Properties

Label 7440.2.a.bm.1.3
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7440,2,Mod(1,7440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} +1.59210 q^{7} +1.00000 q^{9} -0.622216 q^{11} +0.214320 q^{13} +1.00000 q^{15} +3.52543 q^{17} -1.80642 q^{19} -1.59210 q^{21} -6.90321 q^{23} +1.00000 q^{25} -1.00000 q^{27} +9.73975 q^{29} +1.00000 q^{31} +0.622216 q^{33} -1.59210 q^{35} -4.83654 q^{37} -0.214320 q^{39} -7.47949 q^{41} -8.23506 q^{43} -1.00000 q^{45} -11.4652 q^{47} -4.46520 q^{49} -3.52543 q^{51} +13.7605 q^{53} +0.622216 q^{55} +1.80642 q^{57} +4.26025 q^{59} +2.85728 q^{61} +1.59210 q^{63} -0.214320 q^{65} +2.08097 q^{67} +6.90321 q^{69} -1.31111 q^{71} -1.65233 q^{73} -1.00000 q^{75} -0.990632 q^{77} +5.19850 q^{79} +1.00000 q^{81} +5.65878 q^{83} -3.52543 q^{85} -9.73975 q^{87} -1.93332 q^{89} +0.341219 q^{91} -1.00000 q^{93} +1.80642 q^{95} +6.91750 q^{97} -0.622216 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 3 q^{5} - 2 q^{7} + 3 q^{9} - 2 q^{11} - 6 q^{13} + 3 q^{15} + 4 q^{17} + 8 q^{19} + 2 q^{21} - 14 q^{23} + 3 q^{25} - 3 q^{27} + 16 q^{29} + 3 q^{31} + 2 q^{33} + 2 q^{35} - 8 q^{37} + 6 q^{39}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.59210 0.601759 0.300879 0.953662i \(-0.402720\pi\)
0.300879 + 0.953662i \(0.402720\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.622216 −0.187605 −0.0938025 0.995591i \(-0.529902\pi\)
−0.0938025 + 0.995591i \(0.529902\pi\)
\(12\) 0 0
\(13\) 0.214320 0.0594416 0.0297208 0.999558i \(-0.490538\pi\)
0.0297208 + 0.999558i \(0.490538\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 3.52543 0.855042 0.427521 0.904005i \(-0.359387\pi\)
0.427521 + 0.904005i \(0.359387\pi\)
\(18\) 0 0
\(19\) −1.80642 −0.414422 −0.207211 0.978296i \(-0.566439\pi\)
−0.207211 + 0.978296i \(0.566439\pi\)
\(20\) 0 0
\(21\) −1.59210 −0.347426
\(22\) 0 0
\(23\) −6.90321 −1.43942 −0.719710 0.694275i \(-0.755725\pi\)
−0.719710 + 0.694275i \(0.755725\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 9.73975 1.80863 0.904313 0.426870i \(-0.140384\pi\)
0.904313 + 0.426870i \(0.140384\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 0.622216 0.108314
\(34\) 0 0
\(35\) −1.59210 −0.269115
\(36\) 0 0
\(37\) −4.83654 −0.795122 −0.397561 0.917576i \(-0.630143\pi\)
−0.397561 + 0.917576i \(0.630143\pi\)
\(38\) 0 0
\(39\) −0.214320 −0.0343186
\(40\) 0 0
\(41\) −7.47949 −1.16810 −0.584050 0.811717i \(-0.698533\pi\)
−0.584050 + 0.811717i \(0.698533\pi\)
\(42\) 0 0
\(43\) −8.23506 −1.25584 −0.627918 0.778280i \(-0.716093\pi\)
−0.627918 + 0.778280i \(0.716093\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −11.4652 −1.67237 −0.836186 0.548446i \(-0.815220\pi\)
−0.836186 + 0.548446i \(0.815220\pi\)
\(48\) 0 0
\(49\) −4.46520 −0.637886
\(50\) 0 0
\(51\) −3.52543 −0.493659
\(52\) 0 0
\(53\) 13.7605 1.89015 0.945074 0.326855i \(-0.105989\pi\)
0.945074 + 0.326855i \(0.105989\pi\)
\(54\) 0 0
\(55\) 0.622216 0.0838995
\(56\) 0 0
\(57\) 1.80642 0.239267
\(58\) 0 0
\(59\) 4.26025 0.554638 0.277319 0.960778i \(-0.410554\pi\)
0.277319 + 0.960778i \(0.410554\pi\)
\(60\) 0 0
\(61\) 2.85728 0.365837 0.182919 0.983128i \(-0.441446\pi\)
0.182919 + 0.983128i \(0.441446\pi\)
\(62\) 0 0
\(63\) 1.59210 0.200586
\(64\) 0 0
\(65\) −0.214320 −0.0265831
\(66\) 0 0
\(67\) 2.08097 0.254231 0.127115 0.991888i \(-0.459428\pi\)
0.127115 + 0.991888i \(0.459428\pi\)
\(68\) 0 0
\(69\) 6.90321 0.831049
\(70\) 0 0
\(71\) −1.31111 −0.155600 −0.0777999 0.996969i \(-0.524790\pi\)
−0.0777999 + 0.996969i \(0.524790\pi\)
\(72\) 0 0
\(73\) −1.65233 −0.193390 −0.0966951 0.995314i \(-0.530827\pi\)
−0.0966951 + 0.995314i \(0.530827\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −0.990632 −0.112893
\(78\) 0 0
\(79\) 5.19850 0.584877 0.292438 0.956284i \(-0.405533\pi\)
0.292438 + 0.956284i \(0.405533\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.65878 0.621132 0.310566 0.950552i \(-0.399481\pi\)
0.310566 + 0.950552i \(0.399481\pi\)
\(84\) 0 0
\(85\) −3.52543 −0.382386
\(86\) 0 0
\(87\) −9.73975 −1.04421
\(88\) 0 0
\(89\) −1.93332 −0.204932 −0.102466 0.994737i \(-0.532673\pi\)
