Properties

Label 7440.2.a.bj.1.1
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7440,2,Mod(1,7440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7440.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,-2,0,0,0,2,0,0,0,-4,0,-2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1860)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -2.44949 q^{7} +1.00000 q^{9} -4.44949 q^{13} -1.00000 q^{15} +2.00000 q^{17} +4.89898 q^{19} -2.44949 q^{21} +2.89898 q^{23} +1.00000 q^{25} +1.00000 q^{27} +0.449490 q^{29} -1.00000 q^{31} +2.44949 q^{35} -3.55051 q^{37} -4.44949 q^{39} +7.79796 q^{41} +3.10102 q^{43} -1.00000 q^{45} -8.89898 q^{47} -1.00000 q^{49} +2.00000 q^{51} -6.00000 q^{53} +4.89898 q^{57} +7.34847 q^{59} -6.89898 q^{61} -2.44949 q^{63} +4.44949 q^{65} +6.44949 q^{67} +2.89898 q^{69} -1.55051 q^{71} -12.4495 q^{73} +1.00000 q^{75} +2.89898 q^{79} +1.00000 q^{81} +1.10102 q^{83} -2.00000 q^{85} +0.449490 q^{87} -4.44949 q^{89} +10.8990 q^{91} -1.00000 q^{93} -4.89898 q^{95} -5.10102 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{5} + 2 q^{9} - 4 q^{13} - 2 q^{15} + 4 q^{17} - 4 q^{23} + 2 q^{25} + 2 q^{27} - 4 q^{29} - 2 q^{31} - 12 q^{37} - 4 q^{39} - 4 q^{41} + 16 q^{43} - 2 q^{45} - 8 q^{47} - 2 q^{49} + 4 q^{51}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.44949 −0.925820 −0.462910 0.886405i \(-0.653195\pi\)
−0.462910 + 0.886405i \(0.653195\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −4.44949 −1.23407 −0.617033 0.786937i \(-0.711666\pi\)
−0.617033 + 0.786937i \(0.711666\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 4.89898 1.12390 0.561951 0.827170i \(-0.310051\pi\)
0.561951 + 0.827170i \(0.310051\pi\)
\(20\) 0 0
\(21\) −2.44949 −0.534522
\(22\) 0 0
\(23\) 2.89898 0.604479 0.302240 0.953232i \(-0.402266\pi\)
0.302240 + 0.953232i \(0.402266\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0.449490 0.0834681 0.0417341 0.999129i \(-0.486712\pi\)
0.0417341 + 0.999129i \(0.486712\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.44949 0.414039
\(36\) 0 0
\(37\) −3.55051 −0.583700 −0.291850 0.956464i \(-0.594271\pi\)
−0.291850 + 0.956464i \(0.594271\pi\)
\(38\) 0 0
\(39\) −4.44949 −0.712489
\(40\) 0 0
\(41\) 7.79796 1.21784 0.608918 0.793233i \(-0.291604\pi\)
0.608918 + 0.793233i \(0.291604\pi\)
\(42\) 0 0
\(43\) 3.10102 0.472901 0.236451 0.971644i \(-0.424016\pi\)
0.236451 + 0.971644i \(0.424016\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −8.89898 −1.29805 −0.649025 0.760767i \(-0.724823\pi\)
−0.649025 + 0.760767i \(0.724823\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.89898 0.648886
\(58\) 0 0
\(59\) 7.34847 0.956689 0.478345 0.878172i \(-0.341237\pi\)
0.478345 + 0.878172i \(0.341237\pi\)
\(60\) 0 0
\(61\) −6.89898 −0.883324 −0.441662 0.897182i \(-0.645611\pi\)
−0.441662 + 0.897182i \(0.645611\pi\)
\(62\) 0 0
\(63\) −2.44949 −0.308607
\(64\) 0 0
\(65\) 4.44949 0.551891
\(66\) 0 0
\(67\) 6.44949 0.787931 0.393965 0.919125i \(-0.371103\pi\)
0.393965 + 0.919125i \(0.371103\pi\)
\(68\) 0 0
\(69\) 2.89898 0.348996
\(70\) 0 0
\(71\) −1.55051 −0.184012 −0.0920059 0.995758i \(-0.529328\pi\)
−0.0920059 + 0.995758i \(0.529328\pi\)
\(72\) 0 0
\(73\) −12.4495 −1.45710 −0.728551 0.684991i \(-0.759806\pi\)
−0.728551 + 0.684991i \(0.759806\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.89898 0.326161 0.163080 0.986613i \(-0.447857\pi\)
0.163080 + 0.986613i \(0.447857\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.10102 0.120853 0.0604264 0.998173i \(-0.480754\pi\)
0.0604264 + 0.998173i \(0.480754\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 0.449490 0.0481904
\(88\) 0 0
\(89\) −4.44949 −0.471645 −0.235822 0.971796i \(-0.575778\pi\)
−0.235822 + 0.971796i \(0.575778\pi\)
\(90\) 0 0
\(91\) 10.8990 1.14252
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) −4.89898 −0.502625
