Properties

Label 7440.2.a.bm.1.1
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7440,2,Mod(1,7440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} -4.87936 q^{7} +1.00000 q^{9} -4.34017 q^{11} -2.53919 q^{13} +1.00000 q^{15} +2.63090 q^{17} +7.41855 q^{19} +4.87936 q^{21} -2.29072 q^{23} +1.00000 q^{25} -1.00000 q^{27} +6.09171 q^{29} +1.00000 q^{31} +4.34017 q^{33} +4.87936 q^{35} -5.80098 q^{37} +2.53919 q^{39} -0.183417 q^{41} +6.49693 q^{43} -1.00000 q^{45} +9.80817 q^{47} +16.8082 q^{49} -2.63090 q^{51} -1.86603 q^{53} +4.34017 q^{55} -7.41855 q^{57} +7.90829 q^{59} -8.15676 q^{61} -4.87936 q^{63} +2.53919 q^{65} +10.4813 q^{67} +2.29072 q^{69} -3.17009 q^{71} -15.5597 q^{73} -1.00000 q^{75} +21.1773 q^{77} +6.23287 q^{79} +1.00000 q^{81} -6.38962 q^{83} -2.63090 q^{85} -6.09171 q^{87} -7.51026 q^{89} +12.3896 q^{91} -1.00000 q^{93} -7.41855 q^{95} +16.2823 q^{97} -4.34017 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 3 q^{5} - 2 q^{7} + 3 q^{9} - 2 q^{11} - 6 q^{13} + 3 q^{15} + 4 q^{17} + 8 q^{19} + 2 q^{21} - 14 q^{23} + 3 q^{25} - 3 q^{27} + 16 q^{29} + 3 q^{31} + 2 q^{33} + 2 q^{35} - 8 q^{37} + 6 q^{39}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.87936 −1.84423 −0.922113 0.386921i \(-0.873538\pi\)
−0.922113 + 0.386921i \(0.873538\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.34017 −1.30861 −0.654306 0.756230i \(-0.727039\pi\)
−0.654306 + 0.756230i \(0.727039\pi\)
\(12\) 0 0
\(13\) −2.53919 −0.704244 −0.352122 0.935954i \(-0.614540\pi\)
−0.352122 + 0.935954i \(0.614540\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 2.63090 0.638086 0.319043 0.947740i \(-0.396638\pi\)
0.319043 + 0.947740i \(0.396638\pi\)
\(18\) 0 0
\(19\) 7.41855 1.70193 0.850966 0.525221i \(-0.176017\pi\)
0.850966 + 0.525221i \(0.176017\pi\)
\(20\) 0 0
\(21\) 4.87936 1.06476
\(22\) 0 0
\(23\) −2.29072 −0.477649 −0.238825 0.971063i \(-0.576762\pi\)
−0.238825 + 0.971063i \(0.576762\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.09171 1.13120 0.565601 0.824679i \(-0.308644\pi\)
0.565601 + 0.824679i \(0.308644\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 4.34017 0.755527
\(34\) 0 0
\(35\) 4.87936 0.824763
\(36\) 0 0
\(37\) −5.80098 −0.953676 −0.476838 0.878991i \(-0.658217\pi\)
−0.476838 + 0.878991i \(0.658217\pi\)
\(38\) 0 0
\(39\) 2.53919 0.406596
\(40\) 0 0
\(41\) −0.183417 −0.0286450 −0.0143225 0.999897i \(-0.504559\pi\)
−0.0143225 + 0.999897i \(0.504559\pi\)
\(42\) 0 0
\(43\) 6.49693 0.990772 0.495386 0.868673i \(-0.335027\pi\)
0.495386 + 0.868673i \(0.335027\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 9.80817 1.43067 0.715334 0.698782i \(-0.246274\pi\)
0.715334 + 0.698782i \(0.246274\pi\)
\(48\) 0 0
\(49\) 16.8082 2.40117
\(50\) 0 0
\(51\) −2.63090 −0.368399
\(52\) 0 0
\(53\) −1.86603 −0.256319 −0.128160 0.991754i \(-0.540907\pi\)
−0.128160 + 0.991754i \(0.540907\pi\)
\(54\) 0 0
\(55\) 4.34017 0.585229
\(56\) 0 0
\(57\) −7.41855 −0.982611
\(58\) 0 0
\(59\) 7.90829 1.02957 0.514786 0.857319i \(-0.327871\pi\)
0.514786 + 0.857319i \(0.327871\pi\)
\(60\) 0 0
\(61\) −8.15676 −1.04437 −0.522183 0.852834i \(-0.674882\pi\)
−0.522183 + 0.852834i \(0.674882\pi\)
\(62\) 0 0
\(63\) −4.87936 −0.614742
\(64\) 0 0
\(65\) 2.53919 0.314948
\(66\) 0 0
\(67\) 10.4813 1.28050 0.640249 0.768167i \(-0.278831\pi\)
0.640249 + 0.768167i \(0.278831\pi\)
\(68\) 0 0
\(69\) 2.29072 0.275771
\(70\) 0 0
\(71\) −3.17009 −0.376220 −0.188110 0.982148i \(-0.560236\pi\)
−0.188110 + 0.982148i \(0.560236\pi\)
\(72\) 0 0
\(73\) −15.5597 −1.82113 −0.910563 0.413370i \(-0.864352\pi\)
−0.910563 + 0.413370i \(0.864352\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 21.1773 2.41337
\(78\) 0 0
\(79\) 6.23287 0.701252 0.350626 0.936516i \(-0.385969\pi\)
0.350626 + 0.936516i \(0.385969\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −6.38962 −0.701352 −0.350676 0.936497i \(-0.614048\pi\)
−0.350676 + 0.936497i \(0.614048\pi\)
\(84\) 0 0
\(85\) −2.63090 −0.285361
\(86\) 0 0
\(87\) −6.09171 −0.653100
\(88\) 0 0
\(89\) −7.51026 −0.796086 −0.398043 0.917367i \(-0.630311\pi\)
