Properties

Label 7440.2.a.bi.1.2
Level $7440$
Weight $2$
Character 7440.1
Self dual yes
Analytic conductor $59.409$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7440,2,Mod(1,7440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4086991038\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3720)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 7440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} +1.23607 q^{7} +1.00000 q^{9} -3.23607 q^{13} -1.00000 q^{15} +4.47214 q^{17} -6.47214 q^{19} +1.23607 q^{21} +4.00000 q^{23} +1.00000 q^{25} +1.00000 q^{27} -7.23607 q^{29} +1.00000 q^{31} -1.23607 q^{35} +4.76393 q^{37} -3.23607 q^{39} -6.00000 q^{41} -6.47214 q^{43} -1.00000 q^{45} -8.94427 q^{47} -5.47214 q^{49} +4.47214 q^{51} +8.47214 q^{53} -6.47214 q^{57} -6.76393 q^{59} -12.4721 q^{61} +1.23607 q^{63} +3.23607 q^{65} -3.70820 q^{67} +4.00000 q^{69} +9.23607 q^{71} +12.1803 q^{73} +1.00000 q^{75} +8.94427 q^{79} +1.00000 q^{81} +4.94427 q^{83} -4.47214 q^{85} -7.23607 q^{87} -7.23607 q^{89} -4.00000 q^{91} +1.00000 q^{93} +6.47214 q^{95} -8.47214 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{5} - 2 q^{7} + 2 q^{9} - 2 q^{13} - 2 q^{15} - 4 q^{19} - 2 q^{21} + 8 q^{23} + 2 q^{25} + 2 q^{27} - 10 q^{29} + 2 q^{31} + 2 q^{35} + 14 q^{37} - 2 q^{39} - 12 q^{41} - 4 q^{43} - 2 q^{45}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.23607 0.467190 0.233595 0.972334i \(-0.424951\pi\)
0.233595 + 0.972334i \(0.424951\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −3.23607 −0.897524 −0.448762 0.893651i \(-0.648135\pi\)
−0.448762 + 0.893651i \(0.648135\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 4.47214 1.08465 0.542326 0.840168i \(-0.317544\pi\)
0.542326 + 0.840168i \(0.317544\pi\)
\(18\) 0 0
\(19\) −6.47214 −1.48481 −0.742405 0.669951i \(-0.766315\pi\)
−0.742405 + 0.669951i \(0.766315\pi\)
\(20\) 0 0
\(21\) 1.23607 0.269732
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −7.23607 −1.34370 −0.671852 0.740685i \(-0.734501\pi\)
−0.671852 + 0.740685i \(0.734501\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.23607 −0.208934
\(36\) 0 0
\(37\) 4.76393 0.783186 0.391593 0.920139i \(-0.371924\pi\)
0.391593 + 0.920139i \(0.371924\pi\)
\(38\) 0 0
\(39\) −3.23607 −0.518186
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −6.47214 −0.986991 −0.493496 0.869748i \(-0.664281\pi\)
−0.493496 + 0.869748i \(0.664281\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −8.94427 −1.30466 −0.652328 0.757937i \(-0.726208\pi\)
−0.652328 + 0.757937i \(0.726208\pi\)
\(48\) 0 0
\(49\) −5.47214 −0.781734
\(50\) 0 0
\(51\) 4.47214 0.626224
\(52\) 0 0
\(53\) 8.47214 1.16374 0.581869 0.813283i \(-0.302322\pi\)
0.581869 + 0.813283i \(0.302322\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.47214 −0.857255
\(58\) 0 0
\(59\) −6.76393 −0.880589 −0.440294 0.897853i \(-0.645126\pi\)
−0.440294 + 0.897853i \(0.645126\pi\)
\(60\) 0 0
\(61\) −12.4721 −1.59689 −0.798447 0.602066i \(-0.794345\pi\)
−0.798447 + 0.602066i \(0.794345\pi\)
\(62\) 0 0
\(63\) 1.23607 0.155730
\(64\) 0 0
\(65\) 3.23607 0.401385
\(66\) 0 0
\(67\) −3.70820 −0.453029 −0.226515 0.974008i \(-0.572733\pi\)
−0.226515 + 0.974008i \(0.572733\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 9.23607 1.09612 0.548060 0.836439i \(-0.315367\pi\)
0.548060 + 0.836439i \(0.315367\pi\)
\(72\) 0 0
\(73\) 12.1803 1.42560 0.712800 0.701367i \(-0.247427\pi\)
0.712800 + 0.701367i \(0.247427\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.94427 1.00631 0.503155 0.864196i \(-0.332173\pi\)
0.503155 + 0.864196i \(0.332173\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.94427 0.542704 0.271352 0.962480i \(-0.412529\pi\)
0.271352 + 0.962480i \(0.412529\pi\)
