436 + 0.874272i \(0.661339\pi\)
\(620\) 0 0
\(621\) −7.48965 −0.300549
\(622\) 0 0
\(623\) −22.4690 −0.900200
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −20.2726 −0.809608
\(628\) 0 0
\(629\) 1.73349 0.0691188
\(630\) 0 0
\(631\) 21.8637 0.870381 0.435190 0.900338i \(-0.356681\pi\)
0.435190 + 0.900338i \(0.356681\pi\)
\(632\) 0 0
\(633\) −21.0681 −0.837383
\(634\) 0 0
\(635\) 8.22512 0.326404
\(636\) 0 0
\(637\) 8.60024 0.340754
\(638\) 0 0
\(639\) −3.46593 −0.137110
\(640\) 0 0
\(641\) −9.73849 −0.384647 −0.192324 0.981332i \(-0.561602\pi\)
−0.192324 + 0.981332i \(0.561602\pi\)
\(642\) 0 0
\(643\) 5.63860 0.222365 0.111182 0.993800i \(-0.464536\pi\)
0.111182 + 0.993800i \(0.464536\pi\)
\(644\) 0 0
\(645\) 1.06814 0.0420580
\(646\) 0 0
\(647\) 3.60721 0.141814 0.0709070 0.997483i \(-0.477411\pi\)
0.0709070 + 0.997483i \(0.477411\pi\)
\(648\) 0 0
\(649\) −2.13628 −0.0838564
\(650\) 0 0
\(651\) −2.95558 −0.115838
\(652\) 0 0
\(653\) 8.87175 0.347178 0.173589 0.984818i \(-0.444464\pi\)
0.173589 + 0.984818i \(0.444464\pi\)
\(654\) 0 0
\(655\) 15.4659 0.604304
\(656\) 0 0
\(657\) −8.11256 −0.316501
\(658\) 0 0
\(659\) −20.5341 −0.799894 −0.399947 0.916538i \(-0.630971\pi\)
−0.399947 + 0.916538i \(0.630971\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) 2.08884 0.0811237
\(664\) 0 0
\(665\) 14.9793 0.580873
\(666\) 0 0
\(667\) −63.2519 −2.44912
\(668\) 0 0
\(669\) −25.1156 −0.971025
\(670\) 0 0
\(671\) −15.6447 −0.603955
\(672\) 0 0
\(673\) −37.1807 −1.43321 −0.716605 0.697479i \(-0.754305\pi\)
−0.716605 + 0.697479i \(0.754305\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −39.8510 −1.53160 −0.765800 0.643079i \(-0.777657\pi\)
−0.765800 + 0.643079i \(0.777657\pi\)
\(678\) 0 0
\(679\) 53.3407 2.04703
\(680\) 0 0
\(681\) −14.8717 −0.569887
\(682\) 0 0
\(683\) 32.1076 1.22856 0.614281 0.789088i \(-0.289446\pi\)
0.614281 + 0.789088i \(0.289446\pi\)
\(684\) 0 0
\(685\) −17.4897 −0.668245
\(686\) 0 0
\(687\) −20.1363 −0.768247
\(688\) 0 0
\(689\) −17.7335 −0.675592
\(690\) 0 0
\(691\) −25.5084 −0.970384 −0.485192 0.874408i \(-0.661250\pi\)
−0.485192 + 0.874408i \(0.661250\pi\)
\(692\) 0 0
\(693\) 11.8223 0.449093
\(694\) 0 0
\(695\) −2.97930 −0.113011
\(696\) 0 0
\(697\) −5.11559 −0.193767
\(698\) 0 0
\(699\) −5.26454 −0.199123
\(700\) 0 0
\(701\) −9.02675 −0.340936 −0.170468 0.985363i \(-0.554528\pi\)
−0.170468 + 0.985363i \(0.554528\pi\)
\(702\) 0 0
\(703\) 20.8430 0.786110
\(704\) 0 0
\(705\) 6.64663 0.250327
\(706\) 0 0
\(707\) −33.3781 −1.25531
\(708\) 0 0
\(709\) −23.8637 −0.896221 −0.448110 0.893978i \(-0.647903\pi\)
−0.448110 + 0.893978i \(0.647903\pi\)
\(710\) 0 0
\(711\) 3.48965 0.130872
\(712\) 0 0
\(713\) −7.48965 −0.280490
\(714\) 0 0
\(715\) 19.8223 0.741313
\(716\) 0 0
\(717\) 18.3614 0.685719
\(718\) 0 0
\(719\) −12.4502 −0.464315 −0.232158 0.972678i \(-0.574579\pi\)