−0.398043 + 0.917367i \(0.630311\pi\)
\(90\) 0 0
\(91\) 12.3896 1.29879
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) −7.41855 −0.761127
\(96\) 0 0
\(97\) 16.2823 1.65322 0.826609 0.562776i \(-0.190267\pi\)
0.826609 + 0.562776i \(0.190267\pi\)
\(98\) 0 0
\(99\) −4.34017 −0.436204
\(100\) 0 0
\(101\) 7.23513 0.719923 0.359961 0.932967i \(-0.382790\pi\)
0.359961 + 0.932967i \(0.382790\pi\)
\(102\) 0 0
\(103\) −17.8999 −1.76373 −0.881864 0.471504i \(-0.843711\pi\)
−0.881864 + 0.471504i \(0.843711\pi\)
\(104\) 0 0
\(105\) −4.87936 −0.476177
\(106\) 0 0
\(107\) −12.9444 −1.25138 −0.625692 0.780071i \(-0.715183\pi\)
−0.625692 + 0.780071i \(0.715183\pi\)
\(108\) 0 0
\(109\) 10.2062 0.977577 0.488789 0.872402i \(-0.337439\pi\)
0.488789 + 0.872402i \(0.337439\pi\)
\(110\) 0 0
\(111\) 5.80098 0.550605
\(112\) 0 0
\(113\) 9.60197 0.903277 0.451639 0.892201i \(-0.350840\pi\)
0.451639 + 0.892201i \(0.350840\pi\)
\(114\) 0 0
\(115\) 2.29072 0.213611
\(116\) 0 0
\(117\) −2.53919 −0.234748
\(118\) 0 0
\(119\) −12.8371 −1.17678
\(120\) 0 0
\(121\) 7.83710 0.712464
\(122\) 0 0
\(123\) 0.183417 0.0165382
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −15.6020 −1.38445 −0.692225 0.721681i \(-0.743370\pi\)
−0.692225 + 0.721681i \(0.743370\pi\)
\(128\) 0 0
\(129\) −6.49693 −0.572023
\(130\) 0 0
\(131\) 9.53692 0.833245 0.416622 0.909080i \(-0.363214\pi\)
0.416622 + 0.909080i \(0.363214\pi\)
\(132\) 0 0
\(133\) −36.1978 −3.13875
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 2.94441 0.251558 0.125779 0.992058i \(-0.459857\pi\)
0.125779 + 0.992058i \(0.459857\pi\)
\(138\) 0 0
\(139\) −7.02052 −0.595473 −0.297736 0.954648i \(-0.596232\pi\)
−0.297736 + 0.954648i \(0.596232\pi\)
\(140\) 0 0
\(141\) −9.80817 −0.825997
\(142\) 0 0
\(143\) 11.0205 0.921582
\(144\) 0 0
\(145\) −6.09171 −0.505889
\(146\) 0 0
\(147\) −16.8082 −1.38631
\(148\) 0 0
\(149\) −8.49693 −0.696096 −0.348048 0.937477i \(-0.613155\pi\)
−0.348048 + 0.937477i \(0.613155\pi\)
\(150\) 0 0
\(151\) 3.52586 0.286930 0.143465 0.989655i \(-0.454176\pi\)
0.143465 + 0.989655i \(0.454176\pi\)
\(152\) 0 0
\(153\) 2.63090 0.212695
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) 4.49693 0.358894 0.179447 0.983768i \(-0.442569\pi\)
0.179447 + 0.983768i \(0.442569\pi\)
\(158\) 0 0
\(159\) 1.86603 0.147986
\(160\) 0 0
\(161\) 11.1773 0.880893
\(162\) 0 0
\(163\) 15.3763 1.20436 0.602182 0.798359i \(-0.294298\pi\)
0.602182 + 0.798359i \(0.294298\pi\)
\(164\) 0 0
\(165\) −4.34017 −0.337882
\(166\) 0 0
\(167\) −10.2413 −0.792494 −0.396247 0.918144i \(-0.629688\pi\)
−0.396247 + 0.918144i \(0.629688\pi\)
\(168\) 0 0
\(169\) −6.55252 −0.504040
\(170\) 0 0
\(171\) 7.41855 0.567311
\(172\) 0 0
\(173\) 7.07838 0.538159 0.269080 0.963118i \(-0.413281\pi\)
0.269080 + 0.963118i \(0.413281\pi\)
\(174\) 0 0
\(175\) −4.87936 −0.368845
\(176\) 0 0
\(177\) −7.90829 −0.594424
\(178\) 0 0
\(179\) −14.6225 −1.09294 −0.546468 0.837480i \(-0.684028\pi\)
−0.546468 + 0.837480i \(0.684028\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 8.15676 0.602965
\(184\) 0 0
\(185\) 5.80098 0.426497
\(186\) 0 0
\(187\) −11.4186 −0.835007
\(188\) 0 0
\(189\) 4.87936 0.354921
\(190\) 0 0
\(191\) −1.75154 −0.126737 −0.0633683 0.997990i \(-0.520184\pi\)
−0.0633683 + 0.997990i \(0.520184\pi\)
\(192\) 0 0
\(193\) −4.86376 −0.350101 −0.175051 0.984559i \(-0.556009\pi\)
−0.175051 + 0.984559i \(0.556009\pi\)
\(194\) 0 0
\(195\) −2.53919 −0.181835
\(196\) 0 0
\(197\) −20.3051 −1.44668 −0.723339 0.690493i \(-0.757394\pi\)
−0.723339 + 0.690493i \(0.757394\pi\)
\(198\) 0 0
\(199\) 2.04945 0.145282 0.0726408 0.997358i \(-0.476857\pi\)
0.0726408 + 0.997358i \(0.476857\pi\)
\(200\) 0 0
\(201\) −10.4813 −0.739296
\(202\) 0 0
\(203\) −29.7237 −2.08619
\(204\) 0 0
\(205\) 0.183417 0.0128104
\(206\) 0 0
\(207\) −2.29072 −0.159216
\(208\) 0 0
\(209\) −32.1978 −2.22717
\(210\) 0 0
\(211\) −12.1834 −0.838741 −0.419371 0.907815i \(-0.637749\pi\)
−0.419371 + 0.907815i \(0.637749\pi\)
\(212\) 0 0
\(213\) 3.17009 0.217211
\(214\) 0 0
\(215\) −6.49693 −0.443087