\(84\) 0 0
\(85\) −4.47214 −0.485071
\(86\) 0 0
\(87\) −7.23607 −0.775788
\(88\) 0 0
\(89\) −7.23607 −0.767022 −0.383511 0.923536i \(-0.625285\pi\)
−0.383511 + 0.923536i \(0.625285\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) 6.47214 0.664027
\(96\) 0 0
\(97\) −8.47214 −0.860215 −0.430108 0.902778i \(-0.641524\pi\)
−0.430108 + 0.902778i \(0.641524\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.9443 −1.08900 −0.544498 0.838762i \(-0.683280\pi\)
−0.544498 + 0.838762i \(0.683280\pi\)
\(102\) 0 0
\(103\) 16.6525 1.64082 0.820409 0.571778i \(-0.193746\pi\)
0.820409 + 0.571778i \(0.193746\pi\)
\(104\) 0 0
\(105\) −1.23607 −0.120628
\(106\) 0 0
\(107\) −12.9443 −1.25137 −0.625685 0.780076i \(-0.715180\pi\)
−0.625685 + 0.780076i \(0.715180\pi\)
\(108\) 0 0
\(109\) −3.52786 −0.337908 −0.168954 0.985624i \(-0.554039\pi\)
−0.168954 + 0.985624i \(0.554039\pi\)
\(110\) 0 0
\(111\) 4.76393 0.452172
\(112\) 0 0
\(113\) 2.94427 0.276974 0.138487 0.990364i \(-0.455776\pi\)
0.138487 + 0.990364i \(0.455776\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) −3.23607 −0.299175
\(118\) 0 0
\(119\) 5.52786 0.506738
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −6.00000 −0.541002
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 11.4164 1.01304 0.506521 0.862228i \(-0.330931\pi\)
0.506521 + 0.862228i \(0.330931\pi\)
\(128\) 0 0
\(129\) −6.47214 −0.569840
\(130\) 0 0
\(131\) 9.23607 0.806959 0.403480 0.914989i \(-0.367801\pi\)
0.403480 + 0.914989i \(0.367801\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −8.94427 −0.753244
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 7.23607 0.600923
\(146\) 0 0
\(147\) −5.47214 −0.451334
\(148\) 0 0
\(149\) −18.9443 −1.55198 −0.775988 0.630748i \(-0.782748\pi\)
−0.775988 + 0.630748i \(0.782748\pi\)
\(150\) 0 0
\(151\) −13.8885 −1.13023 −0.565117 0.825011i \(-0.691169\pi\)
−0.565117 + 0.825011i \(0.691169\pi\)
\(152\) 0 0
\(153\) 4.47214 0.361551
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −5.41641 −0.432276 −0.216138 0.976363i \(-0.569346\pi\)
−0.216138 + 0.976363i \(0.569346\pi\)
\(158\) 0 0
\(159\) 8.47214 0.671884
\(160\) 0 0
\(161\) 4.94427 0.389663
\(162\) 0 0
\(163\) −6.76393 −0.529792 −0.264896 0.964277i \(-0.585338\pi\)
−0.264896 + 0.964277i \(0.585338\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −2.52786 −0.194451
\(170\) 0 0
\(171\) −6.47214 −0.494937
\(172\) 0 0
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 1.23607 0.0934380
\(176\) 0 0
\(177\) −6.76393 −0.508408
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 21.4164 1.59187 0.795935 0.605383i \(-0.206980\pi\)
0.795935 + 0.605383i \(0.206980\pi\)
\(182\) 0 0
\(183\) −12.4721 −0.921967
\(184\) 0 0
\(185\) −4.76393 −0.350251
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.23607 0.0899107
\(190\) 0 0
\(191\) 14.7639 1.06828 0.534140 0.845396i \(-0.320635\pi\)
0.534140 + 0.845396i \(0.320635\pi\)
\(192\) 0 0
\(193\) 9.41641 0.677808 0.338904 0.940821i \(-0.389944\pi\)
0.338904 + 0.940821i \(0.389944\pi\)
\(194\) 0 0
\(195\) 3.23607 0.231740
\(196\) 0 0
\(197\) 2.94427 0.209771 0.104885 0.994484i \(-0.466552\pi\)
0.104885 + 0.994484i \(0.466552\pi\)
\(198\) 0 0
\(199\) −13.8885 −0.984533 −0.492266 0.870445i \(-0.663831\pi\)
−0.492266 + 0.870445i \(0.663831\pi\)
\(200\) 0 0
\(201\) −3.70820 −0.261557
\(202\) 0 0
\(203\) −8.94427 −0.627765
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −24.3607 −1.67706 −0.838529 0.544857i \(-0.816584\pi\)
−0.838529 + 0.544857i \(0.816584\pi\)
\(212\) 0 0
\(213\) 9.23607 0.632845
\(214\) 0 0
\(215\) 6.47214 0.441396
\(216\) 0 0
\(217\) 1.23607 0.0839098
\(218\) 0 0
\(219\) 12.1803 0.823071
\(220\) 0 0
\(221\) −14.4721 −0.973501