\(96\) 0 0
\(97\) −5.10102 −0.517930 −0.258965 0.965887i \(-0.583381\pi\)
−0.258965 + 0.965887i \(0.583381\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 5.55051 0.546908 0.273454 0.961885i \(-0.411834\pi\)
0.273454 + 0.961885i \(0.411834\pi\)
\(104\) 0 0
\(105\) 2.44949 0.239046
\(106\) 0 0
\(107\) 4.89898 0.473602 0.236801 0.971558i \(-0.423901\pi\)
0.236801 + 0.971558i \(0.423901\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) −3.55051 −0.337000
\(112\) 0 0
\(113\) −15.7980 −1.48615 −0.743073 0.669210i \(-0.766633\pi\)
−0.743073 + 0.669210i \(0.766633\pi\)
\(114\) 0 0
\(115\) −2.89898 −0.270331
\(116\) 0 0
\(117\) −4.44949 −0.411355
\(118\) 0 0
\(119\) −4.89898 −0.449089
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 7.79796 0.703118
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.89898 0.789657 0.394828 0.918755i \(-0.370804\pi\)
0.394828 + 0.918755i \(0.370804\pi\)
\(128\) 0 0
\(129\) 3.10102 0.273030
\(130\) 0 0
\(131\) −12.2474 −1.07006 −0.535032 0.844832i \(-0.679701\pi\)
−0.535032 + 0.844832i \(0.679701\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −14.8990 −1.27291 −0.636453 0.771316i \(-0.719599\pi\)
−0.636453 + 0.771316i \(0.719599\pi\)
\(138\) 0 0
\(139\) −13.7980 −1.17033 −0.585164 0.810915i \(-0.698970\pi\)
−0.585164 + 0.810915i \(0.698970\pi\)
\(140\) 0 0
\(141\) −8.89898 −0.749429
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.449490 −0.0373281
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) 0.202041 0.0165518 0.00827592 0.999966i \(-0.497366\pi\)
0.00827592 + 0.999966i \(0.497366\pi\)
\(150\) 0 0
\(151\) 10.8990 0.886946 0.443473 0.896288i \(-0.353746\pi\)
0.443473 + 0.896288i \(0.353746\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) −6.89898 −0.550599 −0.275299 0.961359i \(-0.588777\pi\)
−0.275299 + 0.961359i \(0.588777\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −7.10102 −0.559639
\(162\) 0 0
\(163\) −13.1464 −1.02971 −0.514854 0.857278i \(-0.672154\pi\)
−0.514854 + 0.857278i \(0.672154\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) 6.79796 0.522920
\(170\) 0 0
\(171\) 4.89898 0.374634
\(172\) 0 0
\(173\) −0.202041 −0.0153609 −0.00768045 0.999971i \(-0.502445\pi\)
−0.00768045 + 0.999971i \(0.502445\pi\)
\(174\) 0 0
\(175\) −2.44949 −0.185164
\(176\) 0 0
\(177\) 7.34847 0.552345
\(178\) 0 0
\(179\) 15.5959 1.16569 0.582847 0.812582i \(-0.301939\pi\)
0.582847 + 0.812582i \(0.301939\pi\)
\(180\) 0 0
\(181\) −2.89898 −0.215479 −0.107740 0.994179i \(-0.534361\pi\)
−0.107740 + 0.994179i \(0.534361\pi\)
\(182\) 0 0
\(183\) −6.89898 −0.509987
\(184\) 0 0
\(185\) 3.55051 0.261039
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.44949 −0.178174
\(190\) 0 0
\(191\) −1.55051 −0.112191 −0.0560955 0.998425i \(-0.517865\pi\)
−0.0560955 + 0.998425i \(0.517865\pi\)
\(192\) 0 0
\(193\) −8.69694 −0.626019 −0.313010 0.949750i \(-0.601337\pi\)
−0.313010 + 0.949750i \(0.601337\pi\)
\(194\) 0 0
\(195\) 4.44949 0.318635
\(196\) 0 0
\(197\) −20.6969 −1.47460 −0.737298 0.675568i \(-0.763899\pi\)
−0.737298 + 0.675568i \(0.763899\pi\)
\(198\) 0 0
\(199\) −24.6969 −1.75072 −0.875360 0.483472i \(-0.839375\pi\)
−0.875360 + 0.483472i \(0.839375\pi\)
\(200\) 0 0
\(201\) 6.44949 0.454912
\(202\) 0 0
\(203\) −1.10102 −0.0772765
\(204\) 0 0
\(205\) −7.79796 −0.544633
\(206\) 0 0
\(207\) 2.89898 0.201493
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −20.4949 −1.41093 −0.705463 0.708746i \(-0.749261\pi\)
−0.705463 + 0.708746i \(0.749261\pi\)
\(212\) 0 0
\(213\) −1.55051 −0.106239
\(214\) 0 0
\(215\) −3.10102 −0.211488
\(216\) 0 0
\(217\) 2.44949 0.166282
\(218\) 0 0
\(219\) −12.4495 −0.841259
\(220\) 0 0
\(221\) −8.89898 −0.598610
\(222\) 0 0
\(223\) 9.79796 0.656120 0.328060 0.944657i \(-0.393605\pi\)
0.328060 + 0.944657i \(0.393605\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −21.7980 −1.44678 −0.723391 0.690439i \(-0.757417\pi\)