\(216\) 0 0
\(217\) −4.87936 −0.331233
\(218\) 0 0
\(219\) 15.5597 1.05143
\(220\) 0 0
\(221\) −6.68035 −0.449369
\(222\) 0 0
\(223\) −12.2557 −0.820699 −0.410350 0.911928i \(-0.634593\pi\)
−0.410350 + 0.911928i \(0.634593\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −12.1483 −0.806314 −0.403157 0.915131i \(-0.632087\pi\)
−0.403157 + 0.915131i \(0.632087\pi\)
\(228\) 0 0
\(229\) 6.28231 0.415147 0.207574 0.978219i \(-0.433443\pi\)
0.207574 + 0.978219i \(0.433443\pi\)
\(230\) 0 0
\(231\) −21.1773 −1.39336
\(232\) 0 0
\(233\) 15.3112 1.00307 0.501536 0.865137i \(-0.332768\pi\)
0.501536 + 0.865137i \(0.332768\pi\)
\(234\) 0 0
\(235\) −9.80817 −0.639815
\(236\) 0 0
\(237\) −6.23287 −0.404868
\(238\) 0 0
\(239\) 30.1978 1.95333 0.976666 0.214762i \(-0.0688976\pi\)
0.976666 + 0.214762i \(0.0688976\pi\)
\(240\) 0 0
\(241\) −25.6475 −1.65210 −0.826052 0.563594i \(-0.809418\pi\)
−0.826052 + 0.563594i \(0.809418\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −16.8082 −1.07383
\(246\) 0 0
\(247\) −18.8371 −1.19858
\(248\) 0 0
\(249\) 6.38962 0.404926
\(250\) 0 0
\(251\) 6.25565 0.394853 0.197427 0.980318i \(-0.436742\pi\)
0.197427 + 0.980318i \(0.436742\pi\)
\(252\) 0 0
\(253\) 9.94214 0.625057
\(254\) 0 0
\(255\) 2.63090 0.164753
\(256\) 0 0
\(257\) −13.1545 −0.820554 −0.410277 0.911961i \(-0.634568\pi\)
−0.410277 + 0.911961i \(0.634568\pi\)
\(258\) 0 0
\(259\) 28.3051 1.75879
\(260\) 0 0
\(261\) 6.09171 0.377067
\(262\) 0 0
\(263\) −29.4908 −1.81848 −0.909240 0.416273i \(-0.863336\pi\)
−0.909240 + 0.416273i \(0.863336\pi\)
\(264\) 0 0
\(265\) 1.86603 0.114629
\(266\) 0 0
\(267\) 7.51026 0.459620
\(268\) 0 0
\(269\) −20.7454 −1.26487 −0.632434 0.774614i \(-0.717944\pi\)
−0.632434 + 0.774614i \(0.717944\pi\)
\(270\) 0 0
\(271\) −0.979481 −0.0594992 −0.0297496 0.999557i \(-0.509471\pi\)
−0.0297496 + 0.999557i \(0.509471\pi\)
\(272\) 0 0
\(273\) −12.3896 −0.749854
\(274\) 0 0
\(275\) −4.34017 −0.261722
\(276\) 0 0
\(277\) 16.3246 0.980849 0.490424 0.871484i \(-0.336842\pi\)
0.490424 + 0.871484i \(0.336842\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 22.2823 1.32925 0.664626 0.747176i \(-0.268591\pi\)
0.664626 + 0.747176i \(0.268591\pi\)
\(282\) 0 0
\(283\) 2.05664 0.122254 0.0611272 0.998130i \(-0.480530\pi\)
0.0611272 + 0.998130i \(0.480530\pi\)
\(284\) 0 0
\(285\) 7.41855 0.439437
\(286\) 0 0
\(287\) 0.894960 0.0528278
\(288\) 0 0
\(289\) −10.0784 −0.592846
\(290\) 0 0
\(291\) −16.2823 −0.954486
\(292\) 0 0
\(293\) 22.3630 1.30646 0.653229 0.757160i \(-0.273414\pi\)
0.653229 + 0.757160i \(0.273414\pi\)
\(294\) 0 0
\(295\) −7.90829 −0.460439
\(296\) 0 0
\(297\) 4.34017 0.251842
\(298\) 0 0
\(299\) 5.81658 0.336382
\(300\) 0 0
\(301\) −31.7009 −1.82721
\(302\) 0 0
\(303\) −7.23513 −0.415648
\(304\) 0 0
\(305\) 8.15676 0.467054
\(306\) 0 0
\(307\) 9.24620 0.527708 0.263854 0.964563i \(-0.415006\pi\)
0.263854 + 0.964563i \(0.415006\pi\)
\(308\) 0 0
\(309\) 17.8999 1.01829
\(310\) 0 0
\(311\) −9.24232 −0.524084 −0.262042 0.965056i \(-0.584396\pi\)
−0.262042 + 0.965056i \(0.584396\pi\)
\(312\) 0 0
\(313\) 3.89988 0.220434 0.110217 0.993908i \(-0.464845\pi\)
0.110217 + 0.993908i \(0.464845\pi\)
\(314\) 0 0
\(315\) 4.87936 0.274921
\(316\) 0 0
\(317\) 3.62475 0.203586 0.101793 0.994806i \(-0.467542\pi\)
0.101793 + 0.994806i \(0.467542\pi\)
\(318\) 0 0
\(319\) −26.4391 −1.48030
\(320\) 0 0
\(321\) 12.9444 0.722486
\(322\) 0 0
\(323\) 19.5174 1.08598
\(324\) 0 0
\(325\) −2.53919 −0.140849
\(326\) 0 0
\(327\) −10.2062 −0.564404
\(328\) 0 0
\(329\) −47.8576 −2.63848
\(330\) 0 0
\(331\) 24.1217 1.32585 0.662924 0.748687i \(-0.269315\pi\)
0.662924 + 0.748687i \(0.269315\pi\)
\(332\) 0 0
\(333\) −5.80098 −0.317892
\(334\) 0 0
\(335\) −10.4813 −0.572656
\(336\) 0 0
\(337\) 3.19287 0.173927 0.0869634 0.996212i \(-0.472284\pi\)
0.0869634 + 0.996212i \(0.472284\pi\)
\(338\) 0 0
\(339\) −9.60197 −0.521507
\(340\) 0 0
\(341\) −4.34017 −0.235034
\(342\) 0 0
\(343\) −47.8576 −2.58407
\(344\) 0 0
\(345\) −2.29072 −0.123328
\(346\) 0 0
\(347\) 34.6369 1.85940 0.929702 0.368312i \(-0.120064\pi\)