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 15.4164 1.02322 0.511611 0.859217i \(-0.329049\pi\)
0.511611 + 0.859217i \(0.329049\pi\)
\(228\) 0 0
\(229\) 18.9443 1.25187 0.625936 0.779874i \(-0.284717\pi\)
0.625936 + 0.779874i \(0.284717\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −29.4164 −1.92713 −0.963566 0.267469i \(-0.913813\pi\)
−0.963566 + 0.267469i \(0.913813\pi\)
\(234\) 0 0
\(235\) 8.94427 0.583460
\(236\) 0 0
\(237\) 8.94427 0.580993
\(238\) 0 0
\(239\) 7.41641 0.479728 0.239864 0.970807i \(-0.422897\pi\)
0.239864 + 0.970807i \(0.422897\pi\)
\(240\) 0 0
\(241\) −1.05573 −0.0680054 −0.0340027 0.999422i \(-0.510825\pi\)
−0.0340027 + 0.999422i \(0.510825\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 5.47214 0.349602
\(246\) 0 0
\(247\) 20.9443 1.33265
\(248\) 0 0
\(249\) 4.94427 0.313331
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −4.47214 −0.280056
\(256\) 0 0
\(257\) −21.4164 −1.33592 −0.667959 0.744198i \(-0.732832\pi\)
−0.667959 + 0.744198i \(0.732832\pi\)
\(258\) 0 0
\(259\) 5.88854 0.365896
\(260\) 0 0
\(261\) −7.23607 −0.447901
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) −8.47214 −0.520439
\(266\) 0 0
\(267\) −7.23607 −0.442840
\(268\) 0 0
\(269\) −30.0689 −1.83333 −0.916666 0.399654i \(-0.869130\pi\)
−0.916666 + 0.399654i \(0.869130\pi\)
\(270\) 0 0
\(271\) 25.8885 1.57262 0.786309 0.617834i \(-0.211990\pi\)
0.786309 + 0.617834i \(0.211990\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3.81966 −0.229501 −0.114751 0.993394i \(-0.536607\pi\)
−0.114751 + 0.993394i \(0.536607\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −16.4721 −0.982645 −0.491323 0.870978i \(-0.663486\pi\)
−0.491323 + 0.870978i \(0.663486\pi\)
\(282\) 0 0
\(283\) 14.1803 0.842934 0.421467 0.906844i \(-0.361515\pi\)
0.421467 + 0.906844i \(0.361515\pi\)
\(284\) 0 0
\(285\) 6.47214 0.383376
\(286\) 0 0
\(287\) −7.41641 −0.437777
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) −8.47214 −0.496645
\(292\) 0 0
\(293\) 13.4164 0.783795 0.391897 0.920009i \(-0.371819\pi\)
0.391897 + 0.920009i \(0.371819\pi\)
\(294\) 0 0
\(295\) 6.76393 0.393811
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.9443 −0.748587
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) −10.9443 −0.628732
\(304\) 0 0
\(305\) 12.4721 0.714152
\(306\) 0 0
\(307\) 6.76393 0.386038 0.193019 0.981195i \(-0.438172\pi\)
0.193019 + 0.981195i \(0.438172\pi\)
\(308\) 0 0
\(309\) 16.6525 0.947326
\(310\) 0 0
\(311\) 14.7639 0.837186 0.418593 0.908174i \(-0.362523\pi\)
0.418593 + 0.908174i \(0.362523\pi\)
\(312\) 0 0
\(313\) −10.6525 −0.602114 −0.301057 0.953606i \(-0.597339\pi\)
−0.301057 + 0.953606i \(0.597339\pi\)
\(314\) 0 0
\(315\) −1.23607 −0.0696445
\(316\) 0 0
\(317\) −28.4721 −1.59915 −0.799577 0.600563i \(-0.794943\pi\)
−0.799577 + 0.600563i \(0.794943\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.9443 −0.722479
\(322\) 0 0
\(323\) −28.9443 −1.61050
\(324\) 0 0
\(325\) −3.23607 −0.179505
\(326\) 0 0
\(327\) −3.52786 −0.195091
\(328\) 0 0
\(329\) −11.0557 −0.609522
\(330\) 0 0
\(331\) 28.9443 1.59092 0.795461 0.606005i \(-0.207229\pi\)
0.795461 + 0.606005i \(0.207229\pi\)
\(332\) 0 0
\(333\) 4.76393 0.261062
\(334\) 0 0
\(335\) 3.70820 0.202601
\(336\) 0 0
\(337\) −32.1803 −1.75297 −0.876487 0.481425i \(-0.840119\pi\)
−0.876487 + 0.481425i \(0.840119\pi\)
\(338\) 0 0
\(339\) 2.94427 0.159911
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −15.4164 −0.832408
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) 13.8885 0.745576 0.372788 0.927917i \(-0.378402\pi\)
0.372788 + 0.927917i \(0.378402\pi\)
\(348\) 0 0
\(349\) 20.4721 1.09585 0.547924 0.836528i \(-0.315418\pi\)
0.547924 + 0.836528i \(0.315418\pi\)
\(350\) 0 0
