Properties

Label 7440.2.a.bm.1.2
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7440,2,Mod(1,7440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} +1.28726 q^{7} +1.00000 q^{9} +2.96239 q^{11} -3.67513 q^{13} +1.00000 q^{15} -2.15633 q^{17} +2.38787 q^{19} -1.28726 q^{21} -4.80606 q^{23} +1.00000 q^{25} -1.00000 q^{27} +0.168544 q^{29} +1.00000 q^{31} -2.96239 q^{33} -1.28726 q^{35} +2.63752 q^{37} +3.67513 q^{39} +11.6629 q^{41} +3.73813 q^{43} -1.00000 q^{45} -12.3430 q^{47} -5.34297 q^{49} +2.15633 q^{51} -3.89446 q^{53} -2.96239 q^{55} -2.38787 q^{57} +13.8315 q^{59} -12.7005 q^{61} +1.28726 q^{63} +3.67513 q^{65} -12.5623 q^{67} +4.80606 q^{69} +0.481194 q^{71} +5.21203 q^{73} -1.00000 q^{75} +3.81336 q^{77} -15.4314 q^{79} +1.00000 q^{81} +10.7308 q^{83} +2.15633 q^{85} -0.168544 q^{87} +3.44358 q^{89} -4.73084 q^{91} -1.00000 q^{93} -2.38787 q^{95} -15.1998 q^{97} +2.96239 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 3 q^{5} - 2 q^{7} + 3 q^{9} - 2 q^{11} - 6 q^{13} + 3 q^{15} + 4 q^{17} + 8 q^{19} + 2 q^{21} - 14 q^{23} + 3 q^{25} - 3 q^{27} + 16 q^{29} + 3 q^{31} + 2 q^{33} + 2 q^{35} - 8 q^{37} + 6 q^{39}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.28726 0.486538 0.243269 0.969959i \(-0.421780\pi\)
0.243269 + 0.969959i \(0.421780\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.96239 0.893194 0.446597 0.894735i \(-0.352636\pi\)
0.446597 + 0.894735i \(0.352636\pi\)
\(12\) 0 0
\(13\) −3.67513 −1.01930 −0.509649 0.860382i \(-0.670225\pi\)
−0.509649 + 0.860382i \(0.670225\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −2.15633 −0.522986 −0.261493 0.965205i \(-0.584215\pi\)
−0.261493 + 0.965205i \(0.584215\pi\)
\(18\) 0 0
\(19\) 2.38787 0.547816 0.273908 0.961756i \(-0.411684\pi\)
0.273908 + 0.961756i \(0.411684\pi\)
\(20\) 0 0
\(21\) −1.28726 −0.280903
\(22\) 0 0
\(23\) −4.80606 −1.00213 −0.501067 0.865409i \(-0.667059\pi\)
−0.501067 + 0.865409i \(0.667059\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0.168544 0.0312978 0.0156489 0.999878i \(-0.495019\pi\)
0.0156489 + 0.999878i \(0.495019\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −2.96239 −0.515686
\(34\) 0 0
\(35\) −1.28726 −0.217586
\(36\) 0 0
\(37\) 2.63752 0.433606 0.216803 0.976215i \(-0.430437\pi\)
0.216803 + 0.976215i \(0.430437\pi\)
\(38\) 0 0
\(39\) 3.67513 0.588492
\(40\) 0 0
\(41\) 11.6629 1.82144 0.910720 0.413023i \(-0.135527\pi\)
0.910720 + 0.413023i \(0.135527\pi\)
\(42\) 0 0
\(43\) 3.73813 0.570060 0.285030 0.958519i \(-0.407996\pi\)
0.285030 + 0.958519i \(0.407996\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −12.3430 −1.80041 −0.900203 0.435470i \(-0.856582\pi\)
−0.900203 + 0.435470i \(0.856582\pi\)
\(48\) 0 0
\(49\) −5.34297 −0.763281
\(50\) 0 0
\(51\) 2.15633 0.301946
\(52\) 0 0
\(53\) −3.89446 −0.534945 −0.267473 0.963565i \(-0.586188\pi\)
−0.267473 + 0.963565i \(0.586188\pi\)
\(54\) 0 0
\(55\) −2.96239 −0.399448
\(56\) 0 0
\(57\) −2.38787 −0.316282
\(58\) 0 0
\(59\) 13.8315 1.80070 0.900351 0.435164i \(-0.143310\pi\)
0.900351 + 0.435164i \(0.143310\pi\)
\(60\) 0 0
\(61\) −12.7005 −1.62614 −0.813068 0.582169i \(-0.802204\pi\)
−0.813068 + 0.582169i \(0.802204\pi\)
\(62\) 0 0
\(63\) 1.28726 0.162179
\(64\) 0 0
\(65\) 3.67513 0.455844
\(66\) 0 0
\(67\) −12.5623 −1.53473 −0.767364 0.641211i \(-0.778432\pi\)
−0.767364 + 0.641211i \(0.778432\pi\)
\(68\) 0 0
\(69\) 4.80606 0.578582
\(70\) 0 0
\(71\) 0.481194 0.0571073 0.0285536 0.999592i \(-0.490910\pi\)
0.0285536 + 0.999592i \(0.490910\pi\)
\(72\) 0 0
\(73\) 5.21203 0.610023 0.305011 0.952349i \(-0.401340\pi\)
0.305011 + 0.952349i \(0.401340\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 3.81336 0.434572
\(78\) 0 0
\(79\) −15.4314 −1.73616 −0.868082 0.496421i \(-0.834647\pi\)
−0.868082 + 0.496421i \(0.834647\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.7308 1.17786 0.588931 0.808183i \(-0.299549\pi\)
0.588931 + 0.808183i \(0.299549\pi\)
\(84\) 0 0
\(85\) 2.15633 0.233886
\(86\) 0 0
\(87\) −0.168544 −0.0180698
\(88\) 0 0
\(89\) 3.44358 0.365019 0.182510 0.983204i \(-0.441578\pi\)