0.929702 + 0.368312i \(0.120064\pi\)
\(348\) 0 0
\(349\) 5.31124 0.284304 0.142152 0.989845i \(-0.454598\pi\)
0.142152 + 0.989845i \(0.454598\pi\)
\(350\) 0 0
\(351\) 2.53919 0.135532
\(352\) 0 0
\(353\) 33.3523 1.77516 0.887581 0.460651i \(-0.152384\pi\)
0.887581 + 0.460651i \(0.152384\pi\)
\(354\) 0 0
\(355\) 3.17009 0.168251
\(356\) 0 0
\(357\) 12.8371 0.679411
\(358\) 0 0
\(359\) −2.33299 −0.123130 −0.0615651 0.998103i \(-0.519609\pi\)
−0.0615651 + 0.998103i \(0.519609\pi\)
\(360\) 0 0
\(361\) 36.0349 1.89657
\(362\) 0 0
\(363\) −7.83710 −0.411341
\(364\) 0 0
\(365\) 15.5597 0.814432
\(366\) 0 0
\(367\) −12.3135 −0.642760 −0.321380 0.946950i \(-0.604147\pi\)
−0.321380 + 0.946950i \(0.604147\pi\)
\(368\) 0 0
\(369\) −0.183417 −0.00954833
\(370\) 0 0
\(371\) 9.10504 0.472710
\(372\) 0 0
\(373\) −5.86991 −0.303932 −0.151966 0.988386i \(-0.548560\pi\)
−0.151966 + 0.988386i \(0.548560\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −15.4680 −0.796642
\(378\) 0 0
\(379\) 2.42469 0.124548 0.0622741 0.998059i \(-0.480165\pi\)
0.0622741 + 0.998059i \(0.480165\pi\)
\(380\) 0 0
\(381\) 15.6020 0.799313
\(382\) 0 0
\(383\) 32.9588 1.68412 0.842058 0.539388i \(-0.181344\pi\)
0.842058 + 0.539388i \(0.181344\pi\)
\(384\) 0 0
\(385\) −21.1773 −1.07929
\(386\) 0 0
\(387\) 6.49693 0.330257
\(388\) 0 0
\(389\) 19.0589 0.966325 0.483162 0.875531i \(-0.339488\pi\)
0.483162 + 0.875531i \(0.339488\pi\)
\(390\) 0 0
\(391\) −6.02666 −0.304781
\(392\) 0 0
\(393\) −9.53692 −0.481074
\(394\) 0 0
\(395\) −6.23287 −0.313610
\(396\) 0 0
\(397\) −27.2618 −1.36823 −0.684115 0.729374i \(-0.739811\pi\)
−0.684115 + 0.729374i \(0.739811\pi\)
\(398\) 0 0
\(399\) 36.1978 1.81216
\(400\) 0 0
\(401\) −23.6404 −1.18054 −0.590271 0.807205i \(-0.700979\pi\)
−0.590271 + 0.807205i \(0.700979\pi\)
\(402\) 0 0
\(403\) −2.53919 −0.126486
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 25.1773 1.24799
\(408\) 0 0
\(409\) −7.16290 −0.354183 −0.177091 0.984194i \(-0.556669\pi\)
−0.177091 + 0.984194i \(0.556669\pi\)
\(410\) 0 0
\(411\) −2.94441 −0.145237
\(412\) 0 0
\(413\) −38.5874 −1.89876
\(414\) 0 0
\(415\) 6.38962 0.313654
\(416\) 0 0
\(417\) 7.02052 0.343796
\(418\) 0 0
\(419\) 4.43188 0.216512 0.108256 0.994123i \(-0.465473\pi\)
0.108256 + 0.994123i \(0.465473\pi\)
\(420\) 0 0
\(421\) 34.4885 1.68087 0.840434 0.541914i \(-0.182300\pi\)
0.840434 + 0.541914i \(0.182300\pi\)
\(422\) 0 0
\(423\) 9.80817 0.476890
\(424\) 0 0
\(425\) 2.63090 0.127617
\(426\) 0 0
\(427\) 39.7998 1.92605
\(428\) 0 0
\(429\) −11.0205 −0.532076
\(430\) 0 0
\(431\) −17.6092 −0.848203 −0.424102 0.905615i \(-0.639410\pi\)
−0.424102 + 0.905615i \(0.639410\pi\)
\(432\) 0 0
\(433\) −36.5536 −1.75665 −0.878326 0.478062i \(-0.841339\pi\)
−0.878326 + 0.478062i \(0.841339\pi\)
\(434\) 0 0
\(435\) 6.09171 0.292075
\(436\) 0 0
\(437\) −16.9939 −0.812926
\(438\) 0 0
\(439\) 12.3135 0.587692 0.293846 0.955853i \(-0.405065\pi\)
0.293846 + 0.955853i \(0.405065\pi\)
\(440\) 0 0
\(441\) 16.8082 0.800389
\(442\) 0 0
\(443\) 4.57757 0.217487 0.108744 0.994070i \(-0.465317\pi\)
0.108744 + 0.994070i \(0.465317\pi\)
\(444\) 0 0
\(445\) 7.51026 0.356020
\(446\) 0 0
\(447\) 8.49693 0.401891
\(448\) 0 0
\(449\) −17.7971 −0.839897 −0.419949 0.907548i \(-0.637952\pi\)
−0.419949 + 0.907548i \(0.637952\pi\)
\(450\) 0 0
\(451\) 0.796064 0.0374852
\(452\) 0 0
\(453\) −3.52586 −0.165659
\(454\) 0 0
\(455\) −12.3896 −0.580834
\(456\) 0 0
\(457\) −1.78661 −0.0835740 −0.0417870 0.999127i \(-0.513305\pi\)
−0.0417870 + 0.999127i \(0.513305\pi\)
\(458\) 0 0
\(459\) −2.63090 −0.122800
\(460\) 0 0
\(461\) −33.9227 −1.57994 −0.789968 0.613148i \(-0.789903\pi\)
−0.789968 + 0.613148i \(0.789903\pi\)
\(462\) 0 0
\(463\) −41.1194 −1.91098 −0.955491 0.295021i \(-0.904673\pi\)
−0.955491 + 0.295021i \(0.904673\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) −22.4885 −1.04064 −0.520322 0.853970i \(-0.674188\pi\)
−0.520322 + 0.853970i \(0.674188\pi\)
\(468\) 0 0
\(469\) −51.1422 −2.36153
\(470\) 0 0
\(471\) −4.49693 −0.207208
\(472\) 0 0