−0.102466 + 0.994737i \(0.532673\pi\)
\(90\) 0 0
\(91\) 0.341219 0.0357695
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 1.80642 0.185335
\(96\) 0 0
\(97\) 6.91750 0.702366 0.351183 0.936307i \(-0.385780\pi\)
0.351183 + 0.936307i \(0.385780\pi\)
\(98\) 0 0
\(99\) −0.622216 −0.0625350
\(100\) 0 0
\(101\) −9.28592 −0.923983 −0.461992 0.886884i \(-0.652865\pi\)
−0.461992 + 0.886884i \(0.652865\pi\)
\(102\) 0 0
\(103\) −0.274543 −0.0270515 −0.0135258 0.999909i \(-0.504306\pi\)
−0.0135258 + 0.999909i \(0.504306\pi\)
\(104\) 0 0
\(105\) 1.59210 0.155373
\(106\) 0 0
\(107\) 8.18913 0.791673 0.395837 0.918321i \(-0.370455\pi\)
0.395837 + 0.918321i \(0.370455\pi\)
\(108\) 0 0
\(109\) −9.13828 −0.875288 −0.437644 0.899148i \(-0.644187\pi\)
−0.437644 + 0.899148i \(0.644187\pi\)
\(110\) 0 0
\(111\) 4.83654 0.459064
\(112\) 0 0
\(113\) 7.67307 0.721822 0.360911 0.932600i \(-0.382466\pi\)
0.360911 + 0.932600i \(0.382466\pi\)
\(114\) 0 0
\(115\) 6.90321 0.643728
\(116\) 0 0
\(117\) 0.214320 0.0198139
\(118\) 0 0
\(119\) 5.61285 0.514529
\(120\) 0 0
\(121\) −10.6128 −0.964804
\(122\) 0 0
\(123\) 7.47949 0.674403
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −13.6731 −1.21329 −0.606644 0.794973i \(-0.707485\pi\)
−0.606644 + 0.794973i \(0.707485\pi\)
\(128\) 0 0
\(129\) 8.23506 0.725057
\(130\) 0 0
\(131\) 22.2701 1.94575 0.972874 0.231337i \(-0.0743100\pi\)
0.972874 + 0.231337i \(0.0743100\pi\)
\(132\) 0 0
\(133\) −2.87601 −0.249382
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −18.1891 −1.55400 −0.777001 0.629499i \(-0.783260\pi\)
−0.777001 + 0.629499i \(0.783260\pi\)
\(138\) 0 0
\(139\) 4.13335 0.350586 0.175293 0.984516i \(-0.443913\pi\)
0.175293 + 0.984516i \(0.443913\pi\)
\(140\) 0 0
\(141\) 11.4652 0.965544
\(142\) 0 0
\(143\) −0.133353 −0.0111515
\(144\) 0 0
\(145\) −9.73975 −0.808842
\(146\) 0 0
\(147\) 4.46520 0.368284
\(148\) 0 0
\(149\) 6.23506 0.510796 0.255398 0.966836i \(-0.417793\pi\)
0.255398 + 0.966836i \(0.417793\pi\)
\(150\) 0 0
\(151\) −8.38271 −0.682175 −0.341087 0.940032i \(-0.610795\pi\)
−0.341087 + 0.940032i \(0.610795\pi\)
\(152\) 0 0
\(153\) 3.52543 0.285014
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −10.2351 −0.816847 −0.408423 0.912793i \(-0.633921\pi\)
−0.408423 + 0.912793i \(0.633921\pi\)
\(158\) 0 0
\(159\) −13.7605 −1.09128
\(160\) 0 0
\(161\) −10.9906 −0.866183
\(162\) 0 0
\(163\) −5.82717 −0.456419 −0.228209 0.973612i \(-0.573287\pi\)
−0.228209 + 0.973612i \(0.573287\pi\)
\(164\) 0 0
\(165\) −0.622216 −0.0484394
\(166\) 0 0
\(167\) −23.1842 −1.79405 −0.897024 0.441982i \(-0.854276\pi\)
−0.897024 + 0.441982i \(0.854276\pi\)
\(168\) 0 0
\(169\) −12.9541 −0.996467
\(170\) 0 0
\(171\) −1.80642 −0.138141
\(172\) 0 0
\(173\) 1.57136 0.119468 0.0597342 0.998214i \(-0.480975\pi\)
0.0597342 + 0.998214i \(0.480975\pi\)
\(174\) 0 0
\(175\) 1.59210 0.120352
\(176\) 0 0
\(177\) −4.26025 −0.320220
\(178\) 0 0
\(179\) −1.53972 −0.115084 −0.0575420 0.998343i \(-0.518326\pi\)
−0.0575420 + 0.998343i \(0.518326\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) −2.85728 −0.211216
\(184\) 0 0
\(185\) 4.83654 0.355589
\(186\) 0 0
\(187\) −2.19358 −0.160410
\(188\) 0 0
\(189\) −1.59210 −0.115809
\(190\) 0 0
\(191\) −9.11753 −0.659721 −0.329861 0.944030i \(-0.607002\pi\)
−0.329861 + 0.944030i \(0.607002\pi\)
\(192\) 0 0
\(193\) −4.72393 −0.340036 −0.170018 0.985441i \(-0.554383\pi\)
−0.170018 + 0.985441i \(0.554383\pi\)
\(194\) 0 0
\(195\) 0.214320 0.0153478
\(196\) 0 0
\(197\) 15.7003 1.11860 0.559299 0.828966i \(-0.311070\pi\)
0.559299 + 0.828966i \(0.311070\pi\)
\(198\) 0 0
\(199\) −6.28100 −0.445248 −0.222624 0.974904i \(-0.571462\pi\)
−0.222624 + 0.974904i \(0.571462\pi\)
\(200\) 0 0
\(201\) −2.08097 −0.146780
\(202\) 0 0
\(203\) 15.5067 1.08836
\(204\) 0 0
\(205\) 7.47949 0.522391
\(206\) 0 0
\(207\) −6.90321 −0.479806
\(208\) 0 0
\(209\) 1.12399 0.0777477
\(210\) 0 0
\(211\) −19.4795 −1.34102 −0.670512 0.741899i \(-0.733925\pi\)
−0.670512 + 0.741899i \(0.733925\pi\)
\(212\) 0 0
\(213\) 1.31111 0.0898356
\(214\) 0 0