−0.232158 + 0.972678i \(0.574579\pi\)
\(720\) 0 0
\(721\) −50.5164 −1.88133
\(722\) 0 0
\(723\) 16.9793 0.631467
\(724\) 0 0
\(725\) 8.44523 0.313648
\(726\) 0 0
\(727\) −35.8935 −1.33122 −0.665608 0.746302i \(-0.731828\pi\)
−0.665608 + 0.746302i \(0.731828\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.450234 −0.0166525
\(732\) 0 0
\(733\) 35.5658 1.31365 0.656827 0.754042i \(-0.271898\pi\)
0.656827 + 0.754042i \(0.271898\pi\)
\(734\) 0 0
\(735\) −1.73546 −0.0640136
\(736\) 0 0
\(737\) −32.0949 −1.18223
\(738\) 0 0
\(739\) 38.4690 1.41510 0.707552 0.706662i \(-0.249800\pi\)
0.707552 + 0.706662i \(0.249800\pi\)
\(740\) 0 0
\(741\) 25.1156 0.922644
\(742\) 0 0
\(743\) 3.72744 0.136746 0.0683732 0.997660i \(-0.478219\pi\)
0.0683732 + 0.997660i \(0.478219\pi\)
\(744\) 0 0
\(745\) 16.9793 0.622074
\(746\) 0 0
\(747\) 1.80361 0.0659905
\(748\) 0 0
\(749\) 45.7809 1.67280
\(750\) 0 0
\(751\) −28.8430 −1.05250 −0.526248 0.850331i \(-0.676402\pi\)
−0.526248 + 0.850331i \(0.676402\pi\)
\(752\) 0 0
\(753\) −5.86372 −0.213686
\(754\) 0 0
\(755\) 11.4897 0.418151
\(756\) 0 0
\(757\) −7.31698 −0.265940 −0.132970 0.991120i \(-0.542451\pi\)
−0.132970 + 0.991120i \(0.542451\pi\)
\(758\) 0 0
\(759\) 29.9586 1.08743
\(760\) 0 0
\(761\) 17.5134 0.634859 0.317430 0.948282i \(-0.397180\pi\)
0.317430 + 0.948282i \(0.397180\pi\)
\(762\) 0 0
\(763\) −1.24581 −0.0451014
\(764\) 0 0
\(765\) −0.421512 −0.0152398
\(766\) 0 0
\(767\) 2.64663 0.0955642
\(768\) 0 0
\(769\) 16.6941 0.602004 0.301002 0.953624i \(-0.402679\pi\)
0.301002 + 0.953624i \(0.402679\pi\)
\(770\) 0 0
\(771\) −20.2438 −0.729064
\(772\) 0 0
\(773\) −13.2645 −0.477092 −0.238546 0.971131i \(-0.576671\pi\)
−0.238546 + 0.971131i \(0.576671\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −12.1550 −0.436058
\(778\) 0 0
\(779\) −61.5084 −2.20377
\(780\) 0 0
\(781\) 13.8637 0.496083
\(782\) 0 0
\(783\) 8.44523 0.301808
\(784\) 0 0
\(785\) 6.22512 0.222184
\(786\) 0 0
\(787\) 46.6240 1.66196 0.830982 0.556299i \(-0.187779\pi\)
0.830982 + 0.556299i \(0.187779\pi\)
\(788\) 0 0
\(789\) −9.68605 −0.344832
\(790\) 0 0
\(791\) 50.1837 1.78433
\(792\) 0 0
\(793\) 19.3821 0.688278
\(794\) 0 0
\(795\) 3.57849 0.126916
\(796\) 0 0
\(797\) −35.8411 −1.26956 −0.634778 0.772695i \(-0.718908\pi\)
−0.634778 + 0.772695i \(0.718908\pi\)
\(798\) 0 0
\(799\) −2.80163 −0.0991146
\(800\) 0 0
\(801\) 7.60221 0.268611
\(802\) 0 0
\(803\) 32.4502 1.14514
\(804\) 0 0
\(805\) −22.1363 −0.780201
\(806\) 0 0
\(807\) −18.3564 −0.646176
\(808\) 0 0
\(809\) 39.8648 1.40157 0.700785 0.713372i \(-0.252833\pi\)
0.700785 + 0.713372i \(0.252833\pi\)
\(810\) 0 0
\(811\) −7.86977 −0.276345 −0.138173 0.990408i \(-0.544123\pi\)
−0.138173 + 0.990408i \(0.544123\pi\)
\(812\) 0 0
\(813\) 3.15698 0.110720
\(814\) 0 0
\(815\) 9.09186 0.318474
\(816\) 0 0
\(817\) −5.41349 −0.189394