−0.723391 + 0.690439i \(0.757417\pi\)
\(228\) 0 0
\(229\) 19.7980 1.30829 0.654143 0.756371i \(-0.273029\pi\)
0.654143 + 0.756371i \(0.273029\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.20204 −0.144261 −0.0721303 0.997395i \(-0.522980\pi\)
−0.0721303 + 0.997395i \(0.522980\pi\)
\(234\) 0 0
\(235\) 8.89898 0.580505
\(236\) 0 0
\(237\) 2.89898 0.188309
\(238\) 0 0
\(239\) −16.8990 −1.09310 −0.546552 0.837425i \(-0.684060\pi\)
−0.546552 + 0.837425i \(0.684060\pi\)
\(240\) 0 0
\(241\) 3.79796 0.244648 0.122324 0.992490i \(-0.460965\pi\)
0.122324 + 0.992490i \(0.460965\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −21.7980 −1.38697
\(248\) 0 0
\(249\) 1.10102 0.0697743
\(250\) 0 0
\(251\) 9.79796 0.618442 0.309221 0.950990i \(-0.399932\pi\)
0.309221 + 0.950990i \(0.399932\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.00000 −0.125245
\(256\) 0 0
\(257\) 16.0000 0.998053 0.499026 0.866587i \(-0.333691\pi\)
0.499026 + 0.866587i \(0.333691\pi\)
\(258\) 0 0
\(259\) 8.69694 0.540401
\(260\) 0 0
\(261\) 0.449490 0.0278227
\(262\) 0 0
\(263\) −29.3939 −1.81250 −0.906252 0.422738i \(-0.861069\pi\)
−0.906252 + 0.422738i \(0.861069\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) −4.44949 −0.272304
\(268\) 0 0
\(269\) 12.0454 0.734421 0.367211 0.930138i \(-0.380313\pi\)
0.367211 + 0.930138i \(0.380313\pi\)
\(270\) 0 0
\(271\) 17.7980 1.08115 0.540575 0.841296i \(-0.318207\pi\)
0.540575 + 0.841296i \(0.318207\pi\)
\(272\) 0 0
\(273\) 10.8990 0.659636
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.1464 0.669724 0.334862 0.942267i \(-0.391310\pi\)
0.334862 + 0.942267i \(0.391310\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 14.8990 0.888799 0.444399 0.895829i \(-0.353417\pi\)
0.444399 + 0.895829i \(0.353417\pi\)
\(282\) 0 0
\(283\) 9.55051 0.567719 0.283859 0.958866i \(-0.408385\pi\)
0.283859 + 0.958866i \(0.408385\pi\)
\(284\) 0 0
\(285\) −4.89898 −0.290191
\(286\) 0 0
\(287\) −19.1010 −1.12750
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −5.10102 −0.299027
\(292\) 0 0
\(293\) −21.7980 −1.27345 −0.636725 0.771091i \(-0.719711\pi\)
−0.636725 + 0.771091i \(0.719711\pi\)
\(294\) 0 0
\(295\) −7.34847 −0.427844
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.8990 −0.745967
\(300\) 0 0
\(301\) −7.59592 −0.437821
\(302\) 0 0
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) 6.89898 0.395034
\(306\) 0 0
\(307\) 22.4495 1.28126 0.640630 0.767850i \(-0.278673\pi\)
0.640630 + 0.767850i \(0.278673\pi\)
\(308\) 0 0
\(309\) 5.55051 0.315757
\(310\) 0 0
\(311\) −4.65153 −0.263764 −0.131882 0.991265i \(-0.542102\pi\)
−0.131882 + 0.991265i \(0.542102\pi\)
\(312\) 0 0
\(313\) −13.3485 −0.754500 −0.377250 0.926111i \(-0.623130\pi\)
−0.377250 + 0.926111i \(0.623130\pi\)
\(314\) 0 0
\(315\) 2.44949 0.138013
\(316\) 0 0
\(317\) −15.5959 −0.875954 −0.437977 0.898986i \(-0.644305\pi\)
−0.437977 + 0.898986i \(0.644305\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 4.89898 0.273434
\(322\) 0 0
\(323\) 9.79796 0.545173
\(324\) 0 0
\(325\) −4.44949 −0.246813
\(326\) 0 0
\(327\) −4.00000 −0.221201
\(328\) 0 0
\(329\) 21.7980 1.20176
\(330\) 0 0
\(331\) 1.10102 0.0605176 0.0302588 0.999542i \(-0.490367\pi\)
0.0302588 + 0.999542i \(0.490367\pi\)
\(332\) 0 0
\(333\) −3.55051 −0.194567
\(334\) 0 0
\(335\) −6.44949 −0.352373
\(336\) 0 0
\(337\) −19.1464 −1.04297 −0.521486 0.853260i \(-0.674622\pi\)
−0.521486 + 0.853260i \(0.674622\pi\)
\(338\) 0 0
\(339\) −15.7980 −0.858027
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.5959 1.05808
\(344\) 0 0
\(345\) −2.89898 −0.156076
\(346\) 0 0
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) 14.2020 0.760218 0.380109 0.924942i \(-0.375887\pi\)
0.380109 + 0.924942i \(0.375887\pi\)
\(350\) 0 0
\(351\) −4.44949 −0.237496