\(215\) 8.23506 0.561627
\(216\) 0 0
\(217\) 1.59210 0.108079
\(218\) 0 0
\(219\) 1.65233 0.111654
\(220\) 0 0
\(221\) 0.755569 0.0508251
\(222\) 0 0
\(223\) 15.4193 1.03255 0.516275 0.856423i \(-0.327318\pi\)
0.516275 + 0.856423i \(0.327318\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 12.8430 0.852419 0.426210 0.904624i \(-0.359849\pi\)
0.426210 + 0.904624i \(0.359849\pi\)
\(228\) 0 0
\(229\) −3.08250 −0.203697 −0.101849 0.994800i \(-0.532476\pi\)
−0.101849 + 0.994800i \(0.532476\pi\)
\(230\) 0 0
\(231\) 0.990632 0.0651788
\(232\) 0 0
\(233\) 8.76986 0.574533 0.287266 0.957851i \(-0.407254\pi\)
0.287266 + 0.957851i \(0.407254\pi\)
\(234\) 0 0
\(235\) 11.4652 0.747907
\(236\) 0 0
\(237\) −5.19850 −0.337679
\(238\) 0 0
\(239\) −3.12399 −0.202074 −0.101037 0.994883i \(-0.532216\pi\)
−0.101037 + 0.994883i \(0.532216\pi\)
\(240\) 0 0
\(241\) 29.5625 1.90429 0.952143 0.305653i \(-0.0988747\pi\)
0.952143 + 0.305653i \(0.0988747\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 4.46520 0.285271
\(246\) 0 0
\(247\) −0.387152 −0.0246339
\(248\) 0 0
\(249\) −5.65878 −0.358611
\(250\) 0 0
\(251\) −21.4193 −1.35197 −0.675986 0.736914i \(-0.736282\pi\)
−0.675986 + 0.736914i \(0.736282\pi\)
\(252\) 0 0
\(253\) 4.29529 0.270042
\(254\) 0 0
\(255\) 3.52543 0.220771
\(256\) 0 0
\(257\) −17.6271 −1.09955 −0.549775 0.835313i \(-0.685287\pi\)
−0.549775 + 0.835313i \(0.685287\pi\)
\(258\) 0 0
\(259\) −7.70027 −0.478471
\(260\) 0 0
\(261\) 9.73975 0.602875
\(262\) 0 0
\(263\) 14.7052 0.906761 0.453380 0.891317i \(-0.350218\pi\)
0.453380 + 0.891317i \(0.350218\pi\)
\(264\) 0 0
\(265\) −13.7605 −0.845300
\(266\) 0 0
\(267\) 1.93332 0.118317
\(268\) 0 0
\(269\) 1.35260 0.0824692 0.0412346 0.999149i \(-0.486871\pi\)
0.0412346 + 0.999149i \(0.486871\pi\)
\(270\) 0 0
\(271\) −12.1334 −0.737049 −0.368524 0.929618i \(-0.620137\pi\)
−0.368524 + 0.929618i \(0.620137\pi\)
\(272\) 0 0
\(273\) −0.341219 −0.0206515
\(274\) 0 0
\(275\) −0.622216 −0.0375210
\(276\) 0 0
\(277\) 18.9382 1.13789 0.568944 0.822376i \(-0.307352\pi\)
0.568944 + 0.822376i \(0.307352\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 12.9175 0.770594 0.385297 0.922793i \(-0.374099\pi\)
0.385297 + 0.922793i \(0.374099\pi\)
\(282\) 0 0
\(283\) −26.5827 −1.58018 −0.790090 0.612991i \(-0.789966\pi\)
−0.790090 + 0.612991i \(0.789966\pi\)
\(284\) 0 0
\(285\) −1.80642 −0.107003
\(286\) 0 0
\(287\) −11.9081 −0.702915
\(288\) 0 0
\(289\) −4.57136 −0.268904
\(290\) 0 0
\(291\) −6.91750 −0.405511
\(292\) 0 0
\(293\) −7.99555 −0.467105 −0.233553 0.972344i \(-0.575035\pi\)
−0.233553 + 0.972344i \(0.575035\pi\)
\(294\) 0 0
\(295\) −4.26025 −0.248042
\(296\) 0 0
\(297\) 0.622216 0.0361046
\(298\) 0 0
\(299\) −1.47949 −0.0855614
\(300\) 0 0
\(301\) −13.1111 −0.755710
\(302\) 0 0
\(303\) 9.28592 0.533462
\(304\) 0 0
\(305\) −2.85728 −0.163607
\(306\) 0 0
\(307\) 17.3669 0.991180 0.495590 0.868556i \(-0.334952\pi\)
0.495590 + 0.868556i \(0.334952\pi\)
\(308\) 0 0
\(309\) 0.274543 0.0156182
\(310\) 0 0
\(311\) 27.5877 1.56435 0.782176 0.623057i \(-0.214110\pi\)
0.782176 + 0.623057i \(0.214110\pi\)
\(312\) 0 0
\(313\) −13.7255 −0.775809 −0.387904 0.921700i \(-0.626801\pi\)
−0.387904 + 0.921700i \(0.626801\pi\)
\(314\) 0 0
\(315\) −1.59210 −0.0897049
\(316\) 0 0
\(317\) −24.9447 −1.40103 −0.700517 0.713636i \(-0.747047\pi\)
−0.700517 + 0.713636i \(0.747047\pi\)
\(318\) 0 0
\(319\) −6.06022 −0.339307
\(320\) 0 0
\(321\) −8.18913 −0.457073
\(322\) 0 0
\(323\) −6.36842 −0.354348
\(324\) 0 0
\(325\) 0.214320 0.0118883
\(326\) 0 0
\(327\) 9.13828 0.505348
\(328\) 0 0
\(329\) −18.2538 −1.00636
\(330\) 0 0
\(331\) −19.1798 −1.05422 −0.527108 0.849799i \(-0.676724\pi\)
−0.527108 + 0.849799i \(0.676724\pi\)
\(332\) 0 0
\(333\) −4.83654 −0.265041
\(334\) 0 0
\(335\) −2.08097 −0.113695
\(336\) 0 0
\(337\) −25.3067 −1.37854 −0.689271 0.724504i \(-0.742069\pi\)
−0.689271 + 0.724504i \(0.742069\pi\)
\(338\) 0 0
\(339\) −7.67307 −0.416744
\(340\) 0 0
\(341\) −0.622216 −0.0336949
\(342\) 0 0
\(343\) −18.2538 −0.985613
\(344\) 0 0
\(345\) −6.90321 −0.371656
\(346\) 0 0