0.182510 + 0.983204i \(0.441578\pi\)
\(90\) 0 0
\(91\) −4.73084 −0.495927
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) −2.38787 −0.244991
\(96\) 0 0
\(97\) −15.1998 −1.54331 −0.771654 0.636043i \(-0.780570\pi\)
−0.771654 + 0.636043i \(0.780570\pi\)
\(98\) 0 0
\(99\) 2.96239 0.297731
\(100\) 0 0
\(101\) 14.0508 1.39811 0.699053 0.715070i \(-0.253605\pi\)
0.699053 + 0.715070i \(0.253605\pi\)
\(102\) 0 0
\(103\) 10.1744 1.00252 0.501258 0.865298i \(-0.332871\pi\)
0.501258 + 0.865298i \(0.332871\pi\)
\(104\) 0 0
\(105\) 1.28726 0.125623
\(106\) 0 0
\(107\) −17.2447 −1.66711 −0.833555 0.552436i \(-0.813698\pi\)
−0.833555 + 0.552436i \(0.813698\pi\)
\(108\) 0 0
\(109\) 4.93207 0.472407 0.236203 0.971704i \(-0.424097\pi\)
0.236203 + 0.971704i \(0.424097\pi\)
\(110\) 0 0
\(111\) −2.63752 −0.250342
\(112\) 0 0
\(113\) −7.27504 −0.684378 −0.342189 0.939631i \(-0.611168\pi\)
−0.342189 + 0.939631i \(0.611168\pi\)
\(114\) 0 0
\(115\) 4.80606 0.448168
\(116\) 0 0
\(117\) −3.67513 −0.339766
\(118\) 0 0
\(119\) −2.77575 −0.254452
\(120\) 0 0
\(121\) −2.22425 −0.202205
\(122\) 0 0
\(123\) −11.6629 −1.05161
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 1.27504 0.113141 0.0565707 0.998399i \(-0.481983\pi\)
0.0565707 + 0.998399i \(0.481983\pi\)
\(128\) 0 0
\(129\) −3.73813 −0.329124
\(130\) 0 0
\(131\) −17.8070 −1.55581 −0.777903 0.628384i \(-0.783717\pi\)
−0.777903 + 0.628384i \(0.783717\pi\)
\(132\) 0 0
\(133\) 3.07381 0.266533
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 7.24472 0.618958 0.309479 0.950906i \(-0.399845\pi\)
0.309479 + 0.950906i \(0.399845\pi\)
\(138\) 0 0
\(139\) 14.8872 1.26271 0.631356 0.775493i \(-0.282498\pi\)
0.631356 + 0.775493i \(0.282498\pi\)
\(140\) 0 0
\(141\) 12.3430 1.03947
\(142\) 0 0
\(143\) −10.8872 −0.910431
\(144\) 0 0
\(145\) −0.168544 −0.0139968
\(146\) 0 0
\(147\) 5.34297 0.440681
\(148\) 0 0
\(149\) −5.73813 −0.470086 −0.235043 0.971985i \(-0.575523\pi\)
−0.235043 + 0.971985i \(0.575523\pi\)
\(150\) 0 0
\(151\) 12.8568 1.04628 0.523138 0.852248i \(-0.324761\pi\)
0.523138 + 0.852248i \(0.324761\pi\)
\(152\) 0 0
\(153\) −2.15633 −0.174329
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) 1.73813 0.138718 0.0693591 0.997592i \(-0.477905\pi\)
0.0693591 + 0.997592i \(0.477905\pi\)
\(158\) 0 0
\(159\) 3.89446 0.308851
\(160\) 0 0
\(161\) −6.18664 −0.487576
\(162\) 0 0
\(163\) 6.45088 0.505272 0.252636 0.967561i \(-0.418703\pi\)
0.252636 + 0.967561i \(0.418703\pi\)
\(164\) 0 0
\(165\) 2.96239 0.230622
\(166\) 0 0
\(167\) −22.5745 −1.74687 −0.873434 0.486942i \(-0.838112\pi\)
−0.873434 + 0.486942i \(0.838112\pi\)
\(168\) 0 0
\(169\) 0.506587 0.0389682
\(170\) 0 0
\(171\) 2.38787 0.182605
\(172\) 0 0
\(173\) 9.35026 0.710887 0.355444 0.934698i \(-0.384330\pi\)
0.355444 + 0.934698i \(0.384330\pi\)
\(174\) 0 0
\(175\) 1.28726 0.0973075
\(176\) 0 0
\(177\) −13.8315 −1.03964
\(178\) 0 0
\(179\) 24.1622 1.80597 0.902984 0.429674i \(-0.141372\pi\)
0.902984 + 0.429674i \(0.141372\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 12.7005 0.938850
\(184\) 0 0
\(185\) −2.63752 −0.193914
\(186\) 0 0
\(187\) −6.38787 −0.467128
\(188\) 0 0
\(189\) −1.28726 −0.0936342
\(190\) 0 0
\(191\) −3.13093 −0.226546 −0.113273 0.993564i \(-0.536134\pi\)
−0.113273 + 0.993564i \(0.536134\pi\)
\(192\) 0 0
\(193\) 21.5877 1.55392 0.776958 0.629553i \(-0.216762\pi\)
0.776958 + 0.629553i \(0.216762\pi\)
\(194\) 0 0
\(195\) −3.67513 −0.263182
\(196\) 0 0
\(197\) 4.60483 0.328081 0.164040 0.986454i \(-0.447547\pi\)
0.164040 + 0.986454i \(0.447547\pi\)
\(198\) 0 0
\(199\) −7.76845 −0.550691 −0.275345 0.961345i \(-0.588792\pi\)
−0.275345 + 0.961345i \(0.588792\pi\)
\(200\) 0 0
\(201\) 12.5623 0.886076
\(202\) 0 0
\(203\) 0.216960 0.0152276
\(204\) 0 0
\(205\) −11.6629 −0.814573
\(206\) 0 0
\(207\) −4.80606 −0.334045
\(208\) 0 0
\(209\) 7.07381 0.489306
\(210\) 0 0
\(211\) −0.337088 −0.0232061 −0.0116030 0.999933i \(-0.503693\pi\)
−0.0116030 + 0.999933i \(0.503693\pi\)
\(212\) 0 0
\(213\) −0.481194 −0.0329709
\(214\) 0 0
\(215\) −3.73813 −0.254939
\(216\) 0 0