\(352\) 0 0
\(353\) −15.7980 −0.840841 −0.420420 0.907329i \(-0.638117\pi\)
−0.420420 + 0.907329i \(0.638117\pi\)
\(354\) 0 0
\(355\) 1.55051 0.0822925
\(356\) 0 0
\(357\) −4.89898 −0.259281
\(358\) 0 0
\(359\) −9.55051 −0.504057 −0.252028 0.967720i \(-0.581098\pi\)
−0.252028 + 0.967720i \(0.581098\pi\)
\(360\) 0 0
\(361\) 5.00000 0.263158
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) 12.4495 0.651636
\(366\) 0 0
\(367\) 11.5959 0.605302 0.302651 0.953101i \(-0.402128\pi\)
0.302651 + 0.953101i \(0.402128\pi\)
\(368\) 0 0
\(369\) 7.79796 0.405946
\(370\) 0 0
\(371\) 14.6969 0.763027
\(372\) 0 0
\(373\) −3.30306 −0.171026 −0.0855130 0.996337i \(-0.527253\pi\)
−0.0855130 + 0.996337i \(0.527253\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) −16.8990 −0.868042 −0.434021 0.900903i \(-0.642906\pi\)
−0.434021 + 0.900903i \(0.642906\pi\)
\(380\) 0 0
\(381\) 8.89898 0.455909
\(382\) 0 0
\(383\) −10.8990 −0.556912 −0.278456 0.960449i \(-0.589823\pi\)
−0.278456 + 0.960449i \(0.589823\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.10102 0.157634
\(388\) 0 0
\(389\) −6.65153 −0.337246 −0.168623 0.985681i \(-0.553932\pi\)
−0.168623 + 0.985681i \(0.553932\pi\)
\(390\) 0 0
\(391\) 5.79796 0.293215
\(392\) 0 0
\(393\) −12.2474 −0.617802
\(394\) 0 0
\(395\) −2.89898 −0.145863
\(396\) 0 0
\(397\) 11.7980 0.592123 0.296061 0.955169i \(-0.404327\pi\)
0.296061 + 0.955169i \(0.404327\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) 29.8434 1.49031 0.745153 0.666893i \(-0.232376\pi\)
0.745153 + 0.666893i \(0.232376\pi\)
\(402\) 0 0
\(403\) 4.44949 0.221645
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.696938 −0.0344614 −0.0172307 0.999852i \(-0.505485\pi\)
−0.0172307 + 0.999852i \(0.505485\pi\)
\(410\) 0 0
\(411\) −14.8990 −0.734912
\(412\) 0 0
\(413\) −18.0000 −0.885722
\(414\) 0 0
\(415\) −1.10102 −0.0540470
\(416\) 0 0
\(417\) −13.7980 −0.675689
\(418\) 0 0
\(419\) −26.4495 −1.29214 −0.646071 0.763277i \(-0.723589\pi\)
−0.646071 + 0.763277i \(0.723589\pi\)
\(420\) 0 0
\(421\) 5.79796 0.282575 0.141288 0.989969i \(-0.454876\pi\)
0.141288 + 0.989969i \(0.454876\pi\)
\(422\) 0 0
\(423\) −8.89898 −0.432683
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 16.8990 0.817799
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.5505 0.845378 0.422689 0.906275i \(-0.361086\pi\)
0.422689 + 0.906275i \(0.361086\pi\)
\(432\) 0 0
\(433\) 31.1464 1.49680 0.748401 0.663247i \(-0.230822\pi\)
0.748401 + 0.663247i \(0.230822\pi\)
\(434\) 0 0
\(435\) −0.449490 −0.0215514
\(436\) 0 0
\(437\) 14.2020 0.679376
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 4.44949 0.210926
\(446\) 0 0
\(447\) 0.202041 0.00955621
\(448\) 0 0
\(449\) −3.14643 −0.148489 −0.0742446 0.997240i \(-0.523655\pi\)
−0.0742446 + 0.997240i \(0.523655\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 10.8990 0.512079
\(454\) 0 0
\(455\) −10.8990 −0.510952
\(456\) 0 0
\(457\) 5.34847 0.250191 0.125095 0.992145i \(-0.460076\pi\)
0.125095 + 0.992145i \(0.460076\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 3.55051 0.165364 0.0826819 0.996576i \(-0.473651\pi\)
0.0826819 + 0.996576i \(0.473651\pi\)
\(462\) 0 0
\(463\) −1.30306 −0.0605584 −0.0302792 0.999541i \(-0.509640\pi\)
−0.0302792 + 0.999541i \(0.509640\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) −19.1010 −0.883890 −0.441945 0.897042i \(-0.645711\pi\)
−0.441945 + 0.897042i \(0.645711\pi\)
\(468\) 0 0
\(469\) −15.7980 −0.729482
\(470\) 0 0
\(471\) −6.89898 −0.317888
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.89898 0.224781
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −19.3485 −0.884054 −0.442027 0.897002i \(-0.645740\pi\)
−0.442027 + 0.897002i \(0.645740\pi\)
\(480\) 0 0
\(481\) 15.7980 0.720325
\(482\) 0 0
\(483\) −7.10102 −0.323108
\(484\) 0 0
\(485\) 5.10102 0.231625
\(486\) 0 0