\(351\) −3.23607 −0.172729
\(352\) 0 0
\(353\) −16.4721 −0.876723 −0.438362 0.898799i \(-0.644441\pi\)
−0.438362 + 0.898799i \(0.644441\pi\)
\(354\) 0 0
\(355\) −9.23607 −0.490200
\(356\) 0 0
\(357\) 5.52786 0.292566
\(358\) 0 0
\(359\) −27.1246 −1.43158 −0.715791 0.698314i \(-0.753934\pi\)
−0.715791 + 0.698314i \(0.753934\pi\)
\(360\) 0 0
\(361\) 22.8885 1.20466
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) −12.1803 −0.637548
\(366\) 0 0
\(367\) −7.05573 −0.368306 −0.184153 0.982898i \(-0.558954\pi\)
−0.184153 + 0.982898i \(0.558954\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 10.4721 0.543686
\(372\) 0 0
\(373\) 30.3607 1.57202 0.786008 0.618216i \(-0.212144\pi\)
0.786008 + 0.618216i \(0.212144\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 23.4164 1.20601
\(378\) 0 0
\(379\) 19.4164 0.997354 0.498677 0.866788i \(-0.333819\pi\)
0.498677 + 0.866788i \(0.333819\pi\)
\(380\) 0 0
\(381\) 11.4164 0.584880
\(382\) 0 0
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.47214 −0.328997
\(388\) 0 0
\(389\) −10.2918 −0.521815 −0.260907 0.965364i \(-0.584022\pi\)
−0.260907 + 0.965364i \(0.584022\pi\)
\(390\) 0 0
\(391\) 17.8885 0.904663
\(392\) 0 0
\(393\) 9.23607 0.465898
\(394\) 0 0
\(395\) −8.94427 −0.450035
\(396\) 0 0
\(397\) 38.9443 1.95456 0.977278 0.211959i \(-0.0679844\pi\)
0.977278 + 0.211959i \(0.0679844\pi\)
\(398\) 0 0
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) −4.76393 −0.237899 −0.118950 0.992900i \(-0.537953\pi\)
−0.118950 + 0.992900i \(0.537953\pi\)
\(402\) 0 0
\(403\) −3.23607 −0.161200
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 10.5836 0.523325 0.261662 0.965159i \(-0.415729\pi\)
0.261662 + 0.965159i \(0.415729\pi\)
\(410\) 0 0
\(411\) −14.0000 −0.690569
\(412\) 0 0
\(413\) −8.36068 −0.411402
\(414\) 0 0
\(415\) −4.94427 −0.242705
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 24.6525 1.20435 0.602176 0.798363i \(-0.294300\pi\)
0.602176 + 0.798363i \(0.294300\pi\)
\(420\) 0 0
\(421\) −34.3607 −1.67464 −0.837319 0.546715i \(-0.815878\pi\)
−0.837319 + 0.546715i \(0.815878\pi\)
\(422\) 0 0
\(423\) −8.94427 −0.434885
\(424\) 0 0
\(425\) 4.47214 0.216930
\(426\) 0 0
\(427\) −15.4164 −0.746052
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −35.1246 −1.69189 −0.845947 0.533268i \(-0.820964\pi\)
−0.845947 + 0.533268i \(0.820964\pi\)
\(432\) 0 0
\(433\) 23.2361 1.11665 0.558327 0.829621i \(-0.311443\pi\)
0.558327 + 0.829621i \(0.311443\pi\)
\(434\) 0 0
\(435\) 7.23607 0.346943
\(436\) 0 0
\(437\) −25.8885 −1.23842
\(438\) 0 0
\(439\) −30.8328 −1.47157 −0.735785 0.677215i \(-0.763187\pi\)
−0.735785 + 0.677215i \(0.763187\pi\)
\(440\) 0 0
\(441\) −5.47214 −0.260578
\(442\) 0 0
\(443\) −21.5279 −1.02282 −0.511410 0.859337i \(-0.670877\pi\)
−0.511410 + 0.859337i \(0.670877\pi\)
\(444\) 0 0
\(445\) 7.23607 0.343023
\(446\) 0 0
\(447\) −18.9443 −0.896033
\(448\) 0 0
\(449\) −25.7082 −1.21325 −0.606623 0.794990i \(-0.707476\pi\)
−0.606623 + 0.794990i \(0.707476\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −13.8885 −0.652541
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) 15.2361 0.712713 0.356357 0.934350i \(-0.384019\pi\)
0.356357 + 0.934350i \(0.384019\pi\)
\(458\) 0 0
\(459\) 4.47214 0.208741
\(460\) 0 0
\(461\) 42.0689 1.95934 0.979672 0.200608i \(-0.0642917\pi\)
0.979672 + 0.200608i \(0.0642917\pi\)
\(462\) 0 0
\(463\) 11.4164 0.530565 0.265283 0.964171i \(-0.414535\pi\)
0.265283 + 0.964171i \(0.414535\pi\)
\(464\) 0 0
\(465\) −1.00000 −0.0463739
\(466\) 0 0
\(467\) −4.94427 −0.228794 −0.114397 0.993435i \(-0.536494\pi\)
−0.114397 + 0.993435i \(0.536494\pi\)
\(468\) 0 0
\(469\) −4.58359 −0.211651
\(470\) 0 0
\(471\) −5.41641 −0.249575
