Properties

Label 7440.2.a.bp.1.1
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7440,2,Mod(1,7440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} -2.48119 q^{7} +1.00000 q^{9} -2.00000 q^{11} -5.83146 q^{13} -1.00000 q^{15} +3.76845 q^{17} +2.48119 q^{21} -0.806063 q^{23} +1.00000 q^{25} -1.00000 q^{27} +4.06300 q^{29} -1.00000 q^{31} +2.00000 q^{33} -2.48119 q^{35} +12.1441 q^{37} +5.83146 q^{39} +9.92478 q^{41} +10.3127 q^{43} +1.00000 q^{45} +1.58181 q^{47} -0.843675 q^{49} -3.76845 q^{51} -7.11871 q^{53} -2.00000 q^{55} -9.41327 q^{59} +6.31265 q^{61} -2.48119 q^{63} -5.83146 q^{65} +14.4060 q^{67} +0.806063 q^{69} -12.2496 q^{71} +1.25694 q^{73} -1.00000 q^{75} +4.96239 q^{77} -12.8568 q^{79} +1.00000 q^{81} +0.0303172 q^{83} +3.76845 q^{85} -4.06300 q^{87} -13.7259 q^{89} +14.4690 q^{91} +1.00000 q^{93} -12.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 3 q^{5} - 2 q^{7} + 3 q^{9} - 6 q^{11} - 2 q^{13} - 3 q^{15} + 2 q^{21} - 2 q^{23} + 3 q^{25} - 3 q^{27} + 8 q^{29} - 3 q^{31} + 6 q^{33} - 2 q^{35} + 2 q^{39} + 8 q^{41} + 10 q^{43} + 3 q^{45}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.48119 −0.937803 −0.468902 0.883250i \(-0.655350\pi\)
−0.468902 + 0.883250i \(0.655350\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −5.83146 −1.61735 −0.808677 0.588252i \(-0.799816\pi\)
−0.808677 + 0.588252i \(0.799816\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 3.76845 0.913984 0.456992 0.889471i \(-0.348927\pi\)
0.456992 + 0.889471i \(0.348927\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.48119 0.541441
\(22\) 0 0
\(23\) −0.806063 −0.168076 −0.0840379 0.996463i \(-0.526782\pi\)
−0.0840379 + 0.996463i \(0.526782\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 4.06300 0.754481 0.377240 0.926115i \(-0.376873\pi\)
0.377240 + 0.926115i \(0.376873\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) −2.48119 −0.419398
\(36\) 0 0
\(37\) 12.1441 1.99648 0.998239 0.0593136i \(-0.0188912\pi\)
0.998239 + 0.0593136i \(0.0188912\pi\)
\(38\) 0 0
\(39\) 5.83146 0.933780
\(40\) 0 0
\(41\) 9.92478 1.54999 0.774995 0.631967i \(-0.217752\pi\)
0.774995 + 0.631967i \(0.217752\pi\)
\(42\) 0 0
\(43\) 10.3127 1.57266 0.786332 0.617804i \(-0.211977\pi\)
0.786332 + 0.617804i \(0.211977\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 1.58181 0.230731 0.115365 0.993323i \(-0.463196\pi\)
0.115365 + 0.993323i \(0.463196\pi\)
\(48\) 0 0
\(49\) −0.843675 −0.120525
\(50\) 0 0
\(51\) −3.76845 −0.527689
\(52\) 0 0
\(53\) −7.11871 −0.977831 −0.488915 0.872331i \(-0.662607\pi\)
−0.488915 + 0.872331i \(0.662607\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.41327 −1.22550 −0.612751 0.790276i \(-0.709937\pi\)
−0.612751 + 0.790276i \(0.709937\pi\)
\(60\) 0 0
\(61\) 6.31265 0.808252 0.404126 0.914703i \(-0.367576\pi\)
0.404126 + 0.914703i \(0.367576\pi\)
\(62\) 0 0
\(63\) −2.48119 −0.312601
\(64\) 0 0
\(65\) −5.83146 −0.723303
\(66\) 0 0
\(67\) 14.4060 1.75997 0.879985 0.475002i \(-0.157553\pi\)
0.879985 + 0.475002i \(0.157553\pi\)
\(68\) 0 0
\(69\) 0.806063 0.0970386
\(70\) 0 0
\(71\) −12.2496 −1.45377 −0.726883 0.686762i \(-0.759032\pi\)
−0.726883 + 0.686762i \(0.759032\pi\)
\(72\) 0 0
\(73\) 1.25694 0.147114 0.0735569 0.997291i \(-0.476565\pi\)
0.0735569 + 0.997291i \(0.476565\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 4.96239 0.565517
\(78\) 0 0
\(79\) −12.8568 −1.44651 −0.723254 0.690582i \(-0.757355\pi\)
−0.723254 + 0.690582i \(0.757355\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.0303172 0.00332774 0.00166387 0.999999i \(-0.499470\pi\)
0.00166387 + 0.999999i \(0.499470\pi\)
\(84\) 0 0
\(85\) 3.76845 0.408746
\(86\) 0 0
\(87\) −4.06300 −0.435600
\(88\) 0 0
\(89\) −13.7259 −1.45494 −0.727472 0.686137i \(-0.759305\pi\)
−0.727472 + 0.686137i \(0.759305\pi\)
\(90\) 0 0
\(91\) 14.4690 1.51676
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −10.2374 −1.01866 −0.509331 0.860571i \(-0.670107\pi\)
−0.509331 + 0.860571i \(0.670107\pi\)
