Properties

Label 7406.2.a.c.1.1
Level $7406$
Weight $2$
Character 7406.1
Self dual yes
Analytic conductor $59.137$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7406 = 2 \cdot 7 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7406.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(59.1372077370\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7406.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{7} -1.00000 q^{8} -3.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{7} -1.00000 q^{8} -3.00000 q^{9} -4.00000 q^{11} -2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +4.00000 q^{17} +3.00000 q^{18} +4.00000 q^{19} +4.00000 q^{22} -5.00000 q^{25} +2.00000 q^{26} +1.00000 q^{28} +2.00000 q^{29} +4.00000 q^{31} -1.00000 q^{32} -4.00000 q^{34} -3.00000 q^{36} +4.00000 q^{37} -4.00000 q^{38} -6.00000 q^{41} -4.00000 q^{43} -4.00000 q^{44} +4.00000 q^{47} +1.00000 q^{49} +5.00000 q^{50} -2.00000 q^{52} +12.0000 q^{53} -1.00000 q^{56} -2.00000 q^{58} +8.00000 q^{59} -4.00000 q^{62} -3.00000 q^{63} +1.00000 q^{64} +4.00000 q^{67} +4.00000 q^{68} +8.00000 q^{71} +3.00000 q^{72} -10.0000 q^{73} -4.00000 q^{74} +4.00000 q^{76} -4.00000 q^{77} -8.00000 q^{79} +9.00000 q^{81} +6.00000 q^{82} -12.0000 q^{83} +4.00000 q^{86} +4.00000 q^{88} -4.00000 q^{89} -2.00000 q^{91} -4.00000 q^{94} +12.0000 q^{97} -1.00000 q^{98} +12.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 3.00000 0.707107
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −4.00000 −0.508001
\(63\) −3.00000 −0.377964
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 4.00000 0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 3.00000 0.353553
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 6.00000 0.662589
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) −1.00000 −0.101015
\(99\) 12.0000 1.20605
\(100\) −5.00000 −0.500000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.00000 0.185695
\(117\) 6.00000 0.554700
\(118\) −8.00000 −0.736460
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 3.00000 0.267261
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −4.00000 −0.342997
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 8.00000 0.668994
\(144\) −3.00000 −0.250000
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) −20.0000 −1.63846 −0.819232 0.573462i \(-0.805600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −4.00000 −0.324443
\(153\) −12.0000 −0.970143
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) 0 0
\(157\) −24.0000 −1.91541 −0.957704 0.287754i \(-0.907091\pi\)
−0.957704 + 0.287754i \(0.907091\pi\)
\(158\) 8.00000 0.636446
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −9.00000 −0.707107
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −12.0000 −0.917663
\(172\) −4.00000 −0.304997
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) −5.00000 −0.377964
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) 4.00000 0.299813
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 2.00000 0.148250
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −16.0000 −1.17004
\(188\) 4.00000 0.291730
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) −12.0000 −0.852803
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 5.00000 0.353553
\(201\) 0 0
\(202\) −6.00000 −0.422159
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) 0 0
\(206\) 16.0000 1.11477
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 12.0000 0.824163
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 4.00000 0.270914
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 15.0000 1.00000
\(226\) −16.0000 −1.06430
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 0 0
\(229\) 8.00000 0.528655 0.264327 0.964433i \(-0.414850\pi\)
0.264327 + 0.964433i \(0.414850\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) −4.00000 −0.259281
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −28.0000 −1.80364 −0.901819 0.432113i \(-0.857768\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) −3.00000 −0.188982
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.00000 −0.245256
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) 0 0
\(275\) 20.0000 1.20605
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 8.00000 0.479808
\(279\) −12.0000 −0.718421
\(280\) 0 0
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) −6.00000 −0.354169
\(288\) 3.00000 0.176777