\(347\) −19.0638 −1.02340 −0.511698 0.859165i \(-0.670983\pi\)
−0.511698 + 0.859165i \(0.670983\pi\)
\(348\) 0 0
\(349\) −1.23014 −0.0658479 −0.0329240 0.999458i \(-0.510482\pi\)
−0.0329240 + 0.999458i \(0.510482\pi\)
\(350\) 0 0
\(351\) −0.214320 −0.0114395
\(352\) 0 0
\(353\) 4.50315 0.239679 0.119839 0.992793i \(-0.461762\pi\)
0.119839 + 0.992793i \(0.461762\pi\)
\(354\) 0 0
\(355\) 1.31111 0.0695864
\(356\) 0 0
\(357\) −5.61285 −0.297063
\(358\) 0 0
\(359\) −18.9240 −0.998768 −0.499384 0.866381i \(-0.666440\pi\)
−0.499384 + 0.866381i \(0.666440\pi\)
\(360\) 0 0
\(361\) −15.7368 −0.828254
\(362\) 0 0
\(363\) 10.6128 0.557030
\(364\) 0 0
\(365\) 1.65233 0.0864868
\(366\) 0 0
\(367\) 9.71456 0.507096 0.253548 0.967323i \(-0.418402\pi\)
0.253548 + 0.967323i \(0.418402\pi\)
\(368\) 0 0
\(369\) −7.47949 −0.389367
\(370\) 0 0
\(371\) 21.9081 1.13741
\(372\) 0 0
\(373\) −35.1941 −1.82228 −0.911139 0.412098i \(-0.864796\pi\)
−0.911139 + 0.412098i \(0.864796\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 2.08742 0.107508
\(378\) 0 0
\(379\) 22.6637 1.16416 0.582078 0.813133i \(-0.302240\pi\)
0.582078 + 0.813133i \(0.302240\pi\)
\(380\) 0 0
\(381\) 13.6731 0.700493
\(382\) 0 0
\(383\) −28.7926 −1.47123 −0.735617 0.677398i \(-0.763108\pi\)
−0.735617 + 0.677398i \(0.763108\pi\)
\(384\) 0 0
\(385\) 0.990632 0.0504873
\(386\) 0 0
\(387\) −8.23506 −0.418612
\(388\) 0 0
\(389\) −25.0672 −1.27096 −0.635478 0.772119i \(-0.719197\pi\)
−0.635478 + 0.772119i \(0.719197\pi\)
\(390\) 0 0
\(391\) −24.3368 −1.23076
\(392\) 0 0
\(393\) −22.2701 −1.12338
\(394\) 0 0
\(395\) −5.19850 −0.261565
\(396\) 0 0
\(397\) −29.0509 −1.45802 −0.729010 0.684503i \(-0.760019\pi\)
−0.729010 + 0.684503i \(0.760019\pi\)
\(398\) 0 0
\(399\) 2.87601 0.143981
\(400\) 0 0
\(401\) 11.2607 0.562334 0.281167 0.959659i \(-0.409279\pi\)
0.281167 + 0.959659i \(0.409279\pi\)
\(402\) 0 0
\(403\) 0.214320 0.0106760
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 3.00937 0.149169
\(408\) 0 0
\(409\) −25.6128 −1.26647 −0.633237 0.773958i \(-0.718274\pi\)
−0.633237 + 0.773958i \(0.718274\pi\)
\(410\) 0 0
\(411\) 18.1891 0.897204
\(412\) 0 0
\(413\) 6.78277 0.333758
\(414\) 0 0
\(415\) −5.65878 −0.277779
\(416\) 0 0
\(417\) −4.13335 −0.202411
\(418\) 0 0
\(419\) 4.36196 0.213096 0.106548 0.994308i \(-0.466020\pi\)
0.106548 + 0.994308i \(0.466020\pi\)
\(420\) 0 0
\(421\) 5.77923 0.281662 0.140831 0.990034i \(-0.455023\pi\)
0.140831 + 0.990034i \(0.455023\pi\)
\(422\) 0 0
\(423\) −11.4652 −0.557457
\(424\) 0 0
\(425\) 3.52543 0.171008
\(426\) 0 0
\(427\) 4.54909 0.220146
\(428\) 0 0
\(429\) 0.133353 0.00643835
\(430\) 0 0
\(431\) 4.62867 0.222955 0.111478 0.993767i \(-0.464442\pi\)
0.111478 + 0.993767i \(0.464442\pi\)
\(432\) 0 0
\(433\) 6.81780 0.327643 0.163821 0.986490i \(-0.447618\pi\)
0.163821 + 0.986490i \(0.447618\pi\)
\(434\) 0 0
\(435\) 9.73975 0.466985
\(436\) 0 0
\(437\) 12.4701 0.596527
\(438\) 0 0
\(439\) −9.71456 −0.463651 −0.231825 0.972757i \(-0.574470\pi\)
−0.231825 + 0.972757i \(0.574470\pi\)
\(440\) 0 0
\(441\) −4.46520 −0.212629
\(442\) 0 0
\(443\) −31.1481 −1.47989 −0.739946 0.672666i \(-0.765149\pi\)
−0.739946 + 0.672666i \(0.765149\pi\)
\(444\) 0 0
\(445\) 1.93332 0.0916483
\(446\) 0 0
\(447\) −6.23506 −0.294908
\(448\) 0 0
\(449\) 28.1180 1.32697 0.663485 0.748189i \(-0.269076\pi\)
0.663485 + 0.748189i \(0.269076\pi\)
\(450\) 0 0
\(451\) 4.65386 0.219142
\(452\) 0 0
\(453\) 8.38271 0.393854
\(454\) 0 0
\(455\) −0.341219 −0.0159966
\(456\) 0 0
\(457\) −41.4400 −1.93848 −0.969241 0.246113i \(-0.920846\pi\)
−0.969241 + 0.246113i \(0.920846\pi\)
\(458\) 0 0
\(459\) −3.52543 −0.164553
\(460\) 0 0
\(461\) 10.3432 0.481732 0.240866 0.970558i \(-0.422569\pi\)
0.240866 + 0.970558i \(0.422569\pi\)
\(462\) 0 0
\(463\) −13.3047 −0.618320 −0.309160 0.951010i \(-0.600048\pi\)
−0.309160 + 0.951010i \(0.600048\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) 6.22077 0.287863 0.143932 0.989588i \(-0.454025\pi\)
0.143932 + 0.989588i \(0.454025\pi\)
\(468\) 0 0
\(469\) 3.31312 0.152985
\(470\) 0 0
\(471\) 10.2351 0.471607