\(473\) −28.1978 −1.29654
\(474\) 0 0
\(475\) 7.41855 0.340386
\(476\) 0 0
\(477\) −1.86603 −0.0854397
\(478\) 0 0
\(479\) 32.2485 1.47347 0.736735 0.676182i \(-0.236367\pi\)
0.736735 + 0.676182i \(0.236367\pi\)
\(480\) 0 0
\(481\) 14.7298 0.671621
\(482\) 0 0
\(483\) −11.1773 −0.508584
\(484\) 0 0
\(485\) −16.2823 −0.739342
\(486\) 0 0
\(487\) −23.3340 −1.05737 −0.528683 0.848819i \(-0.677314\pi\)
−0.528683 + 0.848819i \(0.677314\pi\)
\(488\) 0 0
\(489\) −15.3763 −0.695340
\(490\) 0 0
\(491\) −23.3340 −1.05305 −0.526525 0.850160i \(-0.676505\pi\)
−0.526525 + 0.850160i \(0.676505\pi\)
\(492\) 0 0
\(493\) 16.0267 0.721805
\(494\) 0 0
\(495\) 4.34017 0.195076
\(496\) 0 0
\(497\) 15.4680 0.693835
\(498\) 0 0
\(499\) 3.20394 0.143428 0.0717139 0.997425i \(-0.477153\pi\)
0.0717139 + 0.997425i \(0.477153\pi\)
\(500\) 0 0
\(501\) 10.2413 0.457546
\(502\) 0 0
\(503\) −7.55252 −0.336750 −0.168375 0.985723i \(-0.553852\pi\)
−0.168375 + 0.985723i \(0.553852\pi\)
\(504\) 0 0
\(505\) −7.23513 −0.321959
\(506\) 0 0
\(507\) 6.55252 0.291008
\(508\) 0 0
\(509\) 27.4401 1.21626 0.608131 0.793837i \(-0.291920\pi\)
0.608131 + 0.793837i \(0.291920\pi\)
\(510\) 0 0
\(511\) 75.9214 3.35857
\(512\) 0 0
\(513\) −7.41855 −0.327537
\(514\) 0 0
\(515\) 17.8999 0.788763
\(516\) 0 0
\(517\) −42.5692 −1.87219
\(518\) 0 0
\(519\) −7.07838 −0.310706
\(520\) 0 0
\(521\) 28.0144 1.22733 0.613666 0.789566i \(-0.289694\pi\)
0.613666 + 0.789566i \(0.289694\pi\)
\(522\) 0 0
\(523\) −3.33403 −0.145787 −0.0728935 0.997340i \(-0.523223\pi\)
−0.0728935 + 0.997340i \(0.523223\pi\)
\(524\) 0 0
\(525\) 4.87936 0.212953
\(526\) 0 0
\(527\) 2.63090 0.114604
\(528\) 0 0
\(529\) −17.7526 −0.771851
\(530\) 0 0
\(531\) 7.90829 0.343191
\(532\) 0 0
\(533\) 0.465732 0.0201731
\(534\) 0 0
\(535\) 12.9444 0.559636
\(536\) 0 0
\(537\) 14.6225 0.631007
\(538\) 0 0
\(539\) −72.9504 −3.14220
\(540\) 0 0
\(541\) −7.55252 −0.324708 −0.162354 0.986733i \(-0.551909\pi\)
−0.162354 + 0.986733i \(0.551909\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) −10.2062 −0.437186
\(546\) 0 0
\(547\) −32.4547 −1.38766 −0.693831 0.720138i \(-0.744078\pi\)
−0.693831 + 0.720138i \(0.744078\pi\)
\(548\) 0 0
\(549\) −8.15676 −0.348122
\(550\) 0 0
\(551\) 45.1917 1.92523
\(552\) 0 0
\(553\) −30.4124 −1.29327
\(554\) 0 0
\(555\) −5.80098 −0.246238
\(556\) 0 0
\(557\) 23.0433 0.976376 0.488188 0.872738i \(-0.337658\pi\)
0.488188 + 0.872738i \(0.337658\pi\)
\(558\) 0 0
\(559\) −16.4969 −0.697746
\(560\) 0 0
\(561\) 11.4186 0.482092
\(562\) 0 0
\(563\) 39.9793 1.68493 0.842463 0.538754i \(-0.181105\pi\)
0.842463 + 0.538754i \(0.181105\pi\)
\(564\) 0 0
\(565\) −9.60197 −0.403958
\(566\) 0 0
\(567\) −4.87936 −0.204914
\(568\) 0 0
\(569\) −19.6670 −0.824484 −0.412242 0.911074i \(-0.635254\pi\)
−0.412242 + 0.911074i \(0.635254\pi\)
\(570\) 0 0
\(571\) −11.8166 −0.494509 −0.247254 0.968951i \(-0.579528\pi\)
−0.247254 + 0.968951i \(0.579528\pi\)
\(572\) 0 0
\(573\) 1.75154 0.0731715
\(574\) 0 0
\(575\) −2.29072 −0.0955298
\(576\) 0 0
\(577\) −38.4079 −1.59894 −0.799470 0.600706i \(-0.794886\pi\)
−0.799470 + 0.600706i \(0.794886\pi\)
\(578\) 0 0
\(579\) 4.86376 0.202131
\(580\) 0 0
\(581\) 31.1773 1.29345
\(582\) 0 0
\(583\) 8.09890 0.335422
\(584\) 0 0
\(585\) 2.53919 0.104983
\(586\) 0 0
\(587\) −11.3874 −0.470006 −0.235003 0.971995i \(-0.575510\pi\)
−0.235003 + 0.971995i \(0.575510\pi\)
\(588\) 0 0
\(589\) 7.41855 0.305676
\(590\) 0 0
\(591\) 20.3051 0.835240
\(592\) 0 0
\(593\) 31.5441 1.29536 0.647681 0.761912i \(-0.275739\pi\)
0.647681 + 0.761912i \(0.275739\pi\)
\(594\) 0 0
\(595\) 12.8371 0.526270
\(596\) 0 0
\(597\) −2.04945 −0.0838783
\(598\) 0 0
\(599\) −28.9744 −1.18386 −0.591931 0.805989i \(-0.701634\pi\)
−0.591931 + 0.805989i \(0.701634\pi\)
\(600\) 0 0
\(601\) −23.9565 −0.977207 −0.488603 0.872506i \(-0.662493\pi\)
−0.488603 + 0.872506i \(0.662493\pi\)
\(602\) 0 0
\(603\) 10.4813 0.426833
\(604\) 0 0
\(605\) −7.83710 −0.318623
\(606\) 0 0
\(607\) −20.1724 −0.818771 −0.409385 0.912362i \(-0.634257\pi\)
−0.409385 + 0.912362i \(0.634257\pi\)