\(217\) 1.28726 0.0873847
\(218\) 0 0
\(219\) −5.21203 −0.352197
\(220\) 0 0
\(221\) 7.92478 0.533078
\(222\) 0 0
\(223\) 2.83638 0.189938 0.0949690 0.995480i \(-0.469725\pi\)
0.0949690 + 0.995480i \(0.469725\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 17.3054 1.14860 0.574298 0.818646i \(-0.305275\pi\)
0.574298 + 0.818646i \(0.305275\pi\)
\(228\) 0 0
\(229\) −25.1998 −1.66525 −0.832625 0.553837i \(-0.813163\pi\)
−0.832625 + 0.553837i \(0.813163\pi\)
\(230\) 0 0
\(231\) −3.81336 −0.250901
\(232\) 0 0
\(233\) −4.08110 −0.267362 −0.133681 0.991024i \(-0.542680\pi\)
−0.133681 + 0.991024i \(0.542680\pi\)
\(234\) 0 0
\(235\) 12.3430 0.805166
\(236\) 0 0
\(237\) 15.4314 1.00237
\(238\) 0 0
\(239\) −9.07381 −0.586936 −0.293468 0.955969i \(-0.594809\pi\)
−0.293468 + 0.955969i \(0.594809\pi\)
\(240\) 0 0
\(241\) −21.9149 −1.41166 −0.705832 0.708379i \(-0.749427\pi\)
−0.705832 + 0.708379i \(0.749427\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 5.34297 0.341350
\(246\) 0 0
\(247\) −8.77575 −0.558387
\(248\) 0 0
\(249\) −10.7308 −0.680039
\(250\) 0 0
\(251\) −8.83638 −0.557747 −0.278874 0.960328i \(-0.589961\pi\)
−0.278874 + 0.960328i \(0.589961\pi\)
\(252\) 0 0
\(253\) −14.2374 −0.895099
\(254\) 0 0
\(255\) −2.15633 −0.135034
\(256\) 0 0
\(257\) 10.7816 0.672539 0.336270 0.941766i \(-0.390835\pi\)
0.336270 + 0.941766i \(0.390835\pi\)
\(258\) 0 0
\(259\) 3.39517 0.210965
\(260\) 0 0
\(261\) 0.168544 0.0104326
\(262\) 0 0
\(263\) −21.2144 −1.30814 −0.654068 0.756436i \(-0.726939\pi\)
−0.654068 + 0.756436i \(0.726939\pi\)
\(264\) 0 0
\(265\) 3.89446 0.239235
\(266\) 0 0
\(267\) −3.44358 −0.210744
\(268\) 0 0
\(269\) −16.6072 −1.01256 −0.506279 0.862369i \(-0.668980\pi\)
−0.506279 + 0.862369i \(0.668980\pi\)
\(270\) 0 0
\(271\) −22.8872 −1.39030 −0.695148 0.718866i \(-0.744661\pi\)
−0.695148 + 0.718866i \(0.744661\pi\)
\(272\) 0 0
\(273\) 4.73084 0.286324
\(274\) 0 0
\(275\) 2.96239 0.178639
\(276\) 0 0
\(277\) −11.2628 −0.676717 −0.338359 0.941017i \(-0.609872\pi\)
−0.338359 + 0.941017i \(0.609872\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −9.19982 −0.548815 −0.274408 0.961613i \(-0.588482\pi\)
−0.274408 + 0.961613i \(0.588482\pi\)
\(282\) 0 0
\(283\) −21.4739 −1.27649 −0.638245 0.769833i \(-0.720339\pi\)
−0.638245 + 0.769833i \(0.720339\pi\)
\(284\) 0 0
\(285\) 2.38787 0.141445
\(286\) 0 0
\(287\) 15.0132 0.886200
\(288\) 0 0
\(289\) −12.3503 −0.726486
\(290\) 0 0
\(291\) 15.1998 0.891029
\(292\) 0 0
\(293\) 21.6326 1.26379 0.631895 0.775054i \(-0.282277\pi\)
0.631895 + 0.775054i \(0.282277\pi\)
\(294\) 0 0
\(295\) −13.8315 −0.805299
\(296\) 0 0
\(297\) −2.96239 −0.171895
\(298\) 0 0
\(299\) 17.6629 1.02147
\(300\) 0 0
\(301\) 4.81194 0.277356
\(302\) 0 0
\(303\) −14.0508 −0.807197
\(304\) 0 0
\(305\) 12.7005 0.727230
\(306\) 0 0
\(307\) −20.6131 −1.17645 −0.588225 0.808697i \(-0.700173\pi\)
−0.588225 + 0.808697i \(0.700173\pi\)
\(308\) 0 0
\(309\) −10.1744 −0.578803
\(310\) 0 0
\(311\) −2.34534 −0.132992 −0.0664959 0.997787i \(-0.521182\pi\)
−0.0664959 + 0.997787i \(0.521182\pi\)
\(312\) 0 0
\(313\) −24.1744 −1.36642 −0.683210 0.730222i \(-0.739416\pi\)
−0.683210 + 0.730222i \(0.739416\pi\)
\(314\) 0 0
\(315\) −1.28726 −0.0725288
\(316\) 0 0
\(317\) −6.68006 −0.375189 −0.187595 0.982247i \(-0.560069\pi\)
−0.187595 + 0.982247i \(0.560069\pi\)
\(318\) 0 0
\(319\) 0.499293 0.0279550
\(320\) 0 0
\(321\) 17.2447 0.962507
\(322\) 0 0
\(323\) −5.14903 −0.286500
\(324\) 0 0
\(325\) −3.67513 −0.203860
\(326\) 0 0
\(327\) −4.93207 −0.272744
\(328\) 0 0
\(329\) −15.8886 −0.875966
\(330\) 0 0
\(331\) 11.0581 0.607807 0.303904 0.952703i \(-0.401710\pi\)
0.303904 + 0.952703i \(0.401710\pi\)
\(332\) 0 0
\(333\) 2.63752 0.144535
\(334\) 0 0
\(335\) 12.5623 0.686352
\(336\) 0 0
\(337\) 6.11379 0.333039 0.166520 0.986038i \(-0.446747\pi\)
0.166520 + 0.986038i \(0.446747\pi\)
\(338\) 0 0
\(339\) 7.27504 0.395126
\(340\) 0 0
\(341\) 2.96239 0.160422
\(342\) 0 0
\(343\) −15.8886 −0.857903
\(344\) 0 0
\(345\) −4.80606 −0.258750
\(346\) 0 0
\(347\) −31.5731 −1.69493 −0.847466 0.530849i \(-0.821873\pi\)