\(102\) 0 0
\(103\) 13.7562 1.35544 0.677721 0.735319i \(-0.262968\pi\)
0.677721 + 0.735319i \(0.262968\pi\)
\(104\) 0 0
\(105\) 2.48119 0.242140
\(106\) 0 0
\(107\) 4.15633 0.401807 0.200904 0.979611i \(-0.435612\pi\)
0.200904 + 0.979611i \(0.435612\pi\)
\(108\) 0 0
\(109\) −13.8945 −1.33085 −0.665424 0.746466i \(-0.731749\pi\)
−0.665424 + 0.746466i \(0.731749\pi\)
\(110\) 0 0
\(111\) −12.1441 −1.15267
\(112\) 0 0
\(113\) −8.57452 −0.806623 −0.403311 0.915063i \(-0.632141\pi\)
−0.403311 + 0.915063i \(0.632141\pi\)
\(114\) 0 0
\(115\) −0.806063 −0.0751658
\(116\) 0 0
\(117\) −5.83146 −0.539118
\(118\) 0 0
\(119\) −9.35026 −0.857137
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −9.92478 −0.894887
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −7.66291 −0.679973 −0.339987 0.940430i \(-0.610423\pi\)
−0.339987 + 0.940430i \(0.610423\pi\)
\(128\) 0 0
\(129\) −10.3127 −0.907978
\(130\) 0 0
\(131\) 6.37565 0.557044 0.278522 0.960430i \(-0.410156\pi\)
0.278522 + 0.960430i \(0.410156\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 2.93207 0.250504 0.125252 0.992125i \(-0.460026\pi\)
0.125252 + 0.992125i \(0.460026\pi\)
\(138\) 0 0
\(139\) 1.73813 0.147427 0.0737133 0.997279i \(-0.476515\pi\)
0.0737133 + 0.997279i \(0.476515\pi\)
\(140\) 0 0
\(141\) −1.58181 −0.133212
\(142\) 0 0
\(143\) 11.6629 0.975302
\(144\) 0 0
\(145\) 4.06300 0.337414
\(146\) 0 0
\(147\) 0.843675 0.0695851
\(148\) 0 0
\(149\) −15.8496 −1.29845 −0.649223 0.760598i \(-0.724906\pi\)
−0.649223 + 0.760598i \(0.724906\pi\)
\(150\) 0 0
\(151\) −15.8945 −1.29347 −0.646736 0.762714i \(-0.723867\pi\)
−0.646736 + 0.762714i \(0.723867\pi\)
\(152\) 0 0
\(153\) 3.76845 0.304661
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −0.463096 −0.0369591 −0.0184795 0.999829i \(-0.505883\pi\)
−0.0184795 + 0.999829i \(0.505883\pi\)
\(158\) 0 0
\(159\) 7.11871 0.564551
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) −14.5320 −1.13823 −0.569116 0.822257i \(-0.692715\pi\)
−0.569116 + 0.822257i \(0.692715\pi\)
\(164\) 0 0
\(165\) 2.00000 0.155700
\(166\) 0 0
\(167\) 3.87399 0.299779 0.149889 0.988703i \(-0.452108\pi\)
0.149889 + 0.988703i \(0.452108\pi\)
\(168\) 0 0
\(169\) 21.0059 1.61584
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.8265 0.975183 0.487592 0.873072i \(-0.337876\pi\)
0.487592 + 0.873072i \(0.337876\pi\)
\(174\) 0 0
\(175\) −2.48119 −0.187561
\(176\) 0 0
\(177\) 9.41327 0.707544
\(178\) 0 0
\(179\) 2.23743 0.167233 0.0836166 0.996498i \(-0.473353\pi\)
0.0836166 + 0.996498i \(0.473353\pi\)
\(180\) 0 0
\(181\) −20.2374 −1.50424 −0.752118 0.659028i \(-0.770968\pi\)
−0.752118 + 0.659028i \(0.770968\pi\)
\(182\) 0 0
\(183\) −6.31265 −0.466645
\(184\) 0 0
\(185\) 12.1441 0.892852
\(186\) 0 0
\(187\) −7.53690 −0.551153
\(188\) 0 0
\(189\) 2.48119 0.180480
\(190\) 0 0
\(191\) 9.78655 0.708130 0.354065 0.935221i \(-0.384799\pi\)
0.354065 + 0.935221i \(0.384799\pi\)
\(192\) 0 0
\(193\) 4.83638 0.348130 0.174065 0.984734i \(-0.444310\pi\)
0.174065 + 0.984734i \(0.444310\pi\)
\(194\) 0 0
\(195\) 5.83146 0.417599
\(196\) 0 0
\(197\) −10.0059 −0.712889 −0.356445 0.934316i \(-0.616011\pi\)
−0.356445 + 0.934316i \(0.616011\pi\)
\(198\) 0 0
\(199\) 3.05808 0.216782 0.108391 0.994108i \(-0.465430\pi\)
0.108391 + 0.994108i \(0.465430\pi\)
\(200\) 0 0
\(201\) −14.4060 −1.01612
\(202\) 0 0
\(203\) −10.0811 −0.707555
\(204\) 0 0
\(205\) 9.92478 0.693177
\(206\) 0 0
\(207\) −0.806063 −0.0560253
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 8.49929 0.585115 0.292558 0.956248i \(-0.405494\pi\)
0.292558 + 0.956248i \(0.405494\pi\)
\(212\) 0 0
\(213\) 12.2496 0.839332
\(214\) 0 0
\(215\) 10.3127 0.703317
\(216\) 0 0
\(217\) 2.48119 0.168434
\(218\) 0 0
\(219\) −1.25694 −0.0849362
\(220\) 0 0
\(221\) −21.9756 −1.47824
\(222\) 0 0
\(223\) −21.7235 −1.45472 −0.727358 0.686258i \(-0.759252\pi\)
−0.727358 + 0.686258i \(0.759252\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 14.0205 0.930571 0.465286 0.885161i \(-0.345952\pi\)