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −6.47214 −0.296962
\(476\) 0 0
\(477\) 8.47214 0.387912
\(478\) 0 0
\(479\) 12.2918 0.561626 0.280813 0.959762i \(-0.409396\pi\)
0.280813 + 0.959762i \(0.409396\pi\)
\(480\) 0 0
\(481\) −15.4164 −0.702928
\(482\) 0 0
\(483\) 4.94427 0.224972
\(484\) 0 0
\(485\) 8.47214 0.384700
\(486\) 0 0
\(487\) −9.52786 −0.431749 −0.215874 0.976421i \(-0.569260\pi\)
−0.215874 + 0.976421i \(0.569260\pi\)
\(488\) 0 0
\(489\) −6.76393 −0.305876
\(490\) 0 0
\(491\) −0.583592 −0.0263371 −0.0131686 0.999913i \(-0.504192\pi\)
−0.0131686 + 0.999913i \(0.504192\pi\)
\(492\) 0 0
\(493\) −32.3607 −1.45745
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.4164 0.512096
\(498\) 0 0
\(499\) −32.9443 −1.47479 −0.737394 0.675463i \(-0.763944\pi\)
−0.737394 + 0.675463i \(0.763944\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.8328 0.839714 0.419857 0.907590i \(-0.362080\pi\)
0.419857 + 0.907590i \(0.362080\pi\)
\(504\) 0 0
\(505\) 10.9443 0.487014
\(506\) 0 0
\(507\) −2.52786 −0.112266
\(508\) 0 0
\(509\) 37.1246 1.64552 0.822760 0.568389i \(-0.192433\pi\)
0.822760 + 0.568389i \(0.192433\pi\)
\(510\) 0 0
\(511\) 15.0557 0.666026
\(512\) 0 0
\(513\) −6.47214 −0.285752
\(514\) 0 0
\(515\) −16.6525 −0.733796
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −26.9443 −1.18045 −0.590225 0.807239i \(-0.700961\pi\)
−0.590225 + 0.807239i \(0.700961\pi\)
\(522\) 0 0
\(523\) −40.3607 −1.76485 −0.882425 0.470454i \(-0.844090\pi\)
−0.882425 + 0.470454i \(0.844090\pi\)
\(524\) 0 0
\(525\) 1.23607 0.0539464
\(526\) 0 0
\(527\) 4.47214 0.194809
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −6.76393 −0.293530
\(532\) 0 0
\(533\) 19.4164 0.841018
\(534\) 0 0
\(535\) 12.9443 0.559630
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −39.3050 −1.68985 −0.844926 0.534883i \(-0.820356\pi\)
−0.844926 + 0.534883i \(0.820356\pi\)
\(542\) 0 0
\(543\) 21.4164 0.919066
\(544\) 0 0
\(545\) 3.52786 0.151117
\(546\) 0 0
\(547\) −16.6525 −0.712008 −0.356004 0.934484i \(-0.615861\pi\)
−0.356004 + 0.934484i \(0.615861\pi\)
\(548\) 0 0
\(549\) −12.4721 −0.532298
\(550\) 0 0
\(551\) 46.8328 1.99515
\(552\) 0 0
\(553\) 11.0557 0.470137
\(554\) 0 0
\(555\) −4.76393 −0.202218
\(556\) 0 0
\(557\) −17.4164 −0.737957 −0.368978 0.929438i \(-0.620292\pi\)
−0.368978 + 0.929438i \(0.620292\pi\)
\(558\) 0 0
\(559\) 20.9443 0.885848
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −32.0000 −1.34864 −0.674320 0.738440i \(-0.735563\pi\)
−0.674320 + 0.738440i \(0.735563\pi\)
\(564\) 0 0
\(565\) −2.94427 −0.123866
\(566\) 0 0
\(567\) 1.23607 0.0519100
\(568\) 0 0
\(569\) −6.65248 −0.278886 −0.139443 0.990230i \(-0.544531\pi\)
−0.139443 + 0.990230i \(0.544531\pi\)
\(570\) 0 0
\(571\) 24.9443 1.04389 0.521943 0.852981i \(-0.325207\pi\)
0.521943 + 0.852981i \(0.325207\pi\)
\(572\) 0 0
\(573\) 14.7639 0.616772
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −9.05573 −0.376995 −0.188497 0.982074i \(-0.560362\pi\)
−0.188497 + 0.982074i \(0.560362\pi\)
\(578\) 0 0
\(579\) 9.41641 0.391333
\(580\) 0 0
\(581\) 6.11146 0.253546
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 3.23607 0.133795
\(586\) 0 0
\(587\) 24.9443 1.02956 0.514780 0.857322i \(-0.327874\pi\)
0.514780 + 0.857322i \(0.327874\pi\)
\(588\) 0 0
\(589\) −6.47214 −0.266680
\(590\) 0 0
\(591\) 2.94427 0.121111
\(592\) 0 0
\(593\) −8.83282 −0.362720 −0.181360 0.983417i \(-0.558050\pi\)
−0.181360 + 0.983417i \(0.558050\pi\)
\(594\) 0 0
\(595\) −5.52786 −0.226620
\(596\) 0 0
\(597\) −13.8885 −0.568420
\(598\) 0 0
\(599\) −19.1246 −0.781410 −0.390705 0.920516i \(-0.627769\pi\)
−0.390705 + 0.920516i \(0.627769\pi\)
\(600\) 0 0
\(601\) 36.4721 1.48773 0.743865 0.668330i \(-0.232991\pi\)
0.743865 + 0.668330i \(0.232991\pi\)