−0.847466 + 0.530849i \(0.821873\pi\)
\(348\) 0 0
\(349\) −14.0811 −0.753744 −0.376872 0.926265i \(-0.623000\pi\)
−0.376872 + 0.926265i \(0.623000\pi\)
\(350\) 0 0
\(351\) 3.67513 0.196164
\(352\) 0 0
\(353\) −29.8554 −1.58904 −0.794522 0.607235i \(-0.792279\pi\)
−0.794522 + 0.607235i \(0.792279\pi\)
\(354\) 0 0
\(355\) −0.481194 −0.0255391
\(356\) 0 0
\(357\) 2.77575 0.146908
\(358\) 0 0
\(359\) −8.74306 −0.461441 −0.230721 0.973020i \(-0.574108\pi\)
−0.230721 + 0.973020i \(0.574108\pi\)
\(360\) 0 0
\(361\) −13.2981 −0.699898
\(362\) 0 0
\(363\) 2.22425 0.116743
\(364\) 0 0
\(365\) −5.21203 −0.272810
\(366\) 0 0
\(367\) −21.4010 −1.11713 −0.558563 0.829462i \(-0.688647\pi\)
−0.558563 + 0.829462i \(0.688647\pi\)
\(368\) 0 0
\(369\) 11.6629 0.607147
\(370\) 0 0
\(371\) −5.01317 −0.260271
\(372\) 0 0
\(373\) 15.0640 0.779982 0.389991 0.920819i \(-0.372478\pi\)
0.389991 + 0.920819i \(0.372478\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −0.619421 −0.0319018
\(378\) 0 0
\(379\) 2.91160 0.149559 0.0747795 0.997200i \(-0.476175\pi\)
0.0747795 + 0.997200i \(0.476175\pi\)
\(380\) 0 0
\(381\) −1.27504 −0.0653222
\(382\) 0 0
\(383\) 9.83383 0.502485 0.251243 0.967924i \(-0.419161\pi\)
0.251243 + 0.967924i \(0.419161\pi\)
\(384\) 0 0
\(385\) −3.81336 −0.194347
\(386\) 0 0
\(387\) 3.73813 0.190020
\(388\) 0 0
\(389\) 24.0082 1.21727 0.608633 0.793452i \(-0.291718\pi\)
0.608633 + 0.793452i \(0.291718\pi\)
\(390\) 0 0
\(391\) 10.3634 0.524101
\(392\) 0 0
\(393\) 17.8070 0.898245
\(394\) 0 0
\(395\) 15.4314 0.776436
\(396\) 0 0
\(397\) −17.6873 −0.887703 −0.443851 0.896100i \(-0.646388\pi\)
−0.443851 + 0.896100i \(0.646388\pi\)
\(398\) 0 0
\(399\) −3.07381 −0.153883
\(400\) 0 0
\(401\) −33.6204 −1.67892 −0.839461 0.543420i \(-0.817129\pi\)
−0.839461 + 0.543420i \(0.817129\pi\)
\(402\) 0 0
\(403\) −3.67513 −0.183071
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 7.81336 0.387294
\(408\) 0 0
\(409\) −17.2243 −0.851685 −0.425842 0.904797i \(-0.640022\pi\)
−0.425842 + 0.904797i \(0.640022\pi\)
\(410\) 0 0
\(411\) −7.24472 −0.357356
\(412\) 0 0
\(413\) 17.8046 0.876109
\(414\) 0 0
\(415\) −10.7308 −0.526756
\(416\) 0 0
\(417\) −14.8872 −0.729028
\(418\) 0 0
\(419\) −8.79384 −0.429607 −0.214804 0.976657i \(-0.568911\pi\)
−0.214804 + 0.976657i \(0.568911\pi\)
\(420\) 0 0
\(421\) −2.26774 −0.110523 −0.0552616 0.998472i \(-0.517599\pi\)
−0.0552616 + 0.998472i \(0.517599\pi\)
\(422\) 0 0
\(423\) −12.3430 −0.600136
\(424\) 0 0
\(425\) −2.15633 −0.104597
\(426\) 0 0
\(427\) −16.3488 −0.791176
\(428\) 0 0
\(429\) 10.8872 0.525637
\(430\) 0 0
\(431\) 12.9805 0.625248 0.312624 0.949877i \(-0.398792\pi\)
0.312624 + 0.949877i \(0.398792\pi\)
\(432\) 0 0
\(433\) −10.2642 −0.493268 −0.246634 0.969109i \(-0.579324\pi\)
−0.246634 + 0.969109i \(0.579324\pi\)
\(434\) 0 0
\(435\) 0.168544 0.00808106
\(436\) 0 0
\(437\) −11.4763 −0.548984
\(438\) 0 0
\(439\) 21.4010 1.02142 0.510708 0.859754i \(-0.329383\pi\)
0.510708 + 0.859754i \(0.329383\pi\)
\(440\) 0 0
\(441\) −5.34297 −0.254427
\(442\) 0 0
\(443\) 32.5705 1.54747 0.773737 0.633507i \(-0.218385\pi\)
0.773737 + 0.633507i \(0.218385\pi\)
\(444\) 0 0
\(445\) −3.44358 −0.163241
\(446\) 0 0
\(447\) 5.73813 0.271404
\(448\) 0 0
\(449\) −32.3209 −1.52532 −0.762659 0.646801i \(-0.776106\pi\)
−0.762659 + 0.646801i \(0.776106\pi\)
\(450\) 0 0
\(451\) 34.5501 1.62690
\(452\) 0 0
\(453\) −12.8568 −0.604067
\(454\) 0 0
\(455\) 4.73084 0.221785
\(456\) 0 0
\(457\) −20.7734 −0.971738 −0.485869 0.874032i \(-0.661497\pi\)
−0.485869 + 0.874032i \(0.661497\pi\)
\(458\) 0 0
\(459\) 2.15633 0.100649
\(460\) 0 0
\(461\) −12.4206 −0.578483 −0.289242 0.957256i \(-0.593403\pi\)
−0.289242 + 0.957256i \(0.593403\pi\)
\(462\) 0 0
\(463\) 0.424070 0.0197082 0.00985410 0.999951i \(-0.496863\pi\)
0.00985410 + 0.999951i \(0.496863\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) 14.2677 0.660232 0.330116 0.943940i \(-0.392912\pi\)
0.330116 + 0.943940i \(0.392912\pi\)
\(468\) 0 0
\(469\) −16.1709 −0.746703
\(470\) 0 0
\(471\) −1.73813 −0.0800890
\(472\) 0 0