0.465286 + 0.885161i \(0.345952\pi\)
\(228\) 0 0
\(229\) −7.02302 −0.464094 −0.232047 0.972705i \(-0.574542\pi\)
−0.232047 + 0.972705i \(0.574542\pi\)
\(230\) 0 0
\(231\) −4.96239 −0.326501
\(232\) 0 0
\(233\) −10.9321 −0.716184 −0.358092 0.933686i \(-0.616573\pi\)
−0.358092 + 0.933686i \(0.616573\pi\)
\(234\) 0 0
\(235\) 1.58181 0.103186
\(236\) 0 0
\(237\) 12.8568 0.835142
\(238\) 0 0
\(239\) −7.42548 −0.480315 −0.240157 0.970734i \(-0.577199\pi\)
−0.240157 + 0.970734i \(0.577199\pi\)
\(240\) 0 0
\(241\) −10.4387 −0.672413 −0.336207 0.941788i \(-0.609144\pi\)
−0.336207 + 0.941788i \(0.609144\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −0.843675 −0.0539004
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −0.0303172 −0.00192127
\(250\) 0 0
\(251\) −10.7612 −0.679238 −0.339619 0.940563i \(-0.610298\pi\)
−0.339619 + 0.940563i \(0.610298\pi\)
\(252\) 0 0
\(253\) 1.61213 0.101354
\(254\) 0 0
\(255\) −3.76845 −0.235990
\(256\) 0 0
\(257\) −21.9452 −1.36891 −0.684453 0.729057i \(-0.739959\pi\)
−0.684453 + 0.729057i \(0.739959\pi\)
\(258\) 0 0
\(259\) −30.1319 −1.87230
\(260\) 0 0
\(261\) 4.06300 0.251494
\(262\) 0 0
\(263\) −5.73813 −0.353829 −0.176914 0.984226i \(-0.556612\pi\)
−0.176914 + 0.984226i \(0.556612\pi\)
\(264\) 0 0
\(265\) −7.11871 −0.437299
\(266\) 0 0
\(267\) 13.7259 0.840012
\(268\) 0 0
\(269\) 13.3625 0.814725 0.407362 0.913267i \(-0.366449\pi\)
0.407362 + 0.913267i \(0.366449\pi\)
\(270\) 0 0
\(271\) −3.03761 −0.184522 −0.0922609 0.995735i \(-0.529409\pi\)
−0.0922609 + 0.995735i \(0.529409\pi\)
\(272\) 0 0
\(273\) −14.4690 −0.875702
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −16.1441 −0.970005 −0.485003 0.874513i \(-0.661181\pi\)
−0.485003 + 0.874513i \(0.661181\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 28.2130 1.68305 0.841523 0.540221i \(-0.181660\pi\)
0.841523 + 0.540221i \(0.181660\pi\)
\(282\) 0 0
\(283\) 13.0557 0.776081 0.388041 0.921642i \(-0.373152\pi\)
0.388041 + 0.921642i \(0.373152\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.6253 −1.45359
\(288\) 0 0
\(289\) −2.79877 −0.164633
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) 0 0
\(293\) 2.00588 0.117185 0.0585924 0.998282i \(-0.481339\pi\)
0.0585924 + 0.998282i \(0.481339\pi\)
\(294\) 0 0
\(295\) −9.41327 −0.548062
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) 4.70052 0.271838
\(300\) 0 0
\(301\) −25.5877 −1.47485
\(302\) 0 0
\(303\) 10.2374 0.588125
\(304\) 0 0
\(305\) 6.31265 0.361461
\(306\) 0 0
\(307\) −0.743059 −0.0424086 −0.0212043 0.999775i \(-0.506750\pi\)
−0.0212043 + 0.999775i \(0.506750\pi\)
\(308\) 0 0
\(309\) −13.7562 −0.782565
\(310\) 0 0
\(311\) −19.1368 −1.08515 −0.542575 0.840008i \(-0.682550\pi\)
−0.542575 + 0.840008i \(0.682550\pi\)
\(312\) 0 0
\(313\) −11.3176 −0.639707 −0.319854 0.947467i \(-0.603634\pi\)
−0.319854 + 0.947467i \(0.603634\pi\)
\(314\) 0 0
\(315\) −2.48119 −0.139799
\(316\) 0 0
\(317\) 30.3185 1.70286 0.851429 0.524470i \(-0.175736\pi\)
0.851429 + 0.524470i \(0.175736\pi\)
\(318\) 0 0
\(319\) −8.12601 −0.454969
\(320\) 0 0
\(321\) −4.15633 −0.231983
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −5.83146 −0.323471
\(326\) 0 0
\(327\) 13.8945 0.768365
\(328\) 0 0
\(329\) −3.92478 −0.216380
\(330\) 0 0
\(331\) 6.68006 0.367169 0.183585 0.983004i \(-0.441230\pi\)
0.183585 + 0.983004i \(0.441230\pi\)
\(332\) 0 0
\(333\) 12.1441 0.665493
\(334\) 0 0
\(335\) 14.4060 0.787082
\(336\) 0 0
\(337\) 14.2193 0.774576 0.387288 0.921959i \(-0.373412\pi\)
0.387288 + 0.921959i \(0.373412\pi\)
\(338\) 0 0
\(339\) 8.57452 0.465704
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 19.4617 1.05083
\(344\) 0 0
\(345\) 0.806063 0.0433970
\(346\) 0 0
\(347\) −17.5271 −0.940902 −0.470451 0.882426i \(-0.655909\pi\)
−0.470451 + 0.882426i \(0.655909\pi\)
\(348\) 0 0
\(349\) −14.7308 −0.788524 −0.394262 0.918998i \(-0.629000\pi\)
−0.394262 + 0.918998i \(0.629000\pi\)
\(350\) 0 0
\(351\) 5.83146 0.311260
\(352\) 0 0