\(602\) 0 0
\(603\) −3.70820 −0.151010
\(604\) 0 0
\(605\) 11.0000 0.447214
\(606\) 0 0
\(607\) 5.59675 0.227165 0.113582 0.993529i \(-0.463767\pi\)
0.113582 + 0.993529i \(0.463767\pi\)
\(608\) 0 0
\(609\) −8.94427 −0.362440
\(610\) 0 0
\(611\) 28.9443 1.17096
\(612\) 0 0
\(613\) −5.70820 −0.230552 −0.115276 0.993333i \(-0.536775\pi\)
−0.115276 + 0.993333i \(0.536775\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) 36.8328 1.48283 0.741417 0.671045i \(-0.234154\pi\)
0.741417 + 0.671045i \(0.234154\pi\)
\(618\) 0 0
\(619\) −43.7771 −1.75955 −0.879775 0.475391i \(-0.842307\pi\)
−0.879775 + 0.475391i \(0.842307\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 0 0
\(623\) −8.94427 −0.358345
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.3050 0.849484
\(630\) 0 0
\(631\) 3.05573 0.121647 0.0608233 0.998149i \(-0.480627\pi\)
0.0608233 + 0.998149i \(0.480627\pi\)
\(632\) 0 0
\(633\) −24.3607 −0.968250
\(634\) 0 0
\(635\) −11.4164 −0.453046
\(636\) 0 0
\(637\) 17.7082 0.701625
\(638\) 0 0
\(639\) 9.23607 0.365373
\(640\) 0 0
\(641\) 0.180340 0.00712300 0.00356150 0.999994i \(-0.498866\pi\)
0.00356150 + 0.999994i \(0.498866\pi\)
\(642\) 0 0
\(643\) 27.4164 1.08120 0.540599 0.841281i \(-0.318198\pi\)
0.540599 + 0.841281i \(0.318198\pi\)
\(644\) 0 0
\(645\) 6.47214 0.254840
\(646\) 0 0
\(647\) 19.0557 0.749158 0.374579 0.927195i \(-0.377787\pi\)
0.374579 + 0.927195i \(0.377787\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.23607 0.0484453
\(652\) 0 0
\(653\) 29.4164 1.15115 0.575576 0.817748i \(-0.304778\pi\)
0.575576 + 0.817748i \(0.304778\pi\)
\(654\) 0 0
\(655\) −9.23607 −0.360883
\(656\) 0 0
\(657\) 12.1803 0.475200
\(658\) 0 0
\(659\) −25.2361 −0.983058 −0.491529 0.870861i \(-0.663562\pi\)
−0.491529 + 0.870861i \(0.663562\pi\)
\(660\) 0 0
\(661\) −6.94427 −0.270101 −0.135050 0.990839i \(-0.543120\pi\)
−0.135050 + 0.990839i \(0.543120\pi\)
\(662\) 0 0
\(663\) −14.4721 −0.562051
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) −28.9443 −1.12073
\(668\) 0 0
\(669\) 4.00000 0.154649
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 12.7639 0.492013 0.246007 0.969268i \(-0.420881\pi\)
0.246007 + 0.969268i \(0.420881\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −33.4164 −1.28430 −0.642148 0.766580i \(-0.721957\pi\)
−0.642148 + 0.766580i \(0.721957\pi\)
\(678\) 0 0
\(679\) −10.4721 −0.401884
\(680\) 0 0
\(681\) 15.4164 0.590758
\(682\) 0 0
\(683\) 7.41641 0.283781 0.141890 0.989882i \(-0.454682\pi\)
0.141890 + 0.989882i \(0.454682\pi\)
\(684\) 0 0
\(685\) 14.0000 0.534913
\(686\) 0 0
\(687\) 18.9443 0.722769
\(688\) 0 0
\(689\) −27.4164 −1.04448
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) −26.8328 −1.01637
\(698\) 0 0
\(699\) −29.4164 −1.11263
\(700\) 0 0
\(701\) −35.5279 −1.34187 −0.670934 0.741517i \(-0.734107\pi\)
−0.670934 + 0.741517i \(0.734107\pi\)
\(702\) 0 0
\(703\) −30.8328 −1.16288
\(704\) 0 0
\(705\) 8.94427 0.336861
\(706\) 0 0
\(707\) −13.5279 −0.508768
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) 8.94427 0.335436
\(712\) 0 0
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 7.41641 0.276971
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 20.5836 0.766573
\(722\) 0 0
\(723\) −1.05573 −0.0392630
\(724\) 0 0
\(725\) −7.23607 −0.268741
\(726\) 0 0
\(727\) 2.40325 0.0891317 0.0445658 0.999006i \(-0.485810\pi\)
0.0445658 + 0.999006i \(0.485810\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −28.9443 −1.07054
\(732\) 0 0
\(733\) −25.7771 −0.952098 −0.476049 0.879419i \(-0.657932\pi\)
−0.476049 + 0.879419i \(0.657932\pi\)
\(734\) 0 0
\(735\) 5.47214 0.201843
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −20.9443 −0.770447 −0.385224 0.922823i \(-0.625876\pi\)