\(608\) 0 0
\(609\) 29.7237 1.20446
\(610\) 0 0
\(611\) −24.9048 −1.00754
\(612\) 0 0
\(613\) −4.46695 −0.180419 −0.0902093 0.995923i \(-0.528754\pi\)
−0.0902093 + 0.995923i \(0.528754\pi\)
\(614\) 0 0
\(615\) −0.183417 −0.00739611
\(616\) 0 0
\(617\) 46.0821 1.85519 0.927597 0.373582i \(-0.121870\pi\)
0.927597 + 0.373582i \(0.121870\pi\)
\(618\) 0 0
\(619\) 9.55252 0.383948 0.191974 0.981400i \(-0.438511\pi\)
0.191974 + 0.981400i \(0.438511\pi\)
\(620\) 0 0
\(621\) 2.29072 0.0919236
\(622\) 0 0
\(623\) 36.6453 1.46816
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 32.1978 1.28586
\(628\) 0 0
\(629\) −15.2618 −0.608528
\(630\) 0 0
\(631\) −15.8310 −0.630221 −0.315110 0.949055i \(-0.602041\pi\)
−0.315110 + 0.949055i \(0.602041\pi\)
\(632\) 0 0
\(633\) 12.1834 0.484247
\(634\) 0 0
\(635\) 15.6020 0.619145
\(636\) 0 0
\(637\) −42.6791 −1.69101
\(638\) 0 0
\(639\) −3.17009 −0.125407
\(640\) 0 0
\(641\) −5.87709 −0.232131 −0.116066 0.993242i \(-0.537028\pi\)
−0.116066 + 0.993242i \(0.537028\pi\)
\(642\) 0 0
\(643\) −19.8166 −0.781490 −0.390745 0.920499i \(-0.627783\pi\)
−0.390745 + 0.920499i \(0.627783\pi\)
\(644\) 0 0
\(645\) 6.49693 0.255816
\(646\) 0 0
\(647\) −10.7915 −0.424259 −0.212129 0.977242i \(-0.568040\pi\)
−0.212129 + 0.977242i \(0.568040\pi\)
\(648\) 0 0
\(649\) −34.3234 −1.34731
\(650\) 0 0
\(651\) 4.87936 0.191237
\(652\) 0 0
\(653\) −8.93987 −0.349844 −0.174922 0.984582i \(-0.555967\pi\)
−0.174922 + 0.984582i \(0.555967\pi\)
\(654\) 0 0
\(655\) −9.53692 −0.372638
\(656\) 0 0
\(657\) −15.5597 −0.607042
\(658\) 0 0
\(659\) 12.3330 0.480425 0.240212 0.970720i \(-0.422783\pi\)
0.240212 + 0.970720i \(0.422783\pi\)
\(660\) 0 0
\(661\) −22.3980 −0.871182 −0.435591 0.900145i \(-0.643461\pi\)
−0.435591 + 0.900145i \(0.643461\pi\)
\(662\) 0 0
\(663\) 6.68035 0.259443
\(664\) 0 0
\(665\) 36.1978 1.40369
\(666\) 0 0
\(667\) −13.9544 −0.540318
\(668\) 0 0
\(669\) 12.2557 0.473831
\(670\) 0 0
\(671\) 35.4017 1.36667
\(672\) 0 0
\(673\) −15.4875 −0.596998 −0.298499 0.954410i \(-0.596486\pi\)
−0.298499 + 0.954410i \(0.596486\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −18.5997 −0.714845 −0.357422 0.933943i \(-0.616344\pi\)
−0.357422 + 0.933943i \(0.616344\pi\)
\(678\) 0 0
\(679\) −79.4473 −3.04891
\(680\) 0 0
\(681\) 12.1483 0.465526
\(682\) 0 0
\(683\) −14.4040 −0.551154 −0.275577 0.961279i \(-0.588869\pi\)
−0.275577 + 0.961279i \(0.588869\pi\)
\(684\) 0 0
\(685\) −2.94441 −0.112500
\(686\) 0 0
\(687\) −6.28231 −0.239685
\(688\) 0 0
\(689\) 4.73820 0.180511
\(690\) 0 0
\(691\) −33.9565 −1.29177 −0.645883 0.763436i \(-0.723511\pi\)
−0.645883 + 0.763436i \(0.723511\pi\)
\(692\) 0 0
\(693\) 21.1773 0.804458
\(694\) 0 0
\(695\) 7.02052 0.266303
\(696\) 0 0
\(697\) −0.482553 −0.0182780
\(698\) 0 0
\(699\) −15.3112 −0.579124
\(700\) 0 0
\(701\) 0.267938 0.0101199 0.00505994 0.999987i \(-0.498389\pi\)
0.00505994 + 0.999987i \(0.498389\pi\)
\(702\) 0 0
\(703\) −43.0349 −1.62309
\(704\) 0 0
\(705\) 9.80817 0.369397
\(706\) 0 0
\(707\) −35.3028 −1.32770
\(708\) 0 0
\(709\) 7.36069 0.276437 0.138218 0.990402i \(-0.455862\pi\)
0.138218 + 0.990402i \(0.455862\pi\)
\(710\) 0 0
\(711\) 6.23287 0.233751
\(712\) 0 0
\(713\) −2.29072 −0.0857883
\(714\) 0 0
\(715\) −11.0205 −0.412144
\(716\) 0 0
\(717\) −30.1978 −1.12776
\(718\) 0 0
\(719\) 30.3279 1.13104 0.565520 0.824735i \(-0.308676\pi\)
0.565520 + 0.824735i \(0.308676\pi\)
\(720\) 0 0
\(721\) 87.3400 3.25271
\(722\) 0 0
\(723\) 25.6475 0.953842
\(724\) 0 0
\(725\) 6.09171 0.226240
\(726\) 0 0
\(727\) 9.43415 0.349893 0.174947 0.984578i \(-0.444025\pi\)
0.174947 + 0.984578i \(0.444025\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 17.0928 0.632198
\(732\) 0 0
\(733\) 27.9877 1.03375 0.516875 0.856061i \(-0.327095\pi\)
0.516875 + 0.856061i \(0.327095\pi\)
\(734\) 0 0
\(735\) 16.8082 0.619979
\(736\) 0 0
\(737\) −45.4908 −1.67567
\(738\) 0 0
\(739\) 6.41628 0.236027 0.118013 0.993012i \(-0.462347\pi\)
0.118013 + 0.993012i \(0.462347\pi\)
\(740\) 0 0
\(741\) 18.8371 0.691998
\(742\) 0 0