\(353\) −30.9321 −1.64635 −0.823174 0.567789i \(-0.807799\pi\)
−0.823174 + 0.567789i \(0.807799\pi\)
\(354\) 0 0
\(355\) −12.2496 −0.650144
\(356\) 0 0
\(357\) 9.35026 0.494868
\(358\) 0 0
\(359\) 3.02539 0.159674 0.0798371 0.996808i \(-0.474560\pi\)
0.0798371 + 0.996808i \(0.474560\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) 1.25694 0.0657913
\(366\) 0 0
\(367\) 31.3258 1.63519 0.817597 0.575790i \(-0.195306\pi\)
0.817597 + 0.575790i \(0.195306\pi\)
\(368\) 0 0
\(369\) 9.92478 0.516663
\(370\) 0 0
\(371\) 17.6629 0.917013
\(372\) 0 0
\(373\) −33.4518 −1.73207 −0.866035 0.499983i \(-0.833340\pi\)
−0.866035 + 0.499983i \(0.833340\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −23.6932 −1.22026
\(378\) 0 0
\(379\) 1.40105 0.0719669 0.0359835 0.999352i \(-0.488544\pi\)
0.0359835 + 0.999352i \(0.488544\pi\)
\(380\) 0 0
\(381\) 7.66291 0.392583
\(382\) 0 0
\(383\) 32.1319 1.64186 0.820931 0.571027i \(-0.193455\pi\)
0.820931 + 0.571027i \(0.193455\pi\)
\(384\) 0 0
\(385\) 4.96239 0.252907
\(386\) 0 0
\(387\) 10.3127 0.524221
\(388\) 0 0
\(389\) 25.7621 1.30619 0.653095 0.757276i \(-0.273470\pi\)
0.653095 + 0.757276i \(0.273470\pi\)
\(390\) 0 0
\(391\) −3.03761 −0.153619
\(392\) 0 0
\(393\) −6.37565 −0.321609
\(394\) 0 0
\(395\) −12.8568 −0.646898
\(396\) 0 0
\(397\) 4.38787 0.220221 0.110111 0.993919i \(-0.464880\pi\)
0.110111 + 0.993919i \(0.464880\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.3479 −0.866312 −0.433156 0.901319i \(-0.642600\pi\)
−0.433156 + 0.901319i \(0.642600\pi\)
\(402\) 0 0
\(403\) 5.83146 0.290486
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −24.2882 −1.20392
\(408\) 0 0
\(409\) 14.3127 0.707715 0.353858 0.935299i \(-0.384870\pi\)
0.353858 + 0.935299i \(0.384870\pi\)
\(410\) 0 0
\(411\) −2.93207 −0.144628
\(412\) 0 0
\(413\) 23.3561 1.14928
\(414\) 0 0
\(415\) 0.0303172 0.00148821
\(416\) 0 0
\(417\) −1.73813 −0.0851168
\(418\) 0 0
\(419\) 8.31028 0.405984 0.202992 0.979180i \(-0.434933\pi\)
0.202992 + 0.979180i \(0.434933\pi\)
\(420\) 0 0
\(421\) 0.00587961 0.000286555 0 0.000143277 1.00000i \(-0.499954\pi\)
0.000143277 1.00000i \(0.499954\pi\)
\(422\) 0 0
\(423\) 1.58181 0.0769102
\(424\) 0 0
\(425\) 3.76845 0.182797
\(426\) 0 0
\(427\) −15.6629 −0.757981
\(428\) 0 0
\(429\) −11.6629 −0.563091
\(430\) 0 0
\(431\) 1.86177 0.0896785 0.0448392 0.998994i \(-0.485722\pi\)
0.0448392 + 0.998994i \(0.485722\pi\)
\(432\) 0 0
\(433\) 23.6566 1.13686 0.568431 0.822731i \(-0.307551\pi\)
0.568431 + 0.822731i \(0.307551\pi\)
\(434\) 0 0
\(435\) −4.06300 −0.194806
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.67276 −0.0798365 −0.0399183 0.999203i \(-0.512710\pi\)
−0.0399183 + 0.999203i \(0.512710\pi\)
\(440\) 0 0
\(441\) −0.843675 −0.0401750
\(442\) 0 0
\(443\) 10.2315 0.486116 0.243058 0.970012i \(-0.421850\pi\)
0.243058 + 0.970012i \(0.421850\pi\)
\(444\) 0 0
\(445\) −13.7259 −0.650671
\(446\) 0 0
\(447\) 15.8496 0.749658
\(448\) 0 0
\(449\) 11.9224 0.562653 0.281327 0.959612i \(-0.409226\pi\)
0.281327 + 0.959612i \(0.409226\pi\)
\(450\) 0 0
\(451\) −19.8496 −0.934679
\(452\) 0 0
\(453\) 15.8945 0.746787
\(454\) 0 0
\(455\) 14.4690 0.678316
\(456\) 0 0
\(457\) 9.16713 0.428820 0.214410 0.976744i \(-0.431217\pi\)
0.214410 + 0.976744i \(0.431217\pi\)
\(458\) 0 0
\(459\) −3.76845 −0.175896
\(460\) 0 0
\(461\) 27.2628 1.26976 0.634878 0.772612i \(-0.281050\pi\)
0.634878 + 0.772612i \(0.281050\pi\)
\(462\) 0 0
\(463\) −6.77575 −0.314896 −0.157448 0.987527i \(-0.550327\pi\)
−0.157448 + 0.987527i \(0.550327\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) −0.655618 −0.0303384 −0.0151692 0.999885i \(-0.504829\pi\)
−0.0151692 + 0.999885i \(0.504829\pi\)
\(468\) 0 0
\(469\) −35.7440 −1.65051
\(470\) 0 0
\(471\) 0.463096 0.0213383
\(472\) 0 0
\(473\) −20.6253 −0.948352
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7.11871 −0.325944
\(478\) 0 0
\(479\) −8.31028 −0.379706 −0.189853 0.981812i \(-0.560801\pi\)
−0.189853 + 0.981812i \(0.560801\pi\)