\(472\) 0 0
\(473\) 5.12399 0.235601
\(474\) 0 0
\(475\) −1.80642 −0.0828844
\(476\) 0 0
\(477\) 13.7605 0.630050
\(478\) 0 0
\(479\) 24.8825 1.13691 0.568454 0.822715i \(-0.307542\pi\)
0.568454 + 0.822715i \(0.307542\pi\)
\(480\) 0 0
\(481\) −1.03657 −0.0472633
\(482\) 0 0
\(483\) 10.9906 0.500091
\(484\) 0 0
\(485\) −6.91750 −0.314108
\(486\) 0 0
\(487\) 9.84791 0.446251 0.223126 0.974790i \(-0.428374\pi\)
0.223126 + 0.974790i \(0.428374\pi\)
\(488\) 0 0
\(489\) 5.82717 0.263514
\(490\) 0 0
\(491\) 9.84791 0.444430 0.222215 0.974998i \(-0.428671\pi\)
0.222215 + 0.974998i \(0.428671\pi\)
\(492\) 0 0
\(493\) 34.3368 1.54645
\(494\) 0 0
\(495\) 0.622216 0.0279665
\(496\) 0 0
\(497\) −2.08742 −0.0936336
\(498\) 0 0
\(499\) −0.653858 −0.0292707 −0.0146354 0.999893i \(-0.504659\pi\)
−0.0146354 + 0.999893i \(0.504659\pi\)
\(500\) 0 0
\(501\) 23.1842 1.03579
\(502\) 0 0
\(503\) −13.9541 −0.622181 −0.311091 0.950380i \(-0.600694\pi\)
−0.311091 + 0.950380i \(0.600694\pi\)
\(504\) 0 0
\(505\) 9.28592 0.413218
\(506\) 0 0
\(507\) 12.9541 0.575310
\(508\) 0 0
\(509\) −42.7116 −1.89316 −0.946580 0.322469i \(-0.895487\pi\)
−0.946580 + 0.322469i \(0.895487\pi\)
\(510\) 0 0
\(511\) −2.63068 −0.116374
\(512\) 0 0
\(513\) 1.80642 0.0797556
\(514\) 0 0
\(515\) 0.274543 0.0120978
\(516\) 0 0
\(517\) 7.13383 0.313745
\(518\) 0 0
\(519\) −1.57136 −0.0689751
\(520\) 0 0
\(521\) −12.6035 −0.552168 −0.276084 0.961133i \(-0.589037\pi\)
−0.276084 + 0.961133i \(0.589037\pi\)
\(522\) 0 0
\(523\) 29.8479 1.30516 0.652579 0.757721i \(-0.273687\pi\)
0.652579 + 0.757721i \(0.273687\pi\)
\(524\) 0 0
\(525\) −1.59210 −0.0694851
\(526\) 0 0
\(527\) 3.52543 0.153570
\(528\) 0 0
\(529\) 24.6543 1.07193
\(530\) 0 0
\(531\) 4.26025 0.184879
\(532\) 0 0
\(533\) −1.60300 −0.0694338
\(534\) 0 0
\(535\) −8.18913 −0.354047
\(536\) 0 0
\(537\) 1.53972 0.0664437
\(538\) 0 0
\(539\) 2.77832 0.119671
\(540\) 0 0
\(541\) −13.9541 −0.599932 −0.299966 0.953950i \(-0.596975\pi\)
−0.299966 + 0.953950i \(0.596975\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) 9.13828 0.391441
\(546\) 0 0
\(547\) −5.74419 −0.245604 −0.122802 0.992431i \(-0.539188\pi\)
−0.122802 + 0.992431i \(0.539188\pi\)
\(548\) 0 0
\(549\) 2.85728 0.121946
\(550\) 0 0
\(551\) −17.5941 −0.749534
\(552\) 0 0
\(553\) 8.27655 0.351955
\(554\) 0 0
\(555\) −4.83654 −0.205299
\(556\) 0 0
\(557\) −14.7511 −0.625025 −0.312513 0.949914i \(-0.601171\pi\)
−0.312513 + 0.949914i \(0.601171\pi\)
\(558\) 0 0
\(559\) −1.76494 −0.0746489
\(560\) 0 0
\(561\) 2.19358 0.0926129
\(562\) 0 0
\(563\) −32.9260 −1.38766 −0.693832 0.720137i \(-0.744079\pi\)
−0.693832 + 0.720137i \(0.744079\pi\)
\(564\) 0 0
\(565\) −7.67307 −0.322809
\(566\) 0 0
\(567\) 1.59210 0.0668621
\(568\) 0 0
\(569\) −3.07604 −0.128954 −0.0644772 0.997919i \(-0.520538\pi\)
−0.0644772 + 0.997919i \(0.520538\pi\)
\(570\) 0 0
\(571\) −4.52051 −0.189177 −0.0945886 0.995516i \(-0.530154\pi\)
−0.0945886 + 0.995516i \(0.530154\pi\)
\(572\) 0 0
\(573\) 9.11753 0.380890
\(574\) 0 0
\(575\) −6.90321 −0.287884
\(576\) 0 0
\(577\) −30.6923 −1.27774 −0.638868 0.769316i \(-0.720597\pi\)
−0.638868 + 0.769316i \(0.720597\pi\)
\(578\) 0 0
\(579\) 4.72393 0.196320
\(580\) 0 0
\(581\) 9.00937 0.373772
\(582\) 0 0
\(583\) −8.56199 −0.354602
\(584\) 0 0
\(585\) −0.214320 −0.00886103
\(586\) 0 0
\(587\) −14.8256 −0.611919 −0.305960 0.952044i \(-0.598977\pi\)
−0.305960 + 0.952044i \(0.598977\pi\)
\(588\) 0 0
\(589\) −1.80642 −0.0744324
\(590\) 0 0
\(591\) −15.7003 −0.645823
\(592\) 0 0
\(593\) 23.9684 0.984262 0.492131 0.870521i \(-0.336218\pi\)
0.492131 + 0.870521i \(0.336218\pi\)
\(594\) 0 0
\(595\) −5.61285 −0.230104
\(596\) 0 0
\(597\) 6.28100 0.257064
\(598\) 0 0
\(599\) 39.1086 1.59794 0.798968 0.601374i \(-0.205380\pi\)
0.798968 + 0.601374i \(0.205380\pi\)
\(600\) 0 0
\(601\) 22.3082 0.909970 0.454985 0.890499i \(-0.349645\pi\)
0.454985 + 0.890499i \(0.349645\pi\)
\(602\) 0 0
\(603\) 2.08097 0.0847435
\(604\) 0 0
\(605\) 10.6128 0.431474
\(606\) 0 0
\(607\) −2.82669 −0.114732 −0.0573659 0.998353i \(-0.518270\pi\)