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) −32.0000 −1.86946 −0.934730 0.355359i \(-0.884359\pi\)
−0.934730 + 0.355359i \(0.884359\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) 20.0000 1.15857
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 12.0000 0.685994
\(307\) 32.0000 1.82634 0.913168 0.407583i \(-0.133628\pi\)
0.913168 + 0.407583i \(0.133628\pi\)
\(308\) −4.00000 −0.227921
\(309\) 0 0
\(310\) 0 0
\(311\) 28.0000 1.58773 0.793867 0.608091i \(-0.208065\pi\)
0.793867 + 0.608091i \(0.208065\pi\)
\(312\) 0 0
\(313\) 4.00000 0.226093 0.113047 0.993590i \(-0.463939\pi\)
0.113047 + 0.993590i \(0.463939\pi\)
\(314\) 24.0000 1.35440
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 9.00000 0.500000
\(325\) 10.0000 0.554700
\(326\) −12.0000 −0.664619
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) −12.0000 −0.658586
\(333\) −12.0000 −0.657596
\(334\) 12.0000 0.656611
\(335\) 0 0
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 12.0000 0.648886
\(343\) 1.00000 0.0539949
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) −36.0000 −1.93258 −0.966291 0.257454i \(-0.917117\pi\)
−0.966291 + 0.257454i \(0.917117\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 5.00000 0.267261
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) −2.00000 −0.106449 −0.0532246 0.998583i \(-0.516950\pi\)
−0.0532246 + 0.998583i \(0.516950\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.00000 −0.212000
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 8.00000 0.420471
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 18.0000 0.937043
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 16.0000 0.827340
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 12.0000 0.609994
\(388\) 12.0000 0.609208
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 0 0
\(396\) 12.0000 0.603023
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 24.0000 1.20301
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) −2.00000 −0.0992583
\(407\) −16.0000 −0.793091
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) 16.0000 0.782586
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 28.0000 1.36464 0.682318 0.731055i \(-0.260972\pi\)
0.682318 + 0.731055i \(0.260972\pi\)
\(422\) −12.0000 −0.584151
\(423\) −12.0000 −0.583460
\(424\) −12.0000 −0.582772
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) −20.0000 −0.961139 −0.480569 0.876957i \(-0.659570\pi\)
−0.480569 + 0.876957i \(0.659570\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) −4.00000 −0.191565
\(437\) 0 0
\(438\) 0 0
\(439\) 36.0000 1.71819 0.859093 0.511819i \(-0.171028\pi\)
0.859093 + 0.511819i \(0.171028\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 8.00000 0.380521
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 12.0000 0.568216
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) −15.0000 −0.707107
\(451\) 24.0000 1.13012
\(452\) 16.0000 0.752577
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) −8.00000 −0.374224 −0.187112 0.982339i \(-0.559913\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) −8.00000 −0.373815
\(459\) 0 0
\(460\) 0 0
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) −26.0000 −1.20443
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 6.00000 0.277350
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 0 0
\(472\) −8.00000 −0.368230
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) −20.0000 −0.917663
\(476\) 4.00000 0.183340
\(477\) −36.0000 −1.64833
\(478\) 0 0
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 28.0000 1.27537
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.00000 0.180517 0.0902587 0.995918i \(-0.471231\pi\)
0.0902587 + 0.995918i \(0.471231\pi\)
\(492\) 0 0
\(493\) 8.00000 0.360302
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −20.0000 −0.892644
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 3.00000 0.133631
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) −4.00000 −0.175750
\(519\) 0 0
\(520\) 0 0
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 6.00000 0.262613
\(523\) −28.0000 −1.22435 −0.612177 0.790721i \(-0.709706\pi\)
−0.612177 + 0.790721i \(0.709706\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) −24.0000 −1.04151
\(532\) 4.00000 0.173422
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) −20.0000 −0.859074
\(543\) 0 0
\(544\) −4.00000 −0.171499
\(545\) 0 0
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −20.0000 −0.852803