\(480\) 0 0
\(481\) −70.8178 −3.22901
\(482\) 0 0
\(483\) −2.00000 −0.0910032
\(484\) 0 0
\(485\) −12.0000 −0.544892
\(486\) 0 0
\(487\) −9.17347 −0.415690 −0.207845 0.978162i \(-0.566645\pi\)
−0.207845 + 0.978162i \(0.566645\pi\)
\(488\) 0 0
\(489\) 14.5320 0.657159
\(490\) 0 0
\(491\) −30.4241 −1.37302 −0.686510 0.727121i \(-0.740858\pi\)
−0.686510 + 0.727121i \(0.740858\pi\)
\(492\) 0 0
\(493\) 15.3112 0.689583
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 0 0
\(497\) 30.3938 1.36335
\(498\) 0 0
\(499\) 25.1490 1.12583 0.562913 0.826516i \(-0.309681\pi\)
0.562913 + 0.826516i \(0.309681\pi\)
\(500\) 0 0
\(501\) −3.87399 −0.173077
\(502\) 0 0
\(503\) −39.2955 −1.75210 −0.876050 0.482220i \(-0.839831\pi\)
−0.876050 + 0.482220i \(0.839831\pi\)
\(504\) 0 0
\(505\) −10.2374 −0.455560
\(506\) 0 0
\(507\) −21.0059 −0.932904
\(508\) 0 0
\(509\) 26.9356 1.19390 0.596949 0.802279i \(-0.296379\pi\)
0.596949 + 0.802279i \(0.296379\pi\)
\(510\) 0 0
\(511\) −3.11871 −0.137964
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.7562 0.606172
\(516\) 0 0
\(517\) −3.16362 −0.139136
\(518\) 0 0
\(519\) −12.8265 −0.563022
\(520\) 0 0
\(521\) 9.25060 0.405276 0.202638 0.979254i \(-0.435048\pi\)
0.202638 + 0.979254i \(0.435048\pi\)
\(522\) 0 0
\(523\) 5.79877 0.253562 0.126781 0.991931i \(-0.459535\pi\)
0.126781 + 0.991931i \(0.459535\pi\)
\(524\) 0 0
\(525\) 2.48119 0.108288
\(526\) 0 0
\(527\) −3.76845 −0.164156
\(528\) 0 0
\(529\) −22.3503 −0.971751
\(530\) 0 0
\(531\) −9.41327 −0.408501
\(532\) 0 0
\(533\) −57.8759 −2.50688
\(534\) 0 0
\(535\) 4.15633 0.179694
\(536\) 0 0
\(537\) −2.23743 −0.0965521
\(538\) 0 0
\(539\) 1.68735 0.0726793
\(540\) 0 0
\(541\) −12.3674 −0.531716 −0.265858 0.964012i \(-0.585655\pi\)
−0.265858 + 0.964012i \(0.585655\pi\)
\(542\) 0 0
\(543\) 20.2374 0.868471
\(544\) 0 0
\(545\) −13.8945 −0.595173
\(546\) 0 0
\(547\) −35.7826 −1.52995 −0.764976 0.644058i \(-0.777249\pi\)
−0.764976 + 0.644058i \(0.777249\pi\)
\(548\) 0 0
\(549\) 6.31265 0.269417
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 31.9003 1.35654
\(554\) 0 0
\(555\) −12.1441 −0.515489
\(556\) 0 0
\(557\) −12.2433 −0.518766 −0.259383 0.965775i \(-0.583519\pi\)
−0.259383 + 0.965775i \(0.583519\pi\)
\(558\) 0 0
\(559\) −60.1378 −2.54356
\(560\) 0 0
\(561\) 7.53690 0.318208
\(562\) 0 0
\(563\) −42.0322 −1.77145 −0.885724 0.464213i \(-0.846337\pi\)
−0.885724 + 0.464213i \(0.846337\pi\)
\(564\) 0 0
\(565\) −8.57452 −0.360733
\(566\) 0 0
\(567\) −2.48119 −0.104200
\(568\) 0 0
\(569\) −32.8505 −1.37716 −0.688582 0.725158i \(-0.741767\pi\)
−0.688582 + 0.725158i \(0.741767\pi\)
\(570\) 0 0
\(571\) −36.8119 −1.54053 −0.770266 0.637723i \(-0.779877\pi\)
−0.770266 + 0.637723i \(0.779877\pi\)
\(572\) 0 0
\(573\) −9.78655 −0.408839
\(574\) 0 0
\(575\) −0.806063 −0.0336152
\(576\) 0 0
\(577\) −16.8119 −0.699890 −0.349945 0.936770i \(-0.613800\pi\)
−0.349945 + 0.936770i \(0.613800\pi\)
\(578\) 0 0
\(579\) −4.83638 −0.200993
\(580\) 0 0
\(581\) −0.0752228 −0.00312077
\(582\) 0 0
\(583\) 14.2374 0.589654
\(584\) 0 0
\(585\) −5.83146 −0.241101
\(586\) 0 0
\(587\) 20.9624 0.865210 0.432605 0.901583i \(-0.357594\pi\)
0.432605 + 0.901583i \(0.357594\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 10.0059 0.411587
\(592\) 0 0
\(593\) 22.6907 0.931794 0.465897 0.884839i \(-0.345732\pi\)
0.465897 + 0.884839i \(0.345732\pi\)
\(594\) 0 0
\(595\) −9.35026 −0.383323
\(596\) 0 0
\(597\) −3.05808 −0.125159
\(598\) 0 0
\(599\) 24.7245 1.01022 0.505108 0.863056i \(-0.331453\pi\)
0.505108 + 0.863056i \(0.331453\pi\)
\(600\) 0 0
\(601\) −0.412311 −0.0168185 −0.00840925 0.999965i \(-0.502677\pi\)
−0.00840925 + 0.999965i \(0.502677\pi\)
\(602\) 0 0
\(603\) 14.4060 0.586657
\(604\) 0 0
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) −34.7186 −1.40919 −0.704593 0.709612i \(-0.748870\pi\)
−0.704593 + 0.709612i \(0.748870\pi\)
\(608\) 0 0
\(609\) 10.0811 0.408507
\(610\) 0 0
\(611\) −9.22425 −0.373173
\(612\) 0 0