\(473\) 11.0738 0.509174
\(474\) 0 0
\(475\) 2.38787 0.109563
\(476\) 0 0
\(477\) −3.89446 −0.178315
\(478\) 0 0
\(479\) 30.8691 1.41044 0.705222 0.708987i \(-0.250847\pi\)
0.705222 + 0.708987i \(0.250847\pi\)
\(480\) 0 0
\(481\) −9.69323 −0.441973
\(482\) 0 0
\(483\) 6.18664 0.281502
\(484\) 0 0
\(485\) 15.1998 0.690188
\(486\) 0 0
\(487\) −10.5139 −0.476429 −0.238215 0.971213i \(-0.576562\pi\)
−0.238215 + 0.971213i \(0.576562\pi\)
\(488\) 0 0
\(489\) −6.45088 −0.291719
\(490\) 0 0
\(491\) −10.5139 −0.474485 −0.237242 0.971450i \(-0.576244\pi\)
−0.237242 + 0.971450i \(0.576244\pi\)
\(492\) 0 0
\(493\) −0.363436 −0.0163683
\(494\) 0 0
\(495\) −2.96239 −0.133149
\(496\) 0 0
\(497\) 0.619421 0.0277848
\(498\) 0 0
\(499\) −30.5501 −1.36761 −0.683805 0.729665i \(-0.739676\pi\)
−0.683805 + 0.729665i \(0.739676\pi\)
\(500\) 0 0
\(501\) 22.5745 1.00855
\(502\) 0 0
\(503\) −0.493413 −0.0220002 −0.0110001 0.999939i \(-0.503502\pi\)
−0.0110001 + 0.999939i \(0.503502\pi\)
\(504\) 0 0
\(505\) −14.0508 −0.625252
\(506\) 0 0
\(507\) −0.506587 −0.0224983
\(508\) 0 0
\(509\) −18.7285 −0.830125 −0.415062 0.909793i \(-0.636240\pi\)
−0.415062 + 0.909793i \(0.636240\pi\)
\(510\) 0 0
\(511\) 6.70923 0.296799
\(512\) 0 0
\(513\) −2.38787 −0.105427
\(514\) 0 0
\(515\) −10.1744 −0.448339
\(516\) 0 0
\(517\) −36.5647 −1.60811
\(518\) 0 0
\(519\) −9.35026 −0.410431
\(520\) 0 0
\(521\) 0.589104 0.0258091 0.0129046 0.999917i \(-0.495892\pi\)
0.0129046 + 0.999917i \(0.495892\pi\)
\(522\) 0 0
\(523\) 9.48612 0.414799 0.207400 0.978256i \(-0.433500\pi\)
0.207400 + 0.978256i \(0.433500\pi\)
\(524\) 0 0
\(525\) −1.28726 −0.0561805
\(526\) 0 0
\(527\) −2.15633 −0.0939310
\(528\) 0 0
\(529\) 0.0982457 0.00427155
\(530\) 0 0
\(531\) 13.8315 0.600234
\(532\) 0 0
\(533\) −42.8627 −1.85659
\(534\) 0 0
\(535\) 17.2447 0.745554
\(536\) 0 0
\(537\) −24.1622 −1.04268
\(538\) 0 0
\(539\) −15.8279 −0.681758
\(540\) 0 0
\(541\) −0.493413 −0.0212135 −0.0106067 0.999944i \(-0.503376\pi\)
−0.0106067 + 0.999944i \(0.503376\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) −4.93207 −0.211267
\(546\) 0 0
\(547\) −25.8011 −1.10318 −0.551589 0.834116i \(-0.685978\pi\)
−0.551589 + 0.834116i \(0.685978\pi\)
\(548\) 0 0
\(549\) −12.7005 −0.542045
\(550\) 0 0
\(551\) 0.402462 0.0171454
\(552\) 0 0
\(553\) −19.8641 −0.844709
\(554\) 0 0
\(555\) 2.63752 0.111956
\(556\) 0 0
\(557\) 7.70782 0.326591 0.163295 0.986577i \(-0.447788\pi\)
0.163295 + 0.986577i \(0.447788\pi\)
\(558\) 0 0
\(559\) −13.7381 −0.581061
\(560\) 0 0
\(561\) 6.38787 0.269696
\(562\) 0 0
\(563\) −5.05334 −0.212973 −0.106486 0.994314i \(-0.533960\pi\)
−0.106486 + 0.994314i \(0.533960\pi\)
\(564\) 0 0
\(565\) 7.27504 0.306063
\(566\) 0 0
\(567\) 1.28726 0.0540597
\(568\) 0 0
\(569\) −13.2569 −0.555760 −0.277880 0.960616i \(-0.589632\pi\)
−0.277880 + 0.960616i \(0.589632\pi\)
\(570\) 0 0
\(571\) −23.6629 −0.990262 −0.495131 0.868818i \(-0.664880\pi\)
−0.495131 + 0.868818i \(0.664880\pi\)
\(572\) 0 0
\(573\) 3.13093 0.130797
\(574\) 0 0
\(575\) −4.80606 −0.200427
\(576\) 0 0
\(577\) 29.1002 1.21146 0.605728 0.795672i \(-0.292882\pi\)
0.605728 + 0.795672i \(0.292882\pi\)
\(578\) 0 0
\(579\) −21.5877 −0.897154
\(580\) 0 0
\(581\) 13.8134 0.573075
\(582\) 0 0
\(583\) −11.5369 −0.477810
\(584\) 0 0
\(585\) 3.67513 0.151948
\(586\) 0 0
\(587\) 34.2130 1.41212 0.706061 0.708151i \(-0.250471\pi\)
0.706061 + 0.708151i \(0.250471\pi\)
\(588\) 0 0
\(589\) 2.38787 0.0983906
\(590\) 0 0
\(591\) −4.60483 −0.189418
\(592\) 0 0
\(593\) −9.51247 −0.390630 −0.195315 0.980741i \(-0.562573\pi\)
−0.195315 + 0.980741i \(0.562573\pi\)
\(594\) 0 0
\(595\) 2.77575 0.113795
\(596\) 0 0
\(597\) 7.76845 0.317942
\(598\) 0 0
\(599\) −26.1343 −1.06782 −0.533908 0.845542i \(-0.679277\pi\)
−0.533908 + 0.845542i \(0.679277\pi\)
\(600\) 0 0
\(601\) 27.6483 1.12780 0.563899 0.825844i \(-0.309301\pi\)
0.563899 + 0.825844i \(0.309301\pi\)
\(602\) 0 0
\(603\) −12.5623 −0.511576
\(604\) 0 0
\(605\) 2.22425 0.0904288
\(606\) 0 0
\(607\) −45.0010 −1.82653 −0.913266 0.407363i \(-0.866448\pi\)