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 20.0000 0.847427 0.423714 0.905796i \(-0.360726\pi\)
0.423714 + 0.905796i \(0.360726\pi\)
\(558\) 12.0000 0.508001
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −8.00000 −0.337460
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 9.00000 0.377964
\(568\) −8.00000 −0.335673
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 8.00000 0.334497
\(573\) 0 0
\(574\) 6.00000 0.250435
\(575\) 0 0
\(576\) −3.00000 −0.125000
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) −48.0000 −1.98796
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) 32.0000 1.32191
\(587\) −40.0000 −1.65098 −0.825488 0.564419i \(-0.809100\pi\)
−0.825488 + 0.564419i \(0.809100\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 0 0
\(592\) 4.00000 0.164399
\(593\) 2.00000 0.0821302 0.0410651 0.999156i \(-0.486925\pi\)
0.0410651 + 0.999156i \(0.486925\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −20.0000 −0.819232
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 4.00000 0.163028
\(603\) −12.0000 −0.488678
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) −4.00000 −0.162355 −0.0811775 0.996700i \(-0.525868\pi\)
−0.0811775 + 0.996700i \(0.525868\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) −12.0000 −0.485071
\(613\) −20.0000 −0.807792 −0.403896 0.914805i \(-0.632344\pi\)
−0.403896 + 0.914805i \(0.632344\pi\)
\(614\) −32.0000 −1.29141
\(615\) 0 0
\(616\) 4.00000 0.161165
\(617\) 8.00000 0.322068 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −28.0000 −1.12270
\(623\) −4.00000 −0.160257
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) −4.00000 −0.159872
\(627\) 0 0
\(628\) −24.0000 −0.957704
\(629\) 16.0000 0.637962
\(630\) 0 0
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 8.00000 0.318223
\(633\) 0 0
\(634\) −2.00000 −0.0794301
\(635\) 0 0
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 8.00000 0.316723
\(639\) −24.0000 −0.949425
\(640\) 0 0
\(641\) −48.0000 −1.89589 −0.947943 0.318440i \(-0.896841\pi\)
−0.947943 + 0.318440i \(0.896841\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) −4.00000 −0.157256 −0.0786281 0.996904i \(-0.525054\pi\)
−0.0786281 + 0.996904i \(0.525054\pi\)
\(648\) −9.00000 −0.353553
\(649\) −32.0000 −1.25611
\(650\) −10.0000 −0.392232
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 30.0000 1.17041
\(658\) −4.00000 −0.155936
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −32.0000 −1.24466 −0.622328 0.782757i \(-0.713813\pi\)
−0.622328 + 0.782757i \(0.713813\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 12.0000 0.464991
\(667\) 0 0
\(668\) −12.0000 −0.464294
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) −8.00000 −0.308148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −8.00000 −0.307465 −0.153732 0.988113i \(-0.549129\pi\)
−0.153732 + 0.988113i \(0.549129\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) 0 0
\(682\) 16.0000 0.612672
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −12.0000 −0.458831
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 40.0000 1.52167 0.760836 0.648944i \(-0.224789\pi\)
0.760836 + 0.648944i \(0.224789\pi\)
\(692\) −14.0000 −0.532200
\(693\) 12.0000 0.455842
\(694\) 36.0000 1.36654
\(695\) 0 0
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) 30.0000 1.13552
\(699\) 0 0
\(700\) −5.00000 −0.188982
\(701\) −4.00000 −0.151078 −0.0755390 0.997143i \(-0.524068\pi\)
−0.0755390 + 0.997143i \(0.524068\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) 2.00000 0.0752710
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −28.0000 −1.05156 −0.525781 0.850620i \(-0.676227\pi\)
−0.525781 + 0.850620i \(0.676227\pi\)
\(710\) 0 0
\(711\) 24.0000 0.900070
\(712\) 4.00000 0.149906
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) −8.00000 −0.298557
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 3.00000 0.111648
\(723\) 0 0
\(724\) −8.00000 −0.297318
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 2.00000 0.0741249
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −16.0000 −0.591781
\(732\) 0 0
\(733\) −32.0000 −1.18195 −0.590973 0.806691i \(-0.701256\pi\)
−0.590973 + 0.806691i \(0.701256\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) −18.0000 −0.662589
\(739\) 44.0000 1.61857 0.809283 0.587419i \(-0.199856\pi\)
0.809283 + 0.587419i \(0.199856\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.0000 −0.440534