−0.0573659 + 0.998353i \(0.518270\pi\)
\(608\) 0 0
\(609\) −15.5067 −0.628363
\(610\) 0 0
\(611\) −2.45722 −0.0994085
\(612\) 0 0
\(613\) −36.6844 −1.48167 −0.740835 0.671687i \(-0.765570\pi\)
−0.740835 + 0.671687i \(0.765570\pi\)
\(614\) 0 0
\(615\) −7.47949 −0.301602
\(616\) 0 0
\(617\) 1.46659 0.0590426 0.0295213 0.999564i \(-0.490602\pi\)
0.0295213 + 0.999564i \(0.490602\pi\)
\(618\) 0 0
\(619\) 15.9541 0.641248 0.320624 0.947207i \(-0.396107\pi\)
0.320624 + 0.947207i \(0.396107\pi\)
\(620\) 0 0
\(621\) 6.90321 0.277016
\(622\) 0 0
\(623\) −3.07805 −0.123320
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −1.12399 −0.0448876
\(628\) 0 0
\(629\) −17.0509 −0.679862
\(630\) 0 0
\(631\) 32.0830 1.27720 0.638602 0.769538i \(-0.279513\pi\)
0.638602 + 0.769538i \(0.279513\pi\)
\(632\) 0 0
\(633\) 19.4795 0.774240
\(634\) 0 0
\(635\) 13.6731 0.542599
\(636\) 0 0
\(637\) −0.956981 −0.0379170
\(638\) 0 0
\(639\) −1.31111 −0.0518666
\(640\) 0 0
\(641\) −14.8923 −0.588211 −0.294105 0.955773i \(-0.595022\pi\)
−0.294105 + 0.955773i \(0.595022\pi\)
\(642\) 0 0
\(643\) −12.5205 −0.493761 −0.246880 0.969046i \(-0.579405\pi\)
−0.246880 + 0.969046i \(0.579405\pi\)
\(644\) 0 0
\(645\) −8.23506 −0.324255
\(646\) 0 0
\(647\) −45.6227 −1.79361 −0.896807 0.442423i \(-0.854119\pi\)
−0.896807 + 0.442423i \(0.854119\pi\)
\(648\) 0 0
\(649\) −2.65080 −0.104053
\(650\) 0 0
\(651\) −1.59210 −0.0623995
\(652\) 0 0
\(653\) −18.7797 −0.734907 −0.367453 0.930042i \(-0.619770\pi\)
−0.367453 + 0.930042i \(0.619770\pi\)
\(654\) 0 0
\(655\) −22.2701 −0.870165
\(656\) 0 0
\(657\) −1.65233 −0.0644634
\(658\) 0 0
\(659\) 28.9240 1.12672 0.563359 0.826212i \(-0.309509\pi\)
0.563359 + 0.826212i \(0.309509\pi\)
\(660\) 0 0
\(661\) −24.3269 −0.946208 −0.473104 0.881007i \(-0.656866\pi\)
−0.473104 + 0.881007i \(0.656866\pi\)
\(662\) 0 0
\(663\) −0.755569 −0.0293439
\(664\) 0 0
\(665\) 2.87601 0.111527
\(666\) 0 0
\(667\) −67.2355 −2.60337
\(668\) 0 0
\(669\) −15.4193 −0.596143
\(670\) 0 0
\(671\) −1.77784 −0.0686329
\(672\) 0 0
\(673\) −36.5511 −1.40894 −0.704471 0.709733i \(-0.748815\pi\)
−0.704471 + 0.709733i \(0.748815\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −32.1575 −1.23591 −0.617956 0.786212i \(-0.712039\pi\)
−0.617956 + 0.786212i \(0.712039\pi\)
\(678\) 0 0
\(679\) 11.0134 0.422655
\(680\) 0 0
\(681\) −12.8430 −0.492144
\(682\) 0 0
\(683\) 38.2623 1.46406 0.732032 0.681270i \(-0.238572\pi\)
0.732032 + 0.681270i \(0.238572\pi\)
\(684\) 0 0
\(685\) 18.1891 0.694971
\(686\) 0 0
\(687\) 3.08250 0.117605
\(688\) 0 0
\(689\) 2.94914 0.112353
\(690\) 0 0
\(691\) 12.3082 0.468226 0.234113 0.972209i \(-0.424781\pi\)
0.234113 + 0.972209i \(0.424781\pi\)
\(692\) 0 0
\(693\) −0.990632 −0.0376310
\(694\) 0 0
\(695\) −4.13335 −0.156787
\(696\) 0 0
\(697\) −26.3684 −0.998775
\(698\) 0 0
\(699\) −8.76986 −0.331707
\(700\) 0 0
\(701\) 31.5210 1.19053 0.595266 0.803529i \(-0.297047\pi\)
0.595266 + 0.803529i \(0.297047\pi\)
\(702\) 0 0
\(703\) 8.73683 0.329516
\(704\) 0 0
\(705\) −11.4652 −0.431805
\(706\) 0 0
\(707\) −14.7841 −0.556015
\(708\) 0 0
\(709\) −7.51114 −0.282087 −0.141043 0.990003i \(-0.545046\pi\)
−0.141043 + 0.990003i \(0.545046\pi\)
\(710\) 0 0
\(711\) 5.19850 0.194959
\(712\) 0 0
\(713\) −6.90321 −0.258527
\(714\) 0 0
\(715\) 0.133353 0.00498712
\(716\) 0 0
\(717\) 3.12399 0.116667
\(718\) 0 0
\(719\) −32.3180 −1.20526 −0.602630 0.798021i \(-0.705880\pi\)
−0.602630 + 0.798021i \(0.705880\pi\)
\(720\) 0 0
\(721\) −0.437101 −0.0162785
\(722\) 0 0
\(723\) −29.5625 −1.09944
\(724\) 0 0
\(725\) 9.73975 0.361725
\(726\) 0 0
\(727\) −6.12245 −0.227069 −0.113535 0.993534i \(-0.536217\pi\)
−0.113535 + 0.993534i \(0.536217\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −29.0321 −1.07379
\(732\) 0 0
\(733\) −30.9403 −1.14280 −0.571402 0.820670i \(-0.693600\pi\)
−0.571402 + 0.820670i \(0.693600\pi\)
\(734\) 0 0
\(735\) −4.46520 −0.164702
\(736\) 0 0
\(737\) −1.29481 −0.0476949
\(738\) 0 0
\(739\) 12.6780 0.466368 0.233184 0.972433i \(-0.425086\pi\)
0.233184 + 0.972433i \(0.425086\pi\)
\(740\) 0 0
\(741\) 0.387152 0.0142224