\(613\) −28.5682 −1.15386 −0.576929 0.816794i \(-0.695749\pi\)
−0.576929 + 0.816794i \(0.695749\pi\)
\(614\) 0 0
\(615\) −9.92478 −0.400206
\(616\) 0 0
\(617\) −28.5501 −1.14938 −0.574691 0.818370i \(-0.694878\pi\)
−0.574691 + 0.818370i \(0.694878\pi\)
\(618\) 0 0
\(619\) −4.23155 −0.170080 −0.0850401 0.996378i \(-0.527102\pi\)
−0.0850401 + 0.996378i \(0.527102\pi\)
\(620\) 0 0
\(621\) 0.806063 0.0323462
\(622\) 0 0
\(623\) 34.0567 1.36445
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 45.7645 1.82475
\(630\) 0 0
\(631\) 2.17679 0.0866568 0.0433284 0.999061i \(-0.486204\pi\)
0.0433284 + 0.999061i \(0.486204\pi\)
\(632\) 0 0
\(633\) −8.49929 −0.337817
\(634\) 0 0
\(635\) −7.66291 −0.304093
\(636\) 0 0
\(637\) 4.91985 0.194932
\(638\) 0 0
\(639\) −12.2496 −0.484589
\(640\) 0 0
\(641\) −44.3268 −1.75080 −0.875401 0.483397i \(-0.839403\pi\)
−0.875401 + 0.483397i \(0.839403\pi\)
\(642\) 0 0
\(643\) 34.8265 1.37342 0.686712 0.726929i \(-0.259053\pi\)
0.686712 + 0.726929i \(0.259053\pi\)
\(644\) 0 0
\(645\) −10.3127 −0.406060
\(646\) 0 0
\(647\) 28.4142 1.11708 0.558539 0.829478i \(-0.311362\pi\)
0.558539 + 0.829478i \(0.311362\pi\)
\(648\) 0 0
\(649\) 18.8265 0.739006
\(650\) 0 0
\(651\) −2.48119 −0.0972457
\(652\) 0 0
\(653\) −28.4544 −1.11351 −0.556753 0.830678i \(-0.687953\pi\)
−0.556753 + 0.830678i \(0.687953\pi\)
\(654\) 0 0
\(655\) 6.37565 0.249117
\(656\) 0 0
\(657\) 1.25694 0.0490379
\(658\) 0 0
\(659\) −19.3479 −0.753687 −0.376843 0.926277i \(-0.622991\pi\)
−0.376843 + 0.926277i \(0.622991\pi\)
\(660\) 0 0
\(661\) −20.1721 −0.784602 −0.392301 0.919837i \(-0.628321\pi\)
−0.392301 + 0.919837i \(0.628321\pi\)
\(662\) 0 0
\(663\) 21.9756 0.853460
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.27504 −0.126810
\(668\) 0 0
\(669\) 21.7235 0.839881
\(670\) 0 0
\(671\) −12.6253 −0.487394
\(672\) 0 0
\(673\) 46.7040 1.80031 0.900154 0.435572i \(-0.143454\pi\)
0.900154 + 0.435572i \(0.143454\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 44.4299 1.70758 0.853791 0.520616i \(-0.174298\pi\)
0.853791 + 0.520616i \(0.174298\pi\)
\(678\) 0 0
\(679\) 29.7743 1.14263
\(680\) 0 0
\(681\) −14.0205 −0.537266
\(682\) 0 0
\(683\) −3.21837 −0.123148 −0.0615738 0.998103i \(-0.519612\pi\)
−0.0615738 + 0.998103i \(0.519612\pi\)
\(684\) 0 0
\(685\) 2.93207 0.112029
\(686\) 0 0
\(687\) 7.02302 0.267945
\(688\) 0 0
\(689\) 41.5125 1.58150
\(690\) 0 0
\(691\) 32.9741 1.25440 0.627198 0.778860i \(-0.284202\pi\)
0.627198 + 0.778860i \(0.284202\pi\)
\(692\) 0 0
\(693\) 4.96239 0.188506
\(694\) 0 0
\(695\) 1.73813 0.0659312
\(696\) 0 0
\(697\) 37.4010 1.41667
\(698\) 0 0
\(699\) 10.9321 0.413489
\(700\) 0 0
\(701\) 33.3357 1.25907 0.629536 0.776972i \(-0.283245\pi\)
0.629536 + 0.776972i \(0.283245\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.58181 −0.0595744
\(706\) 0 0
\(707\) 25.4010 0.955305
\(708\) 0 0
\(709\) −34.8773 −1.30985 −0.654923 0.755696i \(-0.727299\pi\)
−0.654923 + 0.755696i \(0.727299\pi\)
\(710\) 0 0
\(711\) −12.8568 −0.482169
\(712\) 0 0
\(713\) 0.806063 0.0301873
\(714\) 0 0
\(715\) 11.6629 0.436168
\(716\) 0 0
\(717\) 7.42548 0.277310
\(718\) 0 0
\(719\) −1.37470 −0.0512676 −0.0256338 0.999671i \(-0.508160\pi\)
−0.0256338 + 0.999671i \(0.508160\pi\)
\(720\) 0 0
\(721\) −34.1319 −1.27114
\(722\) 0 0
\(723\) 10.4387 0.388218
\(724\) 0 0
\(725\) 4.06300 0.150896
\(726\) 0 0
\(727\) −46.3209 −1.71795 −0.858974 0.512020i \(-0.828897\pi\)
−0.858974 + 0.512020i \(0.828897\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 38.8627 1.43739
\(732\) 0 0
\(733\) −29.0738 −1.07387 −0.536933 0.843625i \(-0.680417\pi\)
−0.536933 + 0.843625i \(0.680417\pi\)
\(734\) 0 0
\(735\) 0.843675 0.0311194
\(736\) 0 0
\(737\) −28.8119 −1.06130
\(738\) 0 0
\(739\) −18.7454 −0.689562 −0.344781 0.938683i \(-0.612047\pi\)
−0.344781 + 0.938683i \(0.612047\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −51.8858 −1.90350 −0.951752 0.306869i \(-0.900719\pi\)
−0.951752 + 0.306869i \(0.900719\pi\)
\(744\) 0 0