\(818\) 0 0
\(819\) −14.6466 −0.511795
\(820\) 0 0
\(821\) 8.62291 0.300942 0.150471 0.988614i \(-0.451921\pi\)
0.150471 + 0.988614i \(0.451921\pi\)
\(822\) 0 0
\(823\) −1.06814 −0.0372330 −0.0186165 0.999827i \(-0.505926\pi\)
−0.0186165 + 0.999827i \(0.505926\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) −30.6466 −1.06569 −0.532844 0.846214i \(-0.678877\pi\)
−0.532844 + 0.846214i \(0.678877\pi\)
\(828\) 0 0
\(829\) −10.6179 −0.368775 −0.184388 0.982854i \(-0.559030\pi\)
−0.184388 + 0.982854i \(0.559030\pi\)
\(830\) 0 0
\(831\) −18.9142 −0.656126
\(832\) 0 0
\(833\) 0.731519 0.0253456
\(834\) 0 0
\(835\) −14.9793 −0.518380
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) 1.15198 0.0397707 0.0198853 0.999802i \(-0.493670\pi\)
0.0198853 + 0.999802i \(0.493670\pi\)
\(840\) 0 0
\(841\) 42.3220 1.45938
\(842\) 0 0
\(843\) 2.61791 0.0901655
\(844\) 0 0
\(845\) −11.5578 −0.397600
\(846\) 0 0
\(847\) −14.7779 −0.507775
\(848\) 0 0
\(849\) 23.8461 0.818394
\(850\) 0 0
\(851\) −30.8016 −1.05587
\(852\) 0 0
\(853\) 36.9793 1.26615 0.633074 0.774092i \(-0.281793\pi\)
0.633074 + 0.774092i \(0.281793\pi\)
\(854\) 0 0
\(855\) −5.06814 −0.173327
\(856\) 0 0
\(857\) 1.15698 0.0395216 0.0197608 0.999805i \(-0.493710\pi\)
0.0197608 + 0.999805i \(0.493710\pi\)
\(858\) 0 0
\(859\) 8.17767 0.279019 0.139509 0.990221i \(-0.455447\pi\)
0.139509 + 0.990221i \(0.455447\pi\)
\(860\) 0 0
\(861\) 35.8698 1.22244
\(862\) 0 0
\(863\) 54.4088 1.85210 0.926049 0.377403i \(-0.123183\pi\)
0.926049 + 0.377403i \(0.123183\pi\)
\(864\) 0 0
\(865\) −5.15698 −0.175342
\(866\) 0 0
\(867\) −16.8223 −0.571316
\(868\) 0 0
\(869\) −13.9586 −0.473513
\(870\) 0 0
\(871\) 39.7622 1.34729
\(872\) 0 0
\(873\) −18.0474 −0.610813
\(874\) 0 0
\(875\) 2.95558 0.0999169
\(876\) 0 0
\(877\) −36.1363 −1.22024 −0.610118 0.792311i \(-0.708878\pi\)
−0.610118 + 0.792311i \(0.708878\pi\)
\(878\) 0 0
\(879\) −4.42151 −0.149134
\(880\) 0 0
\(881\) 47.6971 1.60696 0.803478 0.595334i \(-0.202980\pi\)
0.803478 + 0.595334i \(0.202980\pi\)
\(882\) 0 0
\(883\) 42.8016 1.44039 0.720195 0.693772i \(-0.244052\pi\)
0.720195 + 0.693772i \(0.244052\pi\)
\(884\) 0 0
\(885\) −0.534070 −0.0179526
\(886\) 0 0
\(887\) −53.6734 −1.80218 −0.901088 0.433637i \(-0.857230\pi\)
−0.901088 + 0.433637i \(0.857230\pi\)
\(888\) 0 0
\(889\) 24.3100 0.815331
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 0 0
\(893\) −33.6860 −1.12726
\(894\) 0 0
\(895\) 11.1570 0.372937
\(896\) 0 0
\(897\) −37.1156 −1.23925
\(898\) 0 0
\(899\) 8.44523 0.281664
\(900\) 0 0
\(901\) −1.50837 −0.0502513
\(902\) 0 0
\(903\) 3.15698 0.105058
\(904\) 0 0
\(905\) −11.9112 −0.395940
\(906\) 0 0
\(907\) 45.1868 1.50040 0.750201 0.661210i \(-0.229957\pi\)
0.750201 + 0.661210i \(0.229957\pi\)
\(908\) 0 0
\(909\) 11.2933 0.374574
\(910\) 0 0
\(911\) 24.7228 0.819103 0.409551 0.912287i \(-0.365685\pi\)