\(742\) 0 0
\(743\) −38.4385 −1.41017 −0.705086 0.709122i \(-0.749091\pi\)
−0.705086 + 0.709122i \(0.749091\pi\)
\(744\) 0 0
\(745\) −6.23506 −0.228435
\(746\) 0 0
\(747\) 5.65878 0.207044
\(748\) 0 0
\(749\) 13.0379 0.476396
\(750\) 0 0
\(751\) 13.4608 0.491190 0.245595 0.969373i \(-0.421017\pi\)
0.245595 + 0.969373i \(0.421017\pi\)
\(752\) 0 0
\(753\) 21.4193 0.780562
\(754\) 0 0
\(755\) 8.38271 0.305078
\(756\) 0 0
\(757\) −20.5511 −0.746942 −0.373471 0.927642i \(-0.621832\pi\)
−0.373471 + 0.927642i \(0.621832\pi\)
\(758\) 0 0
\(759\) −4.29529 −0.155909
\(760\) 0 0
\(761\) 42.3432 1.53494 0.767470 0.641084i \(-0.221515\pi\)
0.767470 + 0.641084i \(0.221515\pi\)
\(762\) 0 0
\(763\) −14.5491 −0.526712
\(764\) 0 0
\(765\) −3.52543 −0.127462
\(766\) 0 0
\(767\) 0.913056 0.0329686
\(768\) 0 0
\(769\) 40.5388 1.46187 0.730933 0.682449i \(-0.239085\pi\)
0.730933 + 0.682449i \(0.239085\pi\)
\(770\) 0 0
\(771\) 17.6271 0.634826
\(772\) 0 0
\(773\) 26.2810 0.945262 0.472631 0.881260i \(-0.343304\pi\)
0.472631 + 0.881260i \(0.343304\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) 7.70027 0.276246
\(778\) 0 0
\(779\) 13.5111 0.484087
\(780\) 0 0
\(781\) 0.815792 0.0291913
\(782\) 0 0
\(783\) −9.73975 −0.348070
\(784\) 0 0
\(785\) 10.2351 0.365305
\(786\) 0 0
\(787\) 0.755569 0.0269331 0.0134666 0.999909i \(-0.495713\pi\)
0.0134666 + 0.999909i \(0.495713\pi\)
\(788\) 0 0
\(789\) −14.7052 −0.523519
\(790\) 0 0
\(791\) 12.2163 0.434363
\(792\) 0 0
\(793\) 0.612371 0.0217459
\(794\) 0 0
\(795\) 13.7605 0.488034
\(796\) 0 0
\(797\) 1.89384 0.0670834 0.0335417 0.999437i \(-0.489321\pi\)
0.0335417 + 0.999437i \(0.489321\pi\)
\(798\) 0 0
\(799\) −40.4197 −1.42995
\(800\) 0 0
\(801\) −1.93332 −0.0683106
\(802\) 0 0
\(803\) 1.02810 0.0362810
\(804\) 0 0
\(805\) 10.9906 0.387369
\(806\) 0 0
\(807\) −1.35260 −0.0476136
\(808\) 0 0
\(809\) −28.6671 −1.00788 −0.503941 0.863738i \(-0.668117\pi\)
−0.503941 + 0.863738i \(0.668117\pi\)
\(810\) 0 0
\(811\) 38.0228 1.33516 0.667580 0.744538i \(-0.267330\pi\)
0.667580 + 0.744538i \(0.267330\pi\)
\(812\) 0 0
\(813\) 12.1334 0.425535
\(814\) 0 0
\(815\) 5.82717 0.204117
\(816\) 0 0
\(817\) 14.8760 0.520446
\(818\) 0 0
\(819\) 0.341219 0.0119232
\(820\) 0 0
\(821\) −27.2321 −0.950409 −0.475204 0.879876i \(-0.657626\pi\)
−0.475204 + 0.879876i \(0.657626\pi\)
\(822\) 0 0
\(823\) −14.5749 −0.508049 −0.254025 0.967198i \(-0.581754\pi\)
−0.254025 + 0.967198i \(0.581754\pi\)
\(824\) 0 0
\(825\) 0.622216 0.0216628
\(826\) 0 0
\(827\) −35.0781 −1.21978 −0.609892 0.792485i \(-0.708787\pi\)
−0.609892 + 0.792485i \(0.708787\pi\)
\(828\) 0 0
\(829\) 18.9077 0.656690 0.328345 0.944558i \(-0.393509\pi\)
0.328345 + 0.944558i \(0.393509\pi\)
\(830\) 0 0
\(831\) −18.9382 −0.656960
\(832\) 0 0
\(833\) −15.7418 −0.545419
\(834\) 0 0
\(835\) 23.1842 0.802323
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) 39.5274 1.36464 0.682319 0.731054i \(-0.260971\pi\)
0.682319 + 0.731054i \(0.260971\pi\)
\(840\) 0 0
\(841\) 65.8627 2.27113
\(842\) 0 0
\(843\) −12.9175 −0.444902
\(844\) 0 0
\(845\) 12.9541 0.445633
\(846\) 0 0
\(847\) −16.8968 −0.580579
\(848\) 0 0
\(849\) 26.5827 0.912317
\(850\) 0 0
\(851\) 33.3876 1.14451
\(852\) 0 0
\(853\) 41.8894 1.43427 0.717133 0.696937i \(-0.245454\pi\)
0.717133 + 0.696937i \(0.245454\pi\)
\(854\) 0 0
\(855\) 1.80642 0.0617784
\(856\) 0 0
\(857\) 43.2859 1.47862 0.739309 0.673366i \(-0.235152\pi\)
0.739309 + 0.673366i \(0.235152\pi\)
\(858\) 0 0
\(859\) 49.6513 1.69408 0.847040 0.531530i \(-0.178383\pi\)
0.847040 + 0.531530i \(0.178383\pi\)
\(860\) 0 0
\(861\) 11.9081 0.405828
\(862\) 0 0
\(863\) 31.6958 1.07894 0.539469 0.842005i \(-0.318625\pi\)
0.539469 + 0.842005i \(0.318625\pi\)
\(864\) 0 0
\(865\) −1.57136 −0.0534279
\(866\) 0 0
\(867\) 4.57136 0.155252
\(868\) 0 0
\(869\) −3.23459 −0.109726
\(870\) 0 0
\(871\) 0.445992 0.0151119
\(872\) 0 0
\(873\) 6.91750 0.234122
\(874\) 0 0
\(875\) −1.59210 −0.0538229
\(876\) 0 0
\(877\) −24.0000 −0.810422 −0.405211 0.914223i \(-0.632802\pi\)
−0.405211 + 0.914223i \(0.632802\pi\)
\(878\) 0 0