\(743\) −16.5503 −0.607170 −0.303585 0.952804i \(-0.598184\pi\)
−0.303585 + 0.952804i \(0.598184\pi\)
\(744\) 0 0
\(745\) 8.49693 0.311303
\(746\) 0 0
\(747\) −6.38962 −0.233784
\(748\) 0 0
\(749\) 63.1605 2.30783
\(750\) 0 0
\(751\) −38.1711 −1.39288 −0.696442 0.717613i \(-0.745235\pi\)
−0.696442 + 0.717613i \(0.745235\pi\)
\(752\) 0 0
\(753\) −6.25565 −0.227969
\(754\) 0 0
\(755\) −3.52586 −0.128319
\(756\) 0 0
\(757\) 0.512527 0.0186281 0.00931405 0.999957i \(-0.497035\pi\)
0.00931405 + 0.999957i \(0.497035\pi\)
\(758\) 0 0
\(759\) −9.94214 −0.360877
\(760\) 0 0
\(761\) −1.92267 −0.0696966 −0.0348483 0.999393i \(-0.511095\pi\)
−0.0348483 + 0.999393i \(0.511095\pi\)
\(762\) 0 0
\(763\) −49.7998 −1.80287
\(764\) 0 0
\(765\) −2.63090 −0.0951203
\(766\) 0 0
\(767\) −20.0806 −0.725070
\(768\) 0 0
\(769\) −50.8164 −1.83249 −0.916243 0.400622i \(-0.868794\pi\)
−0.916243 + 0.400622i \(0.868794\pi\)
\(770\) 0 0
\(771\) 13.1545 0.473747
\(772\) 0 0
\(773\) 17.9506 0.645636 0.322818 0.946461i \(-0.395370\pi\)
0.322818 + 0.946461i \(0.395370\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −28.3051 −1.01544
\(778\) 0 0
\(779\) −1.36069 −0.0487518
\(780\) 0 0
\(781\) 13.7587 0.492326
\(782\) 0 0
\(783\) −6.09171 −0.217700
\(784\) 0 0
\(785\) −4.49693 −0.160502
\(786\) 0 0
\(787\) −6.68035 −0.238129 −0.119064 0.992887i \(-0.537989\pi\)
−0.119064 + 0.992887i \(0.537989\pi\)
\(788\) 0 0
\(789\) 29.4908 1.04990
\(790\) 0 0
\(791\) −46.8515 −1.66585
\(792\) 0 0
\(793\) 20.7115 0.735488
\(794\) 0 0
\(795\) −1.86603 −0.0661813
\(796\) 0 0
\(797\) −24.8865 −0.881527 −0.440763 0.897623i \(-0.645292\pi\)
−0.440763 + 0.897623i \(0.645292\pi\)
\(798\) 0 0
\(799\) 25.8043 0.912890
\(800\) 0 0
\(801\) −7.51026 −0.265362
\(802\) 0 0
\(803\) 67.5318 2.38315
\(804\) 0 0
\(805\) −11.1773 −0.393947
\(806\) 0 0
\(807\) 20.7454 0.730272
\(808\) 0 0
\(809\) −18.0027 −0.632940 −0.316470 0.948603i \(-0.602498\pi\)
−0.316470 + 0.948603i \(0.602498\pi\)
\(810\) 0 0
\(811\) −30.2700 −1.06292 −0.531462 0.847082i \(-0.678357\pi\)
−0.531462 + 0.847082i \(0.678357\pi\)
\(812\) 0 0
\(813\) 0.979481 0.0343519
\(814\) 0 0
\(815\) −15.3763 −0.538608
\(816\) 0 0
\(817\) 48.1978 1.68623
\(818\) 0 0
\(819\) 12.3896 0.432928
\(820\) 0 0
\(821\) 35.6235 1.24327 0.621635 0.783307i \(-0.286469\pi\)
0.621635 + 0.783307i \(0.286469\pi\)
\(822\) 0 0
\(823\) 53.9976 1.88224 0.941118 0.338078i \(-0.109777\pi\)
0.941118 + 0.338078i \(0.109777\pi\)
\(824\) 0 0
\(825\) 4.34017 0.151105
\(826\) 0 0
\(827\) 4.64527 0.161532 0.0807660 0.996733i \(-0.474263\pi\)
0.0807660 + 0.996733i \(0.474263\pi\)
\(828\) 0 0
\(829\) 44.6537 1.55089 0.775443 0.631417i \(-0.217526\pi\)
0.775443 + 0.631417i \(0.217526\pi\)
\(830\) 0 0
\(831\) −16.3246 −0.566293
\(832\) 0 0
\(833\) 44.2206 1.53215
\(834\) 0 0
\(835\) 10.2413 0.354414
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) −17.6814 −0.610429 −0.305215 0.952284i \(-0.598728\pi\)
−0.305215 + 0.952284i \(0.598728\pi\)
\(840\) 0 0
\(841\) 8.10892 0.279618
\(842\) 0 0
\(843\) −22.2823 −0.767444
\(844\) 0 0
\(845\) 6.55252 0.225414
\(846\) 0 0
\(847\) −38.2401 −1.31394
\(848\) 0 0
\(849\) −2.05664 −0.0705836
\(850\) 0 0
\(851\) 13.2885 0.455522
\(852\) 0 0
\(853\) −15.2495 −0.522133 −0.261067 0.965321i \(-0.584074\pi\)
−0.261067 + 0.965321i \(0.584074\pi\)
\(854\) 0 0
\(855\) −7.41855 −0.253709
\(856\) 0 0
\(857\) 26.7649 0.914270 0.457135 0.889397i \(-0.348876\pi\)
0.457135 + 0.889397i \(0.348876\pi\)
\(858\) 0 0
\(859\) 42.7747 1.45945 0.729727 0.683739i \(-0.239647\pi\)
0.729727 + 0.683739i \(0.239647\pi\)
\(860\) 0 0
\(861\) −0.894960 −0.0305002
\(862\) 0 0
\(863\) −34.6681 −1.18011 −0.590057 0.807361i \(-0.700895\pi\)
−0.590057 + 0.807361i \(0.700895\pi\)
\(864\) 0 0
\(865\) −7.07838 −0.240672
\(866\) 0 0
\(867\) 10.0784 0.342280
\(868\) 0 0
\(869\) −27.0517 −0.917667
\(870\) 0 0
\(871\) −26.6141 −0.901784
\(872\) 0 0
\(873\) 16.2823 0.551073
\(874\) 0 0
\(875\) 4.87936 0.164953
\(876\) 0 0
\(877\) −24.0000 −0.810422 −0.405211 0.914223i \(-0.632802\pi\)
−0.405211 + 0.914223i \(0.632802\pi\)
\(878\) 0 0