−0.913266 + 0.407363i \(0.866448\pi\)
\(608\) 0 0
\(609\) −0.216960 −0.00879164
\(610\) 0 0
\(611\) 45.3620 1.83515
\(612\) 0 0
\(613\) −8.84860 −0.357392 −0.178696 0.983904i \(-0.557188\pi\)
−0.178696 + 0.983904i \(0.557188\pi\)
\(614\) 0 0
\(615\) 11.6629 0.470294
\(616\) 0 0
\(617\) −41.5487 −1.67269 −0.836343 0.548206i \(-0.815311\pi\)
−0.836343 + 0.548206i \(0.815311\pi\)
\(618\) 0 0
\(619\) 2.49341 0.100219 0.0501094 0.998744i \(-0.484043\pi\)
0.0501094 + 0.998744i \(0.484043\pi\)
\(620\) 0 0
\(621\) 4.80606 0.192861
\(622\) 0 0
\(623\) 4.43278 0.177596
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −7.07381 −0.282501
\(628\) 0 0
\(629\) −5.68735 −0.226769
\(630\) 0 0
\(631\) −0.252016 −0.0100326 −0.00501630 0.999987i \(-0.501597\pi\)
−0.00501630 + 0.999987i \(0.501597\pi\)
\(632\) 0 0
\(633\) 0.337088 0.0133980
\(634\) 0 0
\(635\) −1.27504 −0.0505984
\(636\) 0 0
\(637\) 19.6361 0.778011
\(638\) 0 0
\(639\) 0.481194 0.0190358
\(640\) 0 0
\(641\) 28.7694 1.13632 0.568162 0.822917i \(-0.307655\pi\)
0.568162 + 0.822917i \(0.307655\pi\)
\(642\) 0 0
\(643\) −31.6629 −1.24866 −0.624332 0.781159i \(-0.714629\pi\)
−0.624332 + 0.781159i \(0.714629\pi\)
\(644\) 0 0
\(645\) 3.73813 0.147189
\(646\) 0 0
\(647\) 12.4142 0.488053 0.244027 0.969769i \(-0.421532\pi\)
0.244027 + 0.969769i \(0.421532\pi\)
\(648\) 0 0
\(649\) 40.9741 1.60838
\(650\) 0 0
\(651\) −1.28726 −0.0504516
\(652\) 0 0
\(653\) 43.7196 1.71088 0.855440 0.517903i \(-0.173287\pi\)
0.855440 + 0.517903i \(0.173287\pi\)
\(654\) 0 0
\(655\) 17.8070 0.695778
\(656\) 0 0
\(657\) 5.21203 0.203341
\(658\) 0 0
\(659\) 18.7431 0.730126 0.365063 0.930983i \(-0.381047\pi\)
0.365063 + 0.930983i \(0.381047\pi\)
\(660\) 0 0
\(661\) −39.2750 −1.52762 −0.763811 0.645440i \(-0.776674\pi\)
−0.763811 + 0.645440i \(0.776674\pi\)
\(662\) 0 0
\(663\) −7.92478 −0.307773
\(664\) 0 0
\(665\) −3.07381 −0.119197
\(666\) 0 0
\(667\) −0.810033 −0.0313646
\(668\) 0 0
\(669\) −2.83638 −0.109661
\(670\) 0 0
\(671\) −37.6239 −1.45245
\(672\) 0 0
\(673\) 2.03857 0.0785810 0.0392905 0.999228i \(-0.487490\pi\)
0.0392905 + 0.999228i \(0.487490\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 26.7572 1.02836 0.514181 0.857682i \(-0.328096\pi\)
0.514181 + 0.857682i \(0.328096\pi\)
\(678\) 0 0
\(679\) −19.5661 −0.750877
\(680\) 0 0
\(681\) −17.3054 −0.663143
\(682\) 0 0
\(683\) 30.1417 1.15334 0.576671 0.816977i \(-0.304352\pi\)
0.576671 + 0.816977i \(0.304352\pi\)
\(684\) 0 0
\(685\) −7.24472 −0.276807
\(686\) 0 0
\(687\) 25.1998 0.961433
\(688\) 0 0
\(689\) 14.3127 0.545269
\(690\) 0 0
\(691\) 17.6483 0.671374 0.335687 0.941974i \(-0.391032\pi\)
0.335687 + 0.941974i \(0.391032\pi\)
\(692\) 0 0
\(693\) 3.81336 0.144857
\(694\) 0 0
\(695\) −14.8872 −0.564702
\(696\) 0 0
\(697\) −25.1490 −0.952587
\(698\) 0 0
\(699\) 4.08110 0.154361
\(700\) 0 0
\(701\) −3.78892 −0.143106 −0.0715528 0.997437i \(-0.522795\pi\)
−0.0715528 + 0.997437i \(0.522795\pi\)
\(702\) 0 0
\(703\) 6.29806 0.237536
\(704\) 0 0
\(705\) −12.3430 −0.464863
\(706\) 0 0
\(707\) 18.0870 0.680231
\(708\) 0 0
\(709\) −21.8496 −0.820577 −0.410289 0.911956i \(-0.634572\pi\)
−0.410289 + 0.911956i \(0.634572\pi\)
\(710\) 0 0
\(711\) −15.4314 −0.578721
\(712\) 0 0
\(713\) −4.80606 −0.179988
\(714\) 0 0
\(715\) 10.8872 0.407157
\(716\) 0 0
\(717\) 9.07381 0.338868
\(718\) 0 0
\(719\) 11.9902 0.447157 0.223579 0.974686i \(-0.428226\pi\)
0.223579 + 0.974686i \(0.428226\pi\)
\(720\) 0 0
\(721\) 13.0971 0.487762
\(722\) 0 0
\(723\) 21.9149 0.815025
\(724\) 0 0
\(725\) 0.168544 0.00625957
\(726\) 0 0
\(727\) 24.6883 0.915639 0.457819 0.889045i \(-0.348631\pi\)
0.457819 + 0.889045i \(0.348631\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −8.06063 −0.298133
\(732\) 0 0
\(733\) 16.9525 0.626156 0.313078 0.949727i \(-0.398640\pi\)
0.313078 + 0.949727i \(0.398640\pi\)
\(734\) 0 0
\(735\) −5.34297 −0.197078
\(736\) 0 0
\(737\) −37.2144 −1.37081
\(738\) 0 0
\(739\) −27.0943 −0.996679 −0.498340 0.866982i \(-0.666057\pi\)
−0.498340 + 0.866982i \(0.666057\pi\)
\(740\) 0 0
\(741\) 8.77575 0.322385
\(742\) 0 0