\(879\) 7.99555 0.269683
\(880\) 0 0
\(881\) −45.6577 −1.53825 −0.769124 0.639100i \(-0.779307\pi\)
−0.769124 + 0.639100i \(0.779307\pi\)
\(882\) 0 0
\(883\) −7.63158 −0.256823 −0.128412 0.991721i \(-0.540988\pi\)
−0.128412 + 0.991721i \(0.540988\pi\)
\(884\) 0 0
\(885\) 4.26025 0.143207
\(886\) 0 0
\(887\) −13.9541 −0.468532 −0.234266 0.972173i \(-0.575269\pi\)
−0.234266 + 0.972173i \(0.575269\pi\)
\(888\) 0 0
\(889\) −21.7690 −0.730107
\(890\) 0 0
\(891\) −0.622216 −0.0208450
\(892\) 0 0
\(893\) 20.7110 0.693068
\(894\) 0 0
\(895\) 1.53972 0.0514671
\(896\) 0 0
\(897\) 1.47949 0.0493989
\(898\) 0 0
\(899\) 9.73975 0.324839
\(900\) 0 0
\(901\) 48.5116 1.61616
\(902\) 0 0
\(903\) 13.1111 0.436309
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) −50.6242 −1.68095 −0.840475 0.541851i \(-0.817724\pi\)
−0.840475 + 0.541851i \(0.817724\pi\)
\(908\) 0 0
\(909\) −9.28592 −0.307994
\(910\) 0 0
\(911\) −40.5847 −1.34463 −0.672316 0.740264i \(-0.734700\pi\)
−0.672316 + 0.740264i \(0.734700\pi\)
\(912\) 0 0
\(913\) −3.52098 −0.116527
\(914\) 0 0
\(915\) 2.85728 0.0944587
\(916\) 0 0
\(917\) 35.4563 1.17087
\(918\) 0 0
\(919\) −53.3274 −1.75911 −0.879554 0.475798i \(-0.842159\pi\)
−0.879554 + 0.475798i \(0.842159\pi\)
\(920\) 0 0
\(921\) −17.3669 −0.572258
\(922\) 0 0
\(923\) −0.280996 −0.00924911
\(924\) 0 0
\(925\) −4.83654 −0.159024
\(926\) 0 0
\(927\) −0.274543 −0.00901717
\(928\) 0 0
\(929\) 4.67905 0.153515 0.0767573 0.997050i \(-0.475543\pi\)
0.0767573 + 0.997050i \(0.475543\pi\)
\(930\) 0 0
\(931\) 8.06605 0.264354
\(932\) 0 0
\(933\) −27.5877 −0.903179
\(934\) 0 0
\(935\) 2.19358 0.0717376
\(936\) 0 0
\(937\) −19.8952 −0.649949 −0.324974 0.945723i \(-0.605356\pi\)
−0.324974 + 0.945723i \(0.605356\pi\)
\(938\) 0 0
\(939\) 13.7255 0.447913
\(940\) 0 0
\(941\) −1.27946 −0.0417094 −0.0208547 0.999783i \(-0.506639\pi\)
−0.0208547 + 0.999783i \(0.506639\pi\)
\(942\) 0 0
\(943\) 51.6325 1.68139
\(944\) 0 0
\(945\) 1.59210 0.0517912
\(946\) 0 0
\(947\) 35.6686 1.15907 0.579537 0.814946i \(-0.303233\pi\)
0.579537 + 0.814946i \(0.303233\pi\)
\(948\) 0 0
\(949\) −0.354126 −0.0114954
\(950\) 0 0
\(951\) 24.9447 0.808887
\(952\) 0 0
\(953\) 39.7832 1.28871 0.644353 0.764728i \(-0.277127\pi\)
0.644353 + 0.764728i \(0.277127\pi\)
\(954\) 0 0
\(955\) 9.11753 0.295036
\(956\) 0 0
\(957\) 6.06022 0.195899
\(958\) 0 0
\(959\) −28.9590 −0.935135
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 8.18913 0.263891
\(964\) 0 0
\(965\) 4.72393 0.152069
\(966\) 0 0
\(967\) 52.9304 1.70213 0.851064 0.525063i \(-0.175958\pi\)
0.851064 + 0.525063i \(0.175958\pi\)
\(968\) 0 0
\(969\) 6.36842 0.204583
\(970\) 0 0
\(971\) 54.9624 1.76383 0.881913 0.471412i \(-0.156255\pi\)
0.881913 + 0.471412i \(0.156255\pi\)
\(972\) 0 0
\(973\) 6.58073 0.210968
\(974\) 0 0
\(975\) −0.214320 −0.00686372
\(976\) 0 0
\(977\) 2.97773 0.0952659 0.0476329 0.998865i \(-0.484832\pi\)
0.0476329 + 0.998865i \(0.484832\pi\)
\(978\) 0 0
\(979\) 1.20294 0.0384463
\(980\) 0 0
\(981\) −9.13828 −0.291763
\(982\) 0 0
\(983\) 26.9876 0.860770 0.430385 0.902645i \(-0.358378\pi\)
0.430385 + 0.902645i \(0.358378\pi\)
\(984\) 0 0
\(985\) −15.7003 −0.500252
\(986\) 0 0
\(987\) 18.2538 0.581025
\(988\) 0 0
\(989\) 56.8484 1.80767
\(990\) 0 0
\(991\) −0.520505 −0.0165344 −0.00826720 0.999966i \(-0.502632\pi\)
−0.00826720 + 0.999966i \(0.502632\pi\)
\(992\) 0 0
\(993\) 19.1798 0.608651
\(994\) 0 0
\(995\) 6.28100 0.199121
\(996\) 0 0
\(997\) −25.2128 −0.798497 −0.399249 0.916843i \(-0.630729\pi\)
−0.399249 + 0.916843i \(0.630729\pi\)
\(998\) 0 0
\(999\) 4.83654 0.153021
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bm.1.3 3
4.3 odd 2 465.2.a.g.1.1 3
12.11 even 2 1395.2.a.h.1.3 3
20.3 even 4 2325.2.c.l.1024.4 6
20.7 even 4 2325.2.c.l.1024.3 6
20.19 odd 2 2325.2.a.p.1.3 3
60.59 even 2 6975.2.a.bi.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.g.1.1 3 4.3 odd 2
1395.2.a.h.1.3 3 12.11 even 2
2325.2.a.p.1.3 3 20.19 odd 2
2325.2.c.l.1024.3 6 20.7 even 4
2325.2.c.l.1024.4 6 20.3 even 4
6975.2.a.bi.1.1 3 60.59 even 2
7440.2.a.bm.1.3 3 1.1 even 1 trivial