\(879\) −22.3630 −0.754284
\(880\) 0 0
\(881\) −12.8254 −0.432098 −0.216049 0.976383i \(-0.569317\pi\)
−0.216049 + 0.976383i \(0.569317\pi\)
\(882\) 0 0
\(883\) −33.5174 −1.12795 −0.563976 0.825791i \(-0.690729\pi\)
−0.563976 + 0.825791i \(0.690729\pi\)
\(884\) 0 0
\(885\) 7.90829 0.265834
\(886\) 0 0
\(887\) −7.55252 −0.253589 −0.126794 0.991929i \(-0.540469\pi\)
−0.126794 + 0.991929i \(0.540469\pi\)
\(888\) 0 0
\(889\) 76.1276 2.55324
\(890\) 0 0
\(891\) −4.34017 −0.145401
\(892\) 0 0
\(893\) 72.7624 2.43490
\(894\) 0 0
\(895\) 14.6225 0.488776
\(896\) 0 0
\(897\) −5.81658 −0.194210
\(898\) 0 0
\(899\) 6.09171 0.203170
\(900\) 0 0
\(901\) −4.90934 −0.163554
\(902\) 0 0
\(903\) 31.7009 1.05494
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) 1.97212 0.0654830 0.0327415 0.999464i \(-0.489576\pi\)
0.0327415 + 0.999464i \(0.489576\pi\)
\(908\) 0 0
\(909\) 7.23513 0.239974
\(910\) 0 0
\(911\) 44.3689 1.47001 0.735004 0.678063i \(-0.237180\pi\)
0.735004 + 0.678063i \(0.237180\pi\)
\(912\) 0 0
\(913\) 27.7321 0.917797
\(914\) 0 0
\(915\) −8.15676 −0.269654
\(916\) 0 0
\(917\) −46.5341 −1.53669
\(918\) 0 0
\(919\) −12.8494 −0.423862 −0.211931 0.977285i \(-0.567975\pi\)
−0.211931 + 0.977285i \(0.567975\pi\)
\(920\) 0 0
\(921\) −9.24620 −0.304673
\(922\) 0 0
\(923\) 8.04945 0.264951
\(924\) 0 0
\(925\) −5.80098 −0.190735
\(926\) 0 0
\(927\) −17.8999 −0.587909
\(928\) 0 0
\(929\) 19.2013 0.629974 0.314987 0.949096i \(-0.398000\pi\)
0.314987 + 0.949096i \(0.398000\pi\)
\(930\) 0 0
\(931\) 124.692 4.08662
\(932\) 0 0
\(933\) 9.24232 0.302580
\(934\) 0 0
\(935\) 11.4186 0.373427
\(936\) 0 0
\(937\) −59.0037 −1.92757 −0.963783 0.266686i \(-0.914071\pi\)
−0.963783 + 0.266686i \(0.914071\pi\)
\(938\) 0 0
\(939\) −3.89988 −0.127268
\(940\) 0 0
\(941\) −10.7142 −0.349273 −0.174636 0.984633i \(-0.555875\pi\)
−0.174636 + 0.984633i \(0.555875\pi\)
\(942\) 0 0
\(943\) 0.420159 0.0136823
\(944\) 0 0
\(945\) −4.87936 −0.158726
\(946\) 0 0
\(947\) 7.23901 0.235236 0.117618 0.993059i \(-0.462474\pi\)
0.117618 + 0.993059i \(0.462474\pi\)
\(948\) 0 0
\(949\) 39.5090 1.28252
\(950\) 0 0
\(951\) −3.62475 −0.117541
\(952\) 0 0
\(953\) −44.1361 −1.42971 −0.714854 0.699274i \(-0.753507\pi\)
−0.714854 + 0.699274i \(0.753507\pi\)
\(954\) 0 0
\(955\) 1.75154 0.0566784
\(956\) 0 0
\(957\) 26.4391 0.854654
\(958\) 0 0
\(959\) −14.3668 −0.463929
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −12.9444 −0.417128
\(964\) 0 0
\(965\) 4.86376 0.156570
\(966\) 0 0
\(967\) 10.3837 0.333916 0.166958 0.985964i \(-0.446606\pi\)
0.166958 + 0.985964i \(0.446606\pi\)
\(968\) 0 0
\(969\) −19.5174 −0.626991
\(970\) 0 0
\(971\) 49.9448 1.60280 0.801402 0.598126i \(-0.204088\pi\)
0.801402 + 0.598126i \(0.204088\pi\)
\(972\) 0 0
\(973\) 34.2557 1.09819
\(974\) 0 0
\(975\) 2.53919 0.0813191
\(976\) 0 0
\(977\) 32.7214 1.04685 0.523425 0.852072i \(-0.324654\pi\)
0.523425 + 0.852072i \(0.324654\pi\)
\(978\) 0 0
\(979\) 32.5958 1.04177
\(980\) 0 0
\(981\) 10.2062 0.325859
\(982\) 0 0
\(983\) 40.3500 1.28697 0.643483 0.765461i \(-0.277489\pi\)
0.643483 + 0.765461i \(0.277489\pi\)
\(984\) 0 0
\(985\) 20.3051 0.646974
\(986\) 0 0
\(987\) 47.8576 1.52332
\(988\) 0 0
\(989\) −14.8827 −0.473242
\(990\) 0 0
\(991\) −7.81658 −0.248302 −0.124151 0.992263i \(-0.539621\pi\)
−0.124151 + 0.992263i \(0.539621\pi\)
\(992\) 0 0
\(993\) −24.1217 −0.765478
\(994\) 0 0
\(995\) −2.04945 −0.0649719
\(996\) 0 0
\(997\) −40.2245 −1.27392 −0.636961 0.770896i \(-0.719809\pi\)
−0.636961 + 0.770896i \(0.719809\pi\)
\(998\) 0 0
\(999\) 5.80098 0.183535
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bm.1.1 3
4.3 odd 2 465.2.a.g.1.2 3
12.11 even 2 1395.2.a.h.1.2 3
20.3 even 4 2325.2.c.l.1024.2 6
20.7 even 4 2325.2.c.l.1024.5 6
20.19 odd 2 2325.2.a.p.1.2 3
60.59 even 2 6975.2.a.bi.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.g.1.2 3 4.3 odd 2
1395.2.a.h.1.2 3 12.11 even 2
2325.2.a.p.1.2 3 20.19 odd 2
2325.2.c.l.1024.2 6 20.3 even 4
2325.2.c.l.1024.5 6 20.7 even 4
6975.2.a.bi.1.2 3 60.59 even 2
7440.2.a.bm.1.1 3 1.1 even 1 trivial