Defining parameters
| Level: | \( N \) | \(=\) | \( 7440 = 2^{4} \cdot 3 \cdot 5 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7440.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 58 \) | ||
| Sturm bound: | \(3072\) | ||
| Trace bound: | \(17\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7440))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1560 | 120 | 1440 |
| Cusp forms | 1513 | 120 | 1393 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(91\) | \(7\) | \(84\) | \(89\) | \(7\) | \(82\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(101\) | \(8\) | \(93\) | \(98\) | \(8\) | \(90\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(104\) | \(9\) | \(95\) | \(101\) | \(9\) | \(92\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(94\) | \(6\) | \(88\) | \(91\) | \(6\) | \(85\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(98\) | \(8\) | \(90\) | \(95\) | \(8\) | \(87\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(100\) | \(7\) | \(93\) | \(97\) | \(7\) | \(90\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(97\) | \(6\) | \(91\) | \(94\) | \(6\) | \(88\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(95\) | \(9\) | \(86\) | \(92\) | \(9\) | \(83\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(102\) | \(8\) | \(94\) | \(99\) | \(8\) | \(91\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(92\) | \(7\) | \(85\) | \(89\) | \(7\) | \(82\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(93\) | \(6\) | \(87\) | \(90\) | \(6\) | \(84\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(103\) | \(9\) | \(94\) | \(100\) | \(9\) | \(91\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(99\) | \(7\) | \(92\) | \(96\) | \(7\) | \(89\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(97\) | \(8\) | \(89\) | \(94\) | \(8\) | \(86\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(96\) | \(9\) | \(87\) | \(93\) | \(9\) | \(84\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(98\) | \(6\) | \(92\) | \(95\) | \(6\) | \(89\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(764\) | \(52\) | \(712\) | \(741\) | \(52\) | \(689\) | \(23\) | \(0\) | \(23\) | ||||||
| Minus space | \(-\) | \(796\) | \(68\) | \(728\) | \(772\) | \(68\) | \(704\) | \(24\) | \(0\) | \(24\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7440))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7440))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7440)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(124))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(155))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(248))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(310))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(372))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(465))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(496))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(620))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(744))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(930))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1240))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1488))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1860))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2480))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3720))\)\(^{\oplus 2}\)