−0.385224 + 0.922823i \(0.625876\pi\)
\(740\) 0 0
\(741\) 20.9443 0.769407
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) 18.9443 0.694064
\(746\) 0 0
\(747\) 4.94427 0.180901
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) −1.88854 −0.0689139 −0.0344570 0.999406i \(-0.510970\pi\)
−0.0344570 + 0.999406i \(0.510970\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) 13.8885 0.505456
\(756\) 0 0
\(757\) −13.1246 −0.477022 −0.238511 0.971140i \(-0.576659\pi\)
−0.238511 + 0.971140i \(0.576659\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.1803 1.45654 0.728268 0.685292i \(-0.240326\pi\)
0.728268 + 0.685292i \(0.240326\pi\)
\(762\) 0 0
\(763\) −4.36068 −0.157867
\(764\) 0 0
\(765\) −4.47214 −0.161690
\(766\) 0 0
\(767\) 21.8885 0.790350
\(768\) 0 0
\(769\) 8.47214 0.305513 0.152757 0.988264i \(-0.451185\pi\)
0.152757 + 0.988264i \(0.451185\pi\)
\(770\) 0 0
\(771\) −21.4164 −0.771293
\(772\) 0 0
\(773\) 23.3050 0.838221 0.419110 0.907935i \(-0.362342\pi\)
0.419110 + 0.907935i \(0.362342\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) 5.88854 0.211250
\(778\) 0 0
\(779\) 38.8328 1.39133
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −7.23607 −0.258596
\(784\) 0 0
\(785\) 5.41641 0.193320
\(786\) 0 0
\(787\) −12.0000 −0.427754 −0.213877 0.976861i \(-0.568609\pi\)
−0.213877 + 0.976861i \(0.568609\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 3.63932 0.129399
\(792\) 0 0
\(793\) 40.3607 1.43325
\(794\) 0 0
\(795\) −8.47214 −0.300476
\(796\) 0 0
\(797\) 28.8328 1.02131 0.510655 0.859785i \(-0.329403\pi\)
0.510655 + 0.859785i \(0.329403\pi\)
\(798\) 0 0
\(799\) −40.0000 −1.41510
\(800\) 0 0
\(801\) −7.23607 −0.255674
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −4.94427 −0.174263
\(806\) 0 0
\(807\) −30.0689 −1.05847
\(808\) 0 0
\(809\) −1.70820 −0.0600573 −0.0300286 0.999549i \(-0.509560\pi\)
−0.0300286 + 0.999549i \(0.509560\pi\)
\(810\) 0 0
\(811\) 32.3607 1.13634 0.568169 0.822912i \(-0.307652\pi\)
0.568169 + 0.822912i \(0.307652\pi\)
\(812\) 0 0
\(813\) 25.8885 0.907951
\(814\) 0 0
\(815\) 6.76393 0.236930
\(816\) 0 0
\(817\) 41.8885 1.46549
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) −4.18034 −0.145895 −0.0729474 0.997336i \(-0.523241\pi\)
−0.0729474 + 0.997336i \(0.523241\pi\)
\(822\) 0 0
\(823\) 8.36068 0.291435 0.145717 0.989326i \(-0.453451\pi\)
0.145717 + 0.989326i \(0.453451\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −16.0000 −0.556375 −0.278187 0.960527i \(-0.589734\pi\)
−0.278187 + 0.960527i \(0.589734\pi\)
\(828\) 0 0
\(829\) 31.3050 1.08727 0.543633 0.839323i \(-0.317048\pi\)
0.543633 + 0.839323i \(0.317048\pi\)
\(830\) 0 0
\(831\) −3.81966 −0.132503
\(832\) 0 0
\(833\) −24.4721 −0.847909
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) −1.23607 −0.0426738 −0.0213369 0.999772i \(-0.506792\pi\)
−0.0213369 + 0.999772i \(0.506792\pi\)
\(840\) 0 0
\(841\) 23.3607 0.805541
\(842\) 0 0
\(843\) −16.4721 −0.567330
\(844\) 0 0
\(845\) 2.52786 0.0869612
\(846\) 0 0
\(847\) −13.5967 −0.467190
\(848\) 0 0
\(849\) 14.1803 0.486668
\(850\) 0 0
\(851\) 19.0557 0.653222
\(852\) 0 0
\(853\) 37.7771 1.29346 0.646731 0.762718i \(-0.276135\pi\)
0.646731 + 0.762718i \(0.276135\pi\)
\(854\) 0 0
\(855\) 6.47214 0.221342
\(856\) 0 0
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) −53.8885 −1.83865 −0.919327 0.393495i \(-0.871266\pi\)
−0.919327 + 0.393495i \(0.871266\pi\)
\(860\) 0 0
\(861\) −7.41641 −0.252751
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 0 0
\(867\) 3.00000 0.101885
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 12.0000 0.406604
\(872\) 0 0
\(873\) −8.47214 −0.286738
\(874\) 0 0
\(875\) −1.23607 −0.0417867
\(876\) 0 0