\(743\) 18.9887 0.696629 0.348315 0.937378i \(-0.386754\pi\)
0.348315 + 0.937378i \(0.386754\pi\)
\(744\) 0 0
\(745\) 5.73813 0.210229
\(746\) 0 0
\(747\) 10.7308 0.392621
\(748\) 0 0
\(749\) −22.1984 −0.811112
\(750\) 0 0
\(751\) −15.2896 −0.557926 −0.278963 0.960302i \(-0.589991\pi\)
−0.278963 + 0.960302i \(0.589991\pi\)
\(752\) 0 0
\(753\) 8.83638 0.322016
\(754\) 0 0
\(755\) −12.8568 −0.467909
\(756\) 0 0
\(757\) 18.0386 0.655623 0.327811 0.944743i \(-0.393689\pi\)
0.327811 + 0.944743i \(0.393689\pi\)
\(758\) 0 0
\(759\) 14.2374 0.516786
\(760\) 0 0
\(761\) 19.5794 0.709754 0.354877 0.934913i \(-0.384523\pi\)
0.354877 + 0.934913i \(0.384523\pi\)
\(762\) 0 0
\(763\) 6.34885 0.229844
\(764\) 0 0
\(765\) 2.15633 0.0779621
\(766\) 0 0
\(767\) −50.8324 −1.83545
\(768\) 0 0
\(769\) 4.27759 0.154254 0.0771270 0.997021i \(-0.475425\pi\)
0.0771270 + 0.997021i \(0.475425\pi\)
\(770\) 0 0
\(771\) −10.7816 −0.388291
\(772\) 0 0
\(773\) 27.7685 0.998762 0.499381 0.866383i \(-0.333561\pi\)
0.499381 + 0.866383i \(0.333561\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −3.39517 −0.121801
\(778\) 0 0
\(779\) 27.8496 0.997814
\(780\) 0 0
\(781\) 1.42548 0.0510078
\(782\) 0 0
\(783\) −0.168544 −0.00602327
\(784\) 0 0
\(785\) −1.73813 −0.0620367
\(786\) 0 0
\(787\) 7.92478 0.282488 0.141244 0.989975i \(-0.454890\pi\)
0.141244 + 0.989975i \(0.454890\pi\)
\(788\) 0 0
\(789\) 21.2144 0.755253
\(790\) 0 0
\(791\) −9.36485 −0.332976
\(792\) 0 0
\(793\) 46.6761 1.65752
\(794\) 0 0
\(795\) −3.89446 −0.138122
\(796\) 0 0
\(797\) −5.00729 −0.177367 −0.0886837 0.996060i \(-0.528266\pi\)
−0.0886837 + 0.996060i \(0.528266\pi\)
\(798\) 0 0
\(799\) 26.6155 0.941587
\(800\) 0 0
\(801\) 3.44358 0.121673
\(802\) 0 0
\(803\) 15.4401 0.544868
\(804\) 0 0
\(805\) 6.18664 0.218050
\(806\) 0 0
\(807\) 16.6072 0.584601
\(808\) 0 0
\(809\) 52.6697 1.85177 0.925885 0.377806i \(-0.123321\pi\)
0.925885 + 0.377806i \(0.123321\pi\)
\(810\) 0 0
\(811\) 12.2473 0.430060 0.215030 0.976607i \(-0.431015\pi\)
0.215030 + 0.976607i \(0.431015\pi\)
\(812\) 0 0
\(813\) 22.8872 0.802688
\(814\) 0 0
\(815\) −6.45088 −0.225964
\(816\) 0 0
\(817\) 8.92619 0.312288
\(818\) 0 0
\(819\) −4.73084 −0.165309
\(820\) 0 0
\(821\) −22.3914 −0.781465 −0.390732 0.920504i \(-0.627778\pi\)
−0.390732 + 0.920504i \(0.627778\pi\)
\(822\) 0 0
\(823\) −41.4227 −1.44390 −0.721951 0.691944i \(-0.756755\pi\)
−0.721951 + 0.691944i \(0.756755\pi\)
\(824\) 0 0
\(825\) −2.96239 −0.103137
\(826\) 0 0
\(827\) −27.5672 −0.958606 −0.479303 0.877649i \(-0.659111\pi\)
−0.479303 + 0.877649i \(0.659111\pi\)
\(828\) 0 0
\(829\) 46.4387 1.61288 0.806441 0.591315i \(-0.201391\pi\)
0.806441 + 0.591315i \(0.201391\pi\)
\(830\) 0 0
\(831\) 11.2628 0.390703
\(832\) 0 0
\(833\) 11.5212 0.399185
\(834\) 0 0
\(835\) 22.5745 0.781223
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) 16.1540 0.557696 0.278848 0.960335i \(-0.410047\pi\)
0.278848 + 0.960335i \(0.410047\pi\)
\(840\) 0 0
\(841\) −28.9716 −0.999020
\(842\) 0 0
\(843\) 9.19982 0.316859
\(844\) 0 0
\(845\) −0.506587 −0.0174271
\(846\) 0 0
\(847\) −2.86319 −0.0983803
\(848\) 0 0
\(849\) 21.4739 0.736982
\(850\) 0 0
\(851\) −12.6761 −0.434531
\(852\) 0 0
\(853\) 5.36011 0.183527 0.0917634 0.995781i \(-0.470750\pi\)
0.0917634 + 0.995781i \(0.470750\pi\)
\(854\) 0 0
\(855\) −2.38787 −0.0816635
\(856\) 0 0
\(857\) 19.9492 0.681452 0.340726 0.940163i \(-0.389327\pi\)
0.340726 + 0.940163i \(0.389327\pi\)
\(858\) 0 0
\(859\) −48.4260 −1.65227 −0.826137 0.563470i \(-0.809466\pi\)
−0.826137 + 0.563470i \(0.809466\pi\)
\(860\) 0 0
\(861\) −15.0132 −0.511648
\(862\) 0 0
\(863\) −9.02776 −0.307309 −0.153654 0.988125i \(-0.549104\pi\)
−0.153654 + 0.988125i \(0.549104\pi\)
\(864\) 0 0
\(865\) −9.35026 −0.317918
\(866\) 0 0
\(867\) 12.3503 0.419437
\(868\) 0 0
\(869\) −45.7137 −1.55073
\(870\) 0 0
\(871\) 46.1681 1.56435
\(872\) 0 0
\(873\) −15.1998 −0.514436
\(874\) 0 0
\(875\) −1.28726 −0.0435173
\(876\) 0 0
\(877\) −24.0000 −0.810422 −0.405211 0.914223i \(-0.632802\pi\)
−0.405211 + 0.914223i \(0.632802\pi\)
\(878\) 0 0
\(879\) −21.6326 −0.729649