\(745\) −15.8496 −0.580683
\(746\) 0 0
\(747\) 0.0303172 0.00110925
\(748\) 0 0
\(749\) −10.3127 −0.376816
\(750\) 0 0
\(751\) −47.9149 −1.74844 −0.874220 0.485530i \(-0.838627\pi\)
−0.874220 + 0.485530i \(0.838627\pi\)
\(752\) 0 0
\(753\) 10.7612 0.392158
\(754\) 0 0
\(755\) −15.8945 −0.578459
\(756\) 0 0
\(757\) 27.6302 1.00424 0.502119 0.864799i \(-0.332554\pi\)
0.502119 + 0.864799i \(0.332554\pi\)
\(758\) 0 0
\(759\) −1.61213 −0.0585165
\(760\) 0 0
\(761\) 11.0108 0.399141 0.199571 0.979883i \(-0.436045\pi\)
0.199571 + 0.979883i \(0.436045\pi\)
\(762\) 0 0
\(763\) 34.4749 1.24807
\(764\) 0 0
\(765\) 3.76845 0.136249
\(766\) 0 0
\(767\) 54.8930 1.98207
\(768\) 0 0
\(769\) −1.52118 −0.0548550 −0.0274275 0.999624i \(-0.508732\pi\)
−0.0274275 + 0.999624i \(0.508732\pi\)
\(770\) 0 0
\(771\) 21.9452 0.790339
\(772\) 0 0
\(773\) −47.5085 −1.70876 −0.854381 0.519647i \(-0.826063\pi\)
−0.854381 + 0.519647i \(0.826063\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) 30.1319 1.08098
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 24.4993 0.876654
\(782\) 0 0
\(783\) −4.06300 −0.145200
\(784\) 0 0
\(785\) −0.463096 −0.0165286
\(786\) 0 0
\(787\) 27.2144 0.970089 0.485044 0.874490i \(-0.338803\pi\)
0.485044 + 0.874490i \(0.338803\pi\)
\(788\) 0 0
\(789\) 5.73813 0.204283
\(790\) 0 0
\(791\) 21.2750 0.756453
\(792\) 0 0
\(793\) −36.8119 −1.30723
\(794\) 0 0
\(795\) 7.11871 0.252475
\(796\) 0 0
\(797\) −1.94525 −0.0689041 −0.0344521 0.999406i \(-0.510969\pi\)
−0.0344521 + 0.999406i \(0.510969\pi\)
\(798\) 0 0
\(799\) 5.96097 0.210884
\(800\) 0 0
\(801\) −13.7259 −0.484981
\(802\) 0 0
\(803\) −2.51388 −0.0887129
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) −13.3625 −0.470382
\(808\) 0 0
\(809\) 9.81573 0.345103 0.172551 0.985001i \(-0.444799\pi\)
0.172551 + 0.985001i \(0.444799\pi\)
\(810\) 0 0
\(811\) −3.71179 −0.130338 −0.0651692 0.997874i \(-0.520759\pi\)
−0.0651692 + 0.997874i \(0.520759\pi\)
\(812\) 0 0
\(813\) 3.03761 0.106534
\(814\) 0 0
\(815\) −14.5320 −0.509033
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 14.4690 0.505587
\(820\) 0 0
\(821\) 30.9403 1.07982 0.539912 0.841721i \(-0.318457\pi\)
0.539912 + 0.841721i \(0.318457\pi\)
\(822\) 0 0
\(823\) −29.4471 −1.02646 −0.513231 0.858251i \(-0.671551\pi\)
−0.513231 + 0.858251i \(0.671551\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) −9.11871 −0.317089 −0.158544 0.987352i \(-0.550680\pi\)
−0.158544 + 0.987352i \(0.550680\pi\)
\(828\) 0 0
\(829\) 1.19982 0.0416713 0.0208357 0.999783i \(-0.493367\pi\)
0.0208357 + 0.999783i \(0.493367\pi\)
\(830\) 0 0
\(831\) 16.1441 0.560033
\(832\) 0 0
\(833\) −3.17935 −0.110158
\(834\) 0 0
\(835\) 3.87399 0.134065
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) −20.7753 −0.717243 −0.358621 0.933483i \(-0.616753\pi\)
−0.358621 + 0.933483i \(0.616753\pi\)
\(840\) 0 0
\(841\) −12.4920 −0.430759
\(842\) 0 0
\(843\) −28.2130 −0.971707
\(844\) 0 0
\(845\) 21.0059 0.722624
\(846\) 0 0
\(847\) 17.3684 0.596784
\(848\) 0 0
\(849\) −13.0557 −0.448071
\(850\) 0 0
\(851\) −9.78892 −0.335560
\(852\) 0 0
\(853\) 41.0757 1.40641 0.703203 0.710989i \(-0.251753\pi\)
0.703203 + 0.710989i \(0.251753\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −27.3766 −0.935167 −0.467584 0.883949i \(-0.654875\pi\)
−0.467584 + 0.883949i \(0.654875\pi\)
\(858\) 0 0
\(859\) 32.1016 1.09529 0.547646 0.836710i \(-0.315524\pi\)
0.547646 + 0.836710i \(0.315524\pi\)
\(860\) 0 0
\(861\) 24.6253 0.839228
\(862\) 0 0
\(863\) −55.2966 −1.88232 −0.941160 0.337962i \(-0.890263\pi\)
−0.941160 + 0.337962i \(0.890263\pi\)
\(864\) 0 0
\(865\) 12.8265 0.436115
\(866\) 0 0
\(867\) 2.79877 0.0950512
\(868\) 0 0
\(869\) 25.7137 0.872277
\(870\) 0 0
\(871\) −84.0078 −2.84650
\(872\) 0 0
\(873\) −12.0000 −0.406138
\(874\) 0 0
\(875\) −2.48119 −0.0838797
\(876\) 0 0
\(877\) 51.1392 1.72685 0.863424 0.504479i \(-0.168316\pi\)
0.863424 + 0.504479i \(0.168316\pi\)
\(878\) 0 0
\(879\) −2.00588 −0.0676566
\(880\) 0 0