\(877\) 14.9443 0.504632 0.252316 0.967645i \(-0.418808\pi\)
0.252316 + 0.967645i \(0.418808\pi\)
\(878\) 0 0
\(879\) 13.4164 0.452524
\(880\) 0 0
\(881\) −14.0689 −0.473993 −0.236996 0.971511i \(-0.576163\pi\)
−0.236996 + 0.971511i \(0.576163\pi\)
\(882\) 0 0
\(883\) 34.8328 1.17222 0.586109 0.810232i \(-0.300659\pi\)
0.586109 + 0.810232i \(0.300659\pi\)
\(884\) 0 0
\(885\) 6.76393 0.227367
\(886\) 0 0
\(887\) 19.4164 0.651939 0.325970 0.945380i \(-0.394309\pi\)
0.325970 + 0.945380i \(0.394309\pi\)
\(888\) 0 0
\(889\) 14.1115 0.473283
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 57.8885 1.93717
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −12.9443 −0.432197
\(898\) 0 0
\(899\) −7.23607 −0.241336
\(900\) 0 0
\(901\) 37.8885 1.26225
\(902\) 0 0
\(903\) −8.00000 −0.266223
\(904\) 0 0
\(905\) −21.4164 −0.711905
\(906\) 0 0
\(907\) 50.5410 1.67819 0.839094 0.543987i \(-0.183086\pi\)
0.839094 + 0.543987i \(0.183086\pi\)
\(908\) 0 0
\(909\) −10.9443 −0.362999
\(910\) 0 0
\(911\) 9.88854 0.327622 0.163811 0.986492i \(-0.447621\pi\)
0.163811 + 0.986492i \(0.447621\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 12.4721 0.412316
\(916\) 0 0
\(917\) 11.4164 0.377003
\(918\) 0 0
\(919\) 33.3050 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(920\) 0 0
\(921\) 6.76393 0.222879
\(922\) 0 0
\(923\) −29.8885 −0.983793
\(924\) 0 0
\(925\) 4.76393 0.156637
\(926\) 0 0
\(927\) 16.6525 0.546939
\(928\) 0 0
\(929\) 23.5967 0.774184 0.387092 0.922041i \(-0.373480\pi\)
0.387092 + 0.922041i \(0.373480\pi\)
\(930\) 0 0
\(931\) 35.4164 1.16073
\(932\) 0 0
\(933\) 14.7639 0.483349
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.58359 0.0844023 0.0422011 0.999109i \(-0.486563\pi\)
0.0422011 + 0.999109i \(0.486563\pi\)
\(938\) 0 0
\(939\) −10.6525 −0.347630
\(940\) 0 0
\(941\) 33.4853 1.09159 0.545795 0.837919i \(-0.316228\pi\)
0.545795 + 0.837919i \(0.316228\pi\)
\(942\) 0 0
\(943\) −24.0000 −0.781548
\(944\) 0 0
\(945\) −1.23607 −0.0402093
\(946\) 0 0
\(947\) 4.94427 0.160667 0.0803336 0.996768i \(-0.474401\pi\)
0.0803336 + 0.996768i \(0.474401\pi\)
\(948\) 0 0
\(949\) −39.4164 −1.27951
\(950\) 0 0
\(951\) −28.4721 −0.923272
\(952\) 0 0
\(953\) −26.9443 −0.872811 −0.436405 0.899750i \(-0.643749\pi\)
−0.436405 + 0.899750i \(0.643749\pi\)
\(954\) 0 0
\(955\) −14.7639 −0.477750
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17.3050 −0.558806
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −12.9443 −0.417123
\(964\) 0 0
\(965\) −9.41641 −0.303125
\(966\) 0 0
\(967\) 44.0000 1.41494 0.707472 0.706741i \(-0.249835\pi\)
0.707472 + 0.706741i \(0.249835\pi\)
\(968\) 0 0
\(969\) −28.9443 −0.929824
\(970\) 0 0
\(971\) 19.7082 0.632466 0.316233 0.948681i \(-0.397582\pi\)
0.316233 + 0.948681i \(0.397582\pi\)
\(972\) 0 0
\(973\) −4.94427 −0.158506
\(974\) 0 0
\(975\) −3.23607 −0.103637
\(976\) 0 0
\(977\) 2.94427 0.0941956 0.0470978 0.998890i \(-0.485003\pi\)
0.0470978 + 0.998890i \(0.485003\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −3.52786 −0.112636
\(982\) 0 0
\(983\) 11.7771 0.375631 0.187815 0.982204i \(-0.439859\pi\)
0.187815 + 0.982204i \(0.439859\pi\)
\(984\) 0 0
\(985\) −2.94427 −0.0938123
\(986\) 0 0
\(987\) −11.0557 −0.351908
\(988\) 0 0
\(989\) −25.8885 −0.823208
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) 28.9443 0.918519
\(994\) 0 0
\(995\) 13.8885 0.440296
\(996\) 0 0
\(997\) −11.5279 −0.365091 −0.182546 0.983197i \(-0.558434\pi\)
−0.182546 + 0.983197i \(0.558434\pi\)
\(998\) 0 0
\(999\) 4.76393 0.150724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7440.2.a.bi.1.2 2
4.3 odd 2 3720.2.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3720.2.a.i.1.1 2 4.3 odd 2
7440.2.a.bi.1.2 2 1.1 even 1 trivial