\(487\) 32.8990 1.49080 0.745398 0.666620i \(-0.232260\pi\)
0.745398 + 0.666620i \(0.232260\pi\)
\(488\) 0 0
\(489\) −13.1464 −0.594502
\(490\) 0 0
\(491\) 11.1010 0.500982 0.250491 0.968119i \(-0.419408\pi\)
0.250491 + 0.968119i \(0.419408\pi\)
\(492\) 0 0
\(493\) 0.898979 0.0404880
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.79796 0.170362
\(498\) 0 0
\(499\) −13.7980 −0.617681 −0.308841 0.951114i \(-0.599941\pi\)
−0.308841 + 0.951114i \(0.599941\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) −27.1010 −1.20837 −0.604187 0.796842i \(-0.706502\pi\)
−0.604187 + 0.796842i \(0.706502\pi\)
\(504\) 0 0
\(505\) −2.00000 −0.0889988
\(506\) 0 0
\(507\) 6.79796 0.301908
\(508\) 0 0
\(509\) 6.24745 0.276913 0.138457 0.990368i \(-0.455786\pi\)
0.138457 + 0.990368i \(0.455786\pi\)
\(510\) 0 0
\(511\) 30.4949 1.34901
\(512\) 0 0
\(513\) 4.89898 0.216295
\(514\) 0 0
\(515\) −5.55051 −0.244585
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.202041 −0.00886862
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 11.1010 0.485414 0.242707 0.970100i \(-0.421965\pi\)
0.242707 + 0.970100i \(0.421965\pi\)
\(524\) 0 0
\(525\) −2.44949 −0.106904
\(526\) 0 0
\(527\) −2.00000 −0.0871214
\(528\) 0 0
\(529\) −14.5959 −0.634605
\(530\) 0 0
\(531\) 7.34847 0.318896
\(532\) 0 0
\(533\) −34.6969 −1.50289
\(534\) 0 0
\(535\) −4.89898 −0.211801
\(536\) 0 0
\(537\) 15.5959 0.673014
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.404082 −0.0173728 −0.00868642 0.999962i \(-0.502765\pi\)
−0.00868642 + 0.999962i \(0.502765\pi\)
\(542\) 0 0
\(543\) −2.89898 −0.124407
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) −30.9444 −1.32309 −0.661543 0.749907i \(-0.730098\pi\)
−0.661543 + 0.749907i \(0.730098\pi\)
\(548\) 0 0
\(549\) −6.89898 −0.294441
\(550\) 0 0
\(551\) 2.20204 0.0938101
\(552\) 0 0
\(553\) −7.10102 −0.301966
\(554\) 0 0
\(555\) 3.55051 0.150711
\(556\) 0 0
\(557\) 21.5959 0.915048 0.457524 0.889197i \(-0.348736\pi\)
0.457524 + 0.889197i \(0.348736\pi\)
\(558\) 0 0
\(559\) −13.7980 −0.583591
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.898979 −0.0378875 −0.0189437 0.999821i \(-0.506030\pi\)
−0.0189437 + 0.999821i \(0.506030\pi\)
\(564\) 0 0
\(565\) 15.7980 0.664625
\(566\) 0 0
\(567\) −2.44949 −0.102869
\(568\) 0 0
\(569\) −40.4495 −1.69573 −0.847865 0.530212i \(-0.822113\pi\)
−0.847865 + 0.530212i \(0.822113\pi\)
\(570\) 0 0
\(571\) 10.2020 0.426942 0.213471 0.976949i \(-0.431523\pi\)
0.213471 + 0.976949i \(0.431523\pi\)
\(572\) 0 0
\(573\) −1.55051 −0.0647735
\(574\) 0 0
\(575\) 2.89898 0.120896
\(576\) 0 0
\(577\) 2.40408 0.100083 0.0500416 0.998747i \(-0.484065\pi\)
0.0500416 + 0.998747i \(0.484065\pi\)
\(578\) 0 0
\(579\) −8.69694 −0.361432
\(580\) 0 0
\(581\) −2.69694 −0.111888
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 4.44949 0.183964
\(586\) 0 0
\(587\) −15.5959 −0.643712 −0.321856 0.946789i \(-0.604307\pi\)
−0.321856 + 0.946789i \(0.604307\pi\)
\(588\) 0 0
\(589\) −4.89898 −0.201859
\(590\) 0 0
\(591\) −20.6969 −0.851358
\(592\) 0 0
\(593\) −33.5959 −1.37962 −0.689809 0.723991i \(-0.742306\pi\)
−0.689809 + 0.723991i \(0.742306\pi\)
\(594\) 0 0
\(595\) 4.89898 0.200839
\(596\) 0 0
\(597\) −24.6969 −1.01078
\(598\) 0 0
\(599\) 14.9444 0.610611 0.305306 0.952254i \(-0.401241\pi\)
0.305306 + 0.952254i \(0.401241\pi\)
\(600\) 0 0
\(601\) 3.30306 0.134735 0.0673673 0.997728i \(-0.478540\pi\)
0.0673673 + 0.997728i \(0.478540\pi\)
\(602\) 0 0
\(603\) 6.44949 0.262644
\(604\) 0 0
\(605\) 11.0000 0.447214
\(606\) 0 0
\(607\) 42.9444 1.74306 0.871529 0.490343i \(-0.163129\pi\)
0.871529 + 0.490343i \(0.163129\pi\)
\(608\) 0 0
\(609\) −1.10102 −0.0446156
\(610\) 0 0
\(611\) 39.5959 1.60188
\(612\) 0 0
\(613\) 36.0454 1.45586 0.727930 0.685651i \(-0.240482\pi\)
0.727930 + 0.685651i \(0.240482\pi\)
\(614\) 0 0
\(615\) −7.79796 −0.314444