\(880\) 0 0
\(881\) 40.4831 1.36391 0.681955 0.731394i \(-0.261130\pi\)
0.681955 + 0.731394i \(0.261130\pi\)
\(882\) 0 0
\(883\) −8.85097 −0.297859 −0.148929 0.988848i \(-0.547583\pi\)
−0.148929 + 0.988848i \(0.547583\pi\)
\(884\) 0 0
\(885\) 13.8315 0.464939
\(886\) 0 0
\(887\) −0.493413 −0.0165672 −0.00828359 0.999966i \(-0.502637\pi\)
−0.00828359 + 0.999966i \(0.502637\pi\)
\(888\) 0 0
\(889\) 1.64130 0.0550476
\(890\) 0 0
\(891\) 2.96239 0.0992438
\(892\) 0 0
\(893\) −29.4734 −0.986291
\(894\) 0 0
\(895\) −24.1622 −0.807653
\(896\) 0 0
\(897\) −17.6629 −0.589747
\(898\) 0 0
\(899\) 0.168544 0.00562126
\(900\) 0 0
\(901\) 8.39772 0.279769
\(902\) 0 0
\(903\) −4.81194 −0.160131
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) −29.3479 −0.974481 −0.487240 0.873268i \(-0.661996\pi\)
−0.487240 + 0.873268i \(0.661996\pi\)
\(908\) 0 0
\(909\) 14.0508 0.466035
\(910\) 0 0
\(911\) −17.7842 −0.589216 −0.294608 0.955618i \(-0.595189\pi\)
−0.294608 + 0.955618i \(0.595189\pi\)
\(912\) 0 0
\(913\) 31.7889 1.05206
\(914\) 0 0
\(915\) −12.7005 −0.419866
\(916\) 0 0
\(917\) −22.9222 −0.756958
\(918\) 0 0
\(919\) −13.8232 −0.455986 −0.227993 0.973663i \(-0.573216\pi\)
−0.227993 + 0.973663i \(0.573216\pi\)
\(920\) 0 0
\(921\) 20.6131 0.679224
\(922\) 0 0
\(923\) −1.76845 −0.0582093
\(924\) 0 0
\(925\) 2.63752 0.0867211
\(926\) 0 0
\(927\) 10.1744 0.334172
\(928\) 0 0
\(929\) 56.1197 1.84123 0.920613 0.390476i \(-0.127689\pi\)
0.920613 + 0.390476i \(0.127689\pi\)
\(930\) 0 0
\(931\) −12.7583 −0.418137
\(932\) 0 0
\(933\) 2.34534 0.0767829
\(934\) 0 0
\(935\) 6.38787 0.208906
\(936\) 0 0
\(937\) 30.8989 1.00942 0.504712 0.863288i \(-0.331599\pi\)
0.504712 + 0.863288i \(0.331599\pi\)
\(938\) 0 0
\(939\) 24.1744 0.788902
\(940\) 0 0
\(941\) 33.9937 1.10816 0.554081 0.832463i \(-0.313070\pi\)
0.554081 + 0.832463i \(0.313070\pi\)
\(942\) 0 0
\(943\) −56.0527 −1.82533
\(944\) 0 0
\(945\) 1.28726 0.0418745
\(946\) 0 0
\(947\) −8.90763 −0.289459 −0.144730 0.989471i \(-0.546231\pi\)
−0.144730 + 0.989471i \(0.546231\pi\)
\(948\) 0 0
\(949\) −19.1549 −0.621795
\(950\) 0 0
\(951\) 6.68006 0.216616
\(952\) 0 0
\(953\) −3.64718 −0.118144 −0.0590719 0.998254i \(-0.518814\pi\)
−0.0590719 + 0.998254i \(0.518814\pi\)
\(954\) 0 0
\(955\) 3.13093 0.101315
\(956\) 0 0
\(957\) −0.499293 −0.0161398
\(958\) 0 0
\(959\) 9.32582 0.301147
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −17.2447 −0.555703
\(964\) 0 0
\(965\) −21.5877 −0.694932
\(966\) 0 0
\(967\) 54.6859 1.75858 0.879291 0.476286i \(-0.158017\pi\)
0.879291 + 0.476286i \(0.158017\pi\)
\(968\) 0 0
\(969\) 5.14903 0.165411
\(970\) 0 0
\(971\) −44.9072 −1.44114 −0.720570 0.693382i \(-0.756120\pi\)
−0.720570 + 0.693382i \(0.756120\pi\)
\(972\) 0 0
\(973\) 19.1636 0.614357
\(974\) 0 0
\(975\) 3.67513 0.117698
\(976\) 0 0
\(977\) −25.6991 −0.822187 −0.411094 0.911593i \(-0.634853\pi\)
−0.411094 + 0.911593i \(0.634853\pi\)
\(978\) 0 0
\(979\) 10.2012 0.326033
\(980\) 0 0
\(981\) 4.93207 0.157469
\(982\) 0 0
\(983\) −51.3376 −1.63741 −0.818707 0.574211i \(-0.805309\pi\)
−0.818707 + 0.574211i \(0.805309\pi\)
\(984\) 0 0
\(985\) −4.60483 −0.146722
\(986\) 0 0
\(987\) 15.8886 0.505739
\(988\) 0 0
\(989\) −17.9657 −0.571276
\(990\) 0 0
\(991\) −19.6629 −0.624613 −0.312306 0.949981i \(-0.601102\pi\)
−0.312306 + 0.949981i \(0.601102\pi\)
\(992\) 0 0
\(993\) −11.0581 −0.350918
\(994\) 0 0
\(995\) 7.76845 0.246276
\(996\) 0 0
\(997\) 15.4372 0.488902 0.244451 0.969662i \(-0.421392\pi\)
0.244451 + 0.969662i \(0.421392\pi\)
\(998\) 0 0
\(999\) −2.63752 −0.0834474
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bm.1.2 3
4.3 odd 2 465.2.a.g.1.3 3
12.11 even 2 1395.2.a.h.1.1 3
20.3 even 4 2325.2.c.l.1024.1 6
20.7 even 4 2325.2.c.l.1024.6 6
20.19 odd 2 2325.2.a.p.1.1 3
60.59 even 2 6975.2.a.bi.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.g.1.3 3 4.3 odd 2
1395.2.a.h.1.1 3 12.11 even 2
2325.2.a.p.1.1 3 20.19 odd 2
2325.2.c.l.1024.1 6 20.3 even 4
2325.2.c.l.1024.6 6 20.7 even 4
6975.2.a.bi.1.3 3 60.59 even 2
7440.2.a.bm.1.2 3 1.1 even 1 trivial