0.409551 + 0.912287i \(0.365685\pi\)
\(912\) 0 0
\(913\) −7.21442 −0.238762
\(914\) 0 0
\(915\) −3.91116 −0.129299
\(916\) 0 0
\(917\) 45.7108 1.50950
\(918\) 0 0
\(919\) 30.3614 1.00153 0.500765 0.865583i \(-0.333052\pi\)
0.500765 + 0.865583i \(0.333052\pi\)
\(920\) 0 0
\(921\) −19.0030 −0.626171
\(922\) 0 0
\(923\) −17.1757 −0.565345
\(924\) 0 0
\(925\) 4.11256 0.135220
\(926\) 0 0
\(927\) 17.0919 0.561370
\(928\) 0 0
\(929\) 24.4452 0.802022 0.401011 0.916073i \(-0.368659\pi\)
0.401011 + 0.916073i \(0.368659\pi\)
\(930\) 0 0
\(931\) 8.79558 0.288263
\(932\) 0 0
\(933\) −3.51337 −0.115023
\(934\) 0 0
\(935\) 1.68605 0.0551396
\(936\) 0 0
\(937\) 10.7956 0.352676 0.176338 0.984330i \(-0.443575\pi\)
0.176338 + 0.984330i \(0.443575\pi\)
\(938\) 0 0
\(939\) −28.7779 −0.939132
\(940\) 0 0
\(941\) −20.6704 −0.673834 −0.336917 0.941534i \(-0.609384\pi\)
−0.336917 + 0.941534i \(0.609384\pi\)
\(942\) 0 0
\(943\) 90.8965 2.96000
\(944\) 0 0
\(945\) 2.95558 0.0961451
\(946\) 0 0
\(947\) −39.7622 −1.29210 −0.646049 0.763296i \(-0.723580\pi\)
−0.646049 + 0.763296i \(0.723580\pi\)
\(948\) 0 0
\(949\) −40.2024 −1.30503
\(950\) 0 0
\(951\) −23.6734 −0.767662
\(952\) 0 0
\(953\) −41.3120 −1.33823 −0.669113 0.743161i \(-0.733326\pi\)
−0.669113 + 0.743161i \(0.733326\pi\)
\(954\) 0 0
\(955\) 18.2201 0.589589
\(956\) 0 0
\(957\) −33.7809 −1.09198
\(958\) 0 0
\(959\) −51.6921 −1.66922
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −15.4897 −0.499147
\(964\) 0 0
\(965\) −2.22512 −0.0716290
\(966\) 0 0
\(967\) 20.4877 0.658839 0.329420 0.944184i \(-0.393147\pi\)
0.329420 + 0.944184i \(0.393147\pi\)
\(968\) 0 0
\(969\) 2.13628 0.0686272
\(970\) 0 0
\(971\) −8.35640 −0.268170 −0.134085 0.990970i \(-0.542809\pi\)
−0.134085 + 0.990970i \(0.542809\pi\)
\(972\) 0 0
\(973\) −8.80558 −0.282294
\(974\) 0 0
\(975\) 4.95558 0.158706
\(976\) 0 0
\(977\) −8.40884 −0.269023 −0.134511 0.990912i \(-0.542946\pi\)
−0.134511 + 0.990912i \(0.542946\pi\)
\(978\) 0 0
\(979\) −30.4088 −0.971871
\(980\) 0 0
\(981\) 0.421512 0.0134578
\(982\) 0 0
\(983\) −21.7435 −0.693510 −0.346755 0.937956i \(-0.612716\pi\)
−0.346755 + 0.937956i \(0.612716\pi\)
\(984\) 0 0
\(985\) −20.4690 −0.652195
\(986\) 0 0
\(987\) 19.6447 0.625296
\(988\) 0 0
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) 30.5291 0.969788 0.484894 0.874573i \(-0.338858\pi\)
0.484894 + 0.874573i \(0.338858\pi\)
\(992\) 0 0
\(993\) −3.66732 −0.116379
\(994\) 0 0
\(995\) 25.4483 0.806764
\(996\) 0 0
\(997\) −23.5184 −0.744834 −0.372417 0.928065i \(-0.621471\pi\)
−0.372417 + 0.928065i \(0.621471\pi\)
\(998\) 0 0
\(999\) 4.11256 0.130116
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bu.1.1 3
4.3 odd 2 3720.2.a.l.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3720.2.a.l.1.3 3 4.3 odd 2
7440.2.a.bu.1.1 3 1.1 even 1 trivial