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −46.4949 −1.86879 −0.934394 0.356242i \(-0.884058\pi\)
−0.934394 + 0.356242i \(0.884058\pi\)
\(620\) 0 0
\(621\) 2.89898 0.116332
\(622\) 0 0
\(623\) 10.8990 0.436658
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.10102 −0.283136
\(630\) 0 0
\(631\) −3.59592 −0.143151 −0.0715756 0.997435i \(-0.522803\pi\)
−0.0715756 + 0.997435i \(0.522803\pi\)
\(632\) 0 0
\(633\) −20.4949 −0.814599
\(634\) 0 0
\(635\) −8.89898 −0.353145
\(636\) 0 0
\(637\) 4.44949 0.176295
\(638\) 0 0
\(639\) −1.55051 −0.0613372
\(640\) 0 0
\(641\) −44.0454 −1.73969 −0.869845 0.493326i \(-0.835781\pi\)
−0.869845 + 0.493326i \(0.835781\pi\)
\(642\) 0 0
\(643\) 20.4949 0.808240 0.404120 0.914706i \(-0.367578\pi\)
0.404120 + 0.914706i \(0.367578\pi\)
\(644\) 0 0
\(645\) −3.10102 −0.122103
\(646\) 0 0
\(647\) −19.5959 −0.770395 −0.385198 0.922834i \(-0.625867\pi\)
−0.385198 + 0.922834i \(0.625867\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 2.44949 0.0960031
\(652\) 0 0
\(653\) 4.00000 0.156532 0.0782660 0.996933i \(-0.475062\pi\)
0.0782660 + 0.996933i \(0.475062\pi\)
\(654\) 0 0
\(655\) 12.2474 0.478547
\(656\) 0 0
\(657\) −12.4495 −0.485701
\(658\) 0 0
\(659\) −0.651531 −0.0253800 −0.0126900 0.999919i \(-0.504039\pi\)
−0.0126900 + 0.999919i \(0.504039\pi\)
\(660\) 0 0
\(661\) 39.3939 1.53224 0.766122 0.642695i \(-0.222184\pi\)
0.766122 + 0.642695i \(0.222184\pi\)
\(662\) 0 0
\(663\) −8.89898 −0.345608
\(664\) 0 0
\(665\) 12.0000 0.465340
\(666\) 0 0
\(667\) 1.30306 0.0504547
\(668\) 0 0
\(669\) 9.79796 0.378811
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 28.9444 1.11572 0.557862 0.829934i \(-0.311622\pi\)
0.557862 + 0.829934i \(0.311622\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −8.20204 −0.315230 −0.157615 0.987501i \(-0.550381\pi\)
−0.157615 + 0.987501i \(0.550381\pi\)
\(678\) 0 0
\(679\) 12.4949 0.479510
\(680\) 0 0
\(681\) −21.7980 −0.835300
\(682\) 0 0
\(683\) −3.59592 −0.137594 −0.0687970 0.997631i \(-0.521916\pi\)
−0.0687970 + 0.997631i \(0.521916\pi\)
\(684\) 0 0
\(685\) 14.8990 0.569261
\(686\) 0 0
\(687\) 19.7980 0.755339
\(688\) 0 0
\(689\) 26.6969 1.01707
\(690\) 0 0
\(691\) 45.3939 1.72686 0.863432 0.504465i \(-0.168310\pi\)
0.863432 + 0.504465i \(0.168310\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.7980 0.523386
\(696\) 0 0
\(697\) 15.5959 0.590738
\(698\) 0 0
\(699\) −2.20204 −0.0832888
\(700\) 0 0
\(701\) 44.6969 1.68818 0.844090 0.536201i \(-0.180141\pi\)
0.844090 + 0.536201i \(0.180141\pi\)
\(702\) 0 0
\(703\) −17.3939 −0.656022
\(704\) 0 0
\(705\) 8.89898 0.335155
\(706\) 0 0
\(707\) −4.89898 −0.184245
\(708\) 0 0
\(709\) −7.79796 −0.292858 −0.146429 0.989221i \(-0.546778\pi\)
−0.146429 + 0.989221i \(0.546778\pi\)
\(710\) 0 0
\(711\) 2.89898 0.108720
\(712\) 0 0
\(713\) −2.89898 −0.108568
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −16.8990 −0.631104
\(718\) 0 0
\(719\) −17.7980 −0.663752 −0.331876 0.943323i \(-0.607682\pi\)
−0.331876 + 0.943323i \(0.607682\pi\)
\(720\) 0 0
\(721\) −13.5959 −0.506338
\(722\) 0 0
\(723\) 3.79796 0.141248
\(724\) 0 0
\(725\) 0.449490 0.0166936
\(726\) 0 0
\(727\) −17.1464 −0.635926 −0.317963 0.948103i \(-0.602999\pi\)
−0.317963 + 0.948103i \(0.602999\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 6.20204 0.229391
\(732\) 0 0
\(733\) 10.4041 0.384284 0.192142 0.981367i \(-0.438457\pi\)
0.192142 + 0.981367i \(0.438457\pi\)
\(734\) 0 0
\(735\) 1.00000 0.0368856
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 40.6969 1.49706 0.748531 0.663100i \(-0.230760\pi\)
0.748531 + 0.663100i \(0.230760\pi\)
\(740\) 0 0
\(741\) −21.7980 −0.800768
\(742\) 0 0
\(743\) 1.79796 0.0659607 0.0329804 0.999456i \(-0.489500\pi\)
0.0329804 + 0.999456i \(0.489500\pi\)
\(744\) 0 0
\(745\) −0.202041 −0.00740221
\(746\) 0 0
\(747\) 1.10102 0.0402842