\(881\) 39.1632 1.31944 0.659720 0.751511i \(-0.270675\pi\)
0.659720 + 0.751511i \(0.270675\pi\)
\(882\) 0 0
\(883\) −40.6155 −1.36682 −0.683409 0.730035i \(-0.739504\pi\)
−0.683409 + 0.730035i \(0.739504\pi\)
\(884\) 0 0
\(885\) 9.41327 0.316423
\(886\) 0 0
\(887\) 6.16617 0.207040 0.103520 0.994627i \(-0.466989\pi\)
0.103520 + 0.994627i \(0.466989\pi\)
\(888\) 0 0
\(889\) 19.0132 0.637681
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 2.23743 0.0747890
\(896\) 0 0
\(897\) −4.70052 −0.156946
\(898\) 0 0
\(899\) −4.06300 −0.135509
\(900\) 0 0
\(901\) −26.8265 −0.893721
\(902\) 0 0
\(903\) 25.5877 0.851505
\(904\) 0 0
\(905\) −20.2374 −0.672715
\(906\) 0 0
\(907\) 21.4944 0.713709 0.356854 0.934160i \(-0.383849\pi\)
0.356854 + 0.934160i \(0.383849\pi\)
\(908\) 0 0
\(909\) −10.2374 −0.339554
\(910\) 0 0
\(911\) −17.4471 −0.578048 −0.289024 0.957322i \(-0.593331\pi\)
−0.289024 + 0.957322i \(0.593331\pi\)
\(912\) 0 0
\(913\) −0.0606343 −0.00200670
\(914\) 0 0
\(915\) −6.31265 −0.208690
\(916\) 0 0
\(917\) −15.8192 −0.522397
\(918\) 0 0
\(919\) −32.5355 −1.07325 −0.536623 0.843822i \(-0.680300\pi\)
−0.536623 + 0.843822i \(0.680300\pi\)
\(920\) 0 0
\(921\) 0.743059 0.0244846
\(922\) 0 0
\(923\) 71.4333 2.35125
\(924\) 0 0
\(925\) 12.1441 0.399296
\(926\) 0 0
\(927\) 13.7562 0.451814
\(928\) 0 0
\(929\) 45.4641 1.49163 0.745814 0.666155i \(-0.232061\pi\)
0.745814 + 0.666155i \(0.232061\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 19.1368 0.626511
\(934\) 0 0
\(935\) −7.53690 −0.246483
\(936\) 0 0
\(937\) −56.2031 −1.83608 −0.918038 0.396492i \(-0.870228\pi\)
−0.918038 + 0.396492i \(0.870228\pi\)
\(938\) 0 0
\(939\) 11.3176 0.369335
\(940\) 0 0
\(941\) 13.1251 0.427864 0.213932 0.976849i \(-0.431373\pi\)
0.213932 + 0.976849i \(0.431373\pi\)
\(942\) 0 0
\(943\) −8.00000 −0.260516
\(944\) 0 0
\(945\) 2.48119 0.0807133
\(946\) 0 0
\(947\) 55.1939 1.79356 0.896781 0.442475i \(-0.145899\pi\)
0.896781 + 0.442475i \(0.145899\pi\)
\(948\) 0 0
\(949\) −7.32979 −0.237935
\(950\) 0 0
\(951\) −30.3185 −0.983146
\(952\) 0 0
\(953\) 10.4690 0.339123 0.169562 0.985520i \(-0.445765\pi\)
0.169562 + 0.985520i \(0.445765\pi\)
\(954\) 0 0
\(955\) 9.78655 0.316685
\(956\) 0 0
\(957\) 8.12601 0.262677
\(958\) 0 0
\(959\) −7.27504 −0.234923
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 4.15633 0.133936
\(964\) 0 0
\(965\) 4.83638 0.155689
\(966\) 0 0
\(967\) 7.37661 0.237216 0.118608 0.992941i \(-0.462157\pi\)
0.118608 + 0.992941i \(0.462157\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −30.4020 −0.975647 −0.487823 0.872942i \(-0.662209\pi\)
−0.487823 + 0.872942i \(0.662209\pi\)
\(972\) 0 0
\(973\) −4.31265 −0.138257
\(974\) 0 0
\(975\) 5.83146 0.186756
\(976\) 0 0
\(977\) 12.8510 0.411139 0.205569 0.978643i \(-0.434095\pi\)
0.205569 + 0.978643i \(0.434095\pi\)
\(978\) 0 0
\(979\) 27.4518 0.877364
\(980\) 0 0
\(981\) −13.8945 −0.443616
\(982\) 0 0
\(983\) −30.1162 −0.960556 −0.480278 0.877116i \(-0.659464\pi\)
−0.480278 + 0.877116i \(0.659464\pi\)
\(984\) 0 0
\(985\) −10.0059 −0.318814
\(986\) 0 0
\(987\) 3.92478 0.124927
\(988\) 0 0
\(989\) −8.31265 −0.264327
\(990\) 0 0
\(991\) 27.9873 0.889047 0.444523 0.895767i \(-0.353373\pi\)
0.444523 + 0.895767i \(0.353373\pi\)
\(992\) 0 0
\(993\) −6.68006 −0.211985
\(994\) 0 0
\(995\) 3.05808 0.0969476
\(996\) 0 0
\(997\) −22.0968 −0.699814 −0.349907 0.936785i \(-0.613787\pi\)
−0.349907 + 0.936785i \(0.613787\pi\)
\(998\) 0 0
\(999\) −12.1441 −0.384223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bp.1.1 3
4.3 odd 2 465.2.a.f.1.1 3
12.11 even 2 1395.2.a.i.1.3 3
20.3 even 4 2325.2.c.o.1024.5 6
20.7 even 4 2325.2.c.o.1024.2 6
20.19 odd 2 2325.2.a.q.1.3 3
60.59 even 2 6975.2.a.be.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.f.1.1 3 4.3 odd 2
1395.2.a.i.1.3 3 12.11 even 2
2325.2.a.q.1.3 3 20.19 odd 2
2325.2.c.o.1024.2 6 20.7 even 4
2325.2.c.o.1024.5 6 20.3 even 4
6975.2.a.be.1.1 3 60.59 even 2
7440.2.a.bp.1.1 3 1.1 even 1 trivial