\(743\) −48.0000 −1.76095 −0.880475 0.474093i \(-0.842776\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 4.00000 0.146450
\(747\) 36.0000 1.31717
\(748\) −16.0000 −0.585018
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 4.00000 0.145865
\(753\) 0 0
\(754\) 4.00000 0.145671
\(755\) 0 0
\(756\) 0 0
\(757\) −36.0000 −1.30844 −0.654221 0.756303i \(-0.727003\pi\)
−0.654221 + 0.756303i \(0.727003\pi\)
\(758\) 28.0000 1.01701
\(759\) 0 0
\(760\) 0 0
\(761\) 38.0000 1.37750 0.688749 0.724999i \(-0.258160\pi\)
0.688749 + 0.724999i \(0.258160\pi\)
\(762\) 0 0
\(763\) −4.00000 −0.144810
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) 4.00000 0.144244 0.0721218 0.997396i \(-0.477023\pi\)
0.0721218 + 0.997396i \(0.477023\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.00000 −0.0719816
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) −12.0000 −0.431331
\(775\) −20.0000 −0.718421
\(776\) −12.0000 −0.430775
\(777\) 0 0
\(778\) −12.0000 −0.430221
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) −32.0000 −1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 0 0
\(791\) 16.0000 0.568895
\(792\) −12.0000 −0.426401
\(793\) 0 0
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) 24.0000 0.850124 0.425062 0.905164i \(-0.360252\pi\)
0.425062 + 0.905164i \(0.360252\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 5.00000 0.176777
\(801\) 12.0000 0.423999
\(802\) 0 0
\(803\) 40.0000 1.41157
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) −6.00000 −0.211079
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 24.0000 0.842754 0.421377 0.906886i \(-0.361547\pi\)
0.421377 + 0.906886i \(0.361547\pi\)
\(812\) 2.00000 0.0701862
\(813\) 0 0
\(814\) 16.0000 0.560800
\(815\) 0 0
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 26.0000 0.909069
\(819\) 6.00000 0.209657
\(820\) 0 0
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) 4.00000 0.138592
\(834\) 0 0
\(835\) 0 0
\(836\) −16.0000 −0.553372
\(837\) 0 0
\(838\) 12.0000 0.414533
\(839\) 16.0000 0.552381 0.276191 0.961103i \(-0.410928\pi\)
0.276191 + 0.961103i \(0.410928\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −28.0000 −0.964944
\(843\) 0 0
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 5.00000 0.171802
\(848\) 12.0000 0.412082
\(849\) 0 0
\(850\) 20.0000 0.685994
\(851\) 0 0
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 48.0000 1.63774 0.818869 0.573980i \(-0.194601\pi\)
0.818869 + 0.573980i \(0.194601\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) 56.0000 1.90626 0.953131 0.302558i \(-0.0978405\pi\)
0.953131 + 0.302558i \(0.0978405\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 20.0000 0.679628
\(867\) 0 0
\(868\) 4.00000 0.135769
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 4.00000 0.135457
\(873\) −36.0000 −1.21842
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) −36.0000 −1.21494
\(879\) 0 0
\(880\) 0 0
\(881\) −28.0000 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(882\) 3.00000 0.101015
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) −8.00000 −0.269069
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) −28.0000 −0.940148 −0.470074 0.882627i \(-0.655773\pi\)
−0.470074 + 0.882627i \(0.655773\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) −36.0000 −1.20605
\(892\) −12.0000 −0.401790
\(893\) 16.0000 0.535420
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 14.0000 0.467186
\(899\) 8.00000 0.266815
\(900\) 15.0000 0.500000
\(901\) 48.0000 1.59911
\(902\) −24.0000 −0.799113
\(903\) 0 0
\(904\) −16.0000 −0.532152
\(905\) 0 0
\(906\) 0 0
\(907\) −20.0000 −0.664089 −0.332045 0.943264i \(-0.607738\pi\)
−0.332045 + 0.943264i \(0.607738\pi\)
\(908\) −20.0000 −0.663723
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 48.0000 1.58857
\(914\) 8.00000 0.264616
\(915\) 0 0
\(916\) 8.00000 0.264327
\(917\) 0 0
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2.00000 −0.0658665
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) −20.0000 −0.657596
\(926\) 8.00000 0.262896
\(927\) 48.0000 1.57653
\(928\) −2.00000 −0.0656532
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 26.0000 0.851658
\(933\) 0 0
\(934\) −20.0000 −0.654420
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) 52.0000 1.69877 0.849383 0.527777i \(-0.176974\pi\)
0.849383 + 0.527777i \(0.176974\pi\)
\(938\) −4.00000 −