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 5.79796 0.211571 0.105785 0.994389i \(-0.466264\pi\)
0.105785 + 0.994389i \(0.466264\pi\)
\(752\) 0 0
\(753\) 9.79796 0.357057
\(754\) 0 0
\(755\) −10.8990 −0.396654
\(756\) 0 0
\(757\) −12.4495 −0.452484 −0.226242 0.974071i \(-0.572644\pi\)
−0.226242 + 0.974071i \(0.572644\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −37.8434 −1.37182 −0.685910 0.727686i \(-0.740596\pi\)
−0.685910 + 0.727686i \(0.740596\pi\)
\(762\) 0 0
\(763\) 9.79796 0.354710
\(764\) 0 0
\(765\) −2.00000 −0.0723102
\(766\) 0 0
\(767\) −32.6969 −1.18062
\(768\) 0 0
\(769\) 33.7980 1.21879 0.609393 0.792868i \(-0.291413\pi\)
0.609393 + 0.792868i \(0.291413\pi\)
\(770\) 0 0
\(771\) 16.0000 0.576226
\(772\) 0 0
\(773\) −10.0000 −0.359675 −0.179838 0.983696i \(-0.557557\pi\)
−0.179838 + 0.983696i \(0.557557\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) 8.69694 0.312001
\(778\) 0 0
\(779\) 38.2020 1.36873
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.449490 0.0160635
\(784\) 0 0
\(785\) 6.89898 0.246235
\(786\) 0 0
\(787\) 47.1918 1.68221 0.841104 0.540874i \(-0.181906\pi\)
0.841104 + 0.540874i \(0.181906\pi\)
\(788\) 0 0
\(789\) −29.3939 −1.04645
\(790\) 0 0
\(791\) 38.6969 1.37590
\(792\) 0 0
\(793\) 30.6969 1.09008
\(794\) 0 0
\(795\) 6.00000 0.212798
\(796\) 0 0
\(797\) 26.4949 0.938497 0.469249 0.883066i \(-0.344525\pi\)
0.469249 + 0.883066i \(0.344525\pi\)
\(798\) 0 0
\(799\) −17.7980 −0.629647
\(800\) 0 0
\(801\) −4.44949 −0.157215
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 7.10102 0.250278
\(806\) 0 0
\(807\) 12.0454 0.424018
\(808\) 0 0
\(809\) −17.3485 −0.609940 −0.304970 0.952362i \(-0.598646\pi\)
−0.304970 + 0.952362i \(0.598646\pi\)
\(810\) 0 0
\(811\) −46.2929 −1.62556 −0.812781 0.582569i \(-0.802047\pi\)
−0.812781 + 0.582569i \(0.802047\pi\)
\(812\) 0 0
\(813\) 17.7980 0.624202
\(814\) 0 0
\(815\) 13.1464 0.460499
\(816\) 0 0
\(817\) 15.1918 0.531495
\(818\) 0 0
\(819\) 10.8990 0.380841
\(820\) 0 0
\(821\) −55.6413 −1.94190 −0.970948 0.239291i \(-0.923085\pi\)
−0.970948 + 0.239291i \(0.923085\pi\)
\(822\) 0 0
\(823\) −24.4949 −0.853838 −0.426919 0.904290i \(-0.640401\pi\)
−0.426919 + 0.904290i \(0.640401\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.0908 1.46364 0.731821 0.681497i \(-0.238671\pi\)
0.731821 + 0.681497i \(0.238671\pi\)
\(828\) 0 0
\(829\) 2.89898 0.100686 0.0503429 0.998732i \(-0.483969\pi\)
0.0503429 + 0.998732i \(0.483969\pi\)
\(830\) 0 0
\(831\) 11.1464 0.386665
\(832\) 0 0
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) 14.4495 0.498852 0.249426 0.968394i \(-0.419758\pi\)
0.249426 + 0.968394i \(0.419758\pi\)
\(840\) 0 0
\(841\) −28.7980 −0.993033
\(842\) 0 0
\(843\) 14.8990 0.513148
\(844\) 0 0
\(845\) −6.79796 −0.233857
\(846\) 0 0
\(847\) 26.9444 0.925820
\(848\) 0 0
\(849\) 9.55051 0.327773
\(850\) 0 0
\(851\) −10.2929 −0.352835
\(852\) 0 0
\(853\) −19.3939 −0.664034 −0.332017 0.943273i \(-0.607729\pi\)
−0.332017 + 0.943273i \(0.607729\pi\)
\(854\) 0 0
\(855\) −4.89898 −0.167542
\(856\) 0 0
\(857\) 33.1918 1.13381 0.566906 0.823783i \(-0.308140\pi\)
0.566906 + 0.823783i \(0.308140\pi\)
\(858\) 0 0
\(859\) 47.5959 1.62395 0.811976 0.583691i \(-0.198392\pi\)
0.811976 + 0.583691i \(0.198392\pi\)
\(860\) 0 0
\(861\) −19.1010 −0.650961
\(862\) 0 0
\(863\) 56.0000 1.90626 0.953131 0.302558i \(-0.0978405\pi\)
0.953131 + 0.302558i \(0.0978405\pi\)
\(864\) 0 0
\(865\) 0.202041 0.00686960
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −28.6969 −0.972359
\(872\) 0 0
\(873\) −5.10102 −0.172643
\(874\) 0 0
\(875\) 2.44949 0.0828079
\(876\) 0 0
\(877\) −16.2020 −0.547104 −0.273552 0.961857i \(-0.588199\pi\)
−0.273552 + 0.961857i \(0.588199\pi\)
\(878\) 0 0
\(879\) −21.7980 −0.735227
\(880\) 0 0
\(881\) 1.75255 0.0590450 0.0295225 0.999564i \(-0.490601\pi\)
0.0295225 + 0.999564i \(0.490601\pi\)
\(882\) 0 0
\(883\) 21.3939 0.719961 0.359981 0.932960i \(-0.382783\pi\)
0.359981 + 0.932960i \(0.382783\pi\)
\(884\) 0 0
\(885\) −7.34847 −0.247016
\(886\) 0 0
\(887\) −20.0000 −0.671534 −0.335767 0.941945i \(-0.608996\pi\)
−0.335767 + 0.941945i \(0.608996\pi\)
\(888\) 0 0
\(889\) −21.7980 −0.731080
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −43.5959 −1.45888
\(894\) 0 0
\(895\) −15.5959 −0.521314
\(896\) 0 0
\(897\) −12.8990 −0.430684
\(898\) 0 0
\(899\) −0.449490 −0.0149913
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) −7.59592 −0.252776
\(904\) 0 0
\(905\) 2.89898 0.0963653
\(906\) 0 0
\(907\) −37.1464 −1.23343 −0.616713 0.787188i \(-0.711536\pi\)
−0.616713 + 0.787188i \(0.711536\pi\)
\(908\) 0 0
\(909\) 2.00000 0.0663358
\(910\) 0 0
\(911\) 6.20204 0.205483 0.102741 0.994708i \(-0.467239\pi\)
0.102741 + 0.994708i \(0.467239\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 6.89898 0.228073
\(916\) 0 0
\(917\) 30.0000 0.990687
\(918\) 0 0
\(919\) −25.3031 −0.834671 −0.417335 0.908752i \(-0.637036\pi\)
−0.417335 + 0.908752i \(0.637036\pi\)
\(920\) 0 0
\(921\) 22.4495 0.739736
\(922\) 0 0
\(923\) 6.89898 0.227083
\(924\) 0 0
\(925\) −3.55051 −0.116740
\(926\) 0 0
\(927\) 5.55051 0.182303
\(928\) 0 0
\(929\) −40.9444 −1.34334 −0.671671 0.740850i \(-0.734423\pi\)
−0.671671 + 0.740850i \(0.734423\pi\)
\(930\) 0 0
\(931\) −4.89898 −0.160558
\(932\) 0 0
\(933\) −4.65153 −0.152284
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22.4949 −0.734876 −0.367438 0.930048i \(-0.619765\pi\)
−0.367438 + 0.930048i \(0.619765\pi\)
\(938\) 0 0
\(939\) −13.3485 −0.435611
\(940\) 0 0
\(941\) −2.24745 −0.0732647 −0.0366324 0.999329i \(-0.511663\pi\)
−0.0366324 + 0.999329i \(0.511663\pi\)
\(942\) 0 0
\(943\) 22.6061 0.736157
\(944\) 0 0
\(945\) 2.44949 0.0796819
\(946\) 0 0
\(947\) 6.49490 0.211056 0.105528 0.994416i \(-0.466347\pi\)
0.105528 + 0.994416i \(0.466347\pi\)
\(948\) 0 0
\(949\) 55.3939 1.79816
\(950\) 0 0
\(951\) −15.5959 −0.505732
\(952\) 0 0
\(953\) 40.6969 1.31830 0.659152 0.752010i \(-0.270916\pi\)
0.659152 + 0.752010i \(0.270916\pi\)
\(954\) 0 0
\(955\) 1.55051 0.0501733
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.4949 1.17848
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 4.89898 0.157867
\(964\) 0 0
\(965\) 8.69694 0.279964
\(966\) 0 0
\(967\) −29.3939 −0.945243 −0.472622 0.881265i \(-0.656692\pi\)
−0.472622 + 0.881265i \(0.656692\pi\)
\(968\) 0 0
\(969\) 9.79796 0.314756
\(970\) 0 0
\(971\) 21.5505 0.691589 0.345794 0.938310i \(-0.387609\pi\)
0.345794 + 0.938310i \(0.387609\pi\)
\(972\) 0 0
\(973\) 33.7980 1.08351
\(974\) 0 0
\(975\) −4.44949 −0.142498
\(976\) 0 0
\(977\) −25.1918 −0.805958 −0.402979 0.915209i \(-0.632025\pi\)
−0.402979 + 0.915209i \(0.632025\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) −6.20204 −0.197814 −0.0989072 0.995097i \(-0.531535\pi\)
−0.0989072 + 0.995097i \(0.531535\pi\)
\(984\) 0 0
\(985\) 20.6969 0.659459
\(986\) 0 0
\(987\) 21.7980 0.693837
\(988\) 0 0
\(989\) 8.98979 0.285859
\(990\) 0 0
\(991\) −37.3939 −1.18786 −0.593928 0.804518i \(-0.702424\pi\)
−0.593928 + 0.804518i \(0.702424\pi\)
\(992\) 0 0
\(993\) 1.10102 0.0349398
\(994\) 0 0
\(995\) 24.6969 0.782946
\(996\) 0 0
\(997\) −28.2929 −0.896044 −0.448022 0.894023i \(-0.647871\pi\)
−0.448022 + 0.894023i \(0.647871\pi\)
\(998\) 0 0
\(999\) −3.55051 −0.112333
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bj.1.1 2
4.3 odd 2 1860.2.a.d.1.2 2
12.11 even 2 5580.2.a.g.1.2 2
20.3 even 4 9300.2.g.l.3349.1 4
20.7 even 4 9300.2.g.l.3349.4 4
20.19 odd 2 9300.2.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.d.1.2 2 4.3 odd 2
5580.2.a.g.1.2 2 12.11 even 2
7440.2.a.bj.1.1 2 1.1 even 1 trivial
9300.2.a.p.1.1 2 20.19 odd 2
9300.2.g.l.3349.1 4 20.3 even 4
9300.2.g.l.3349.4 4 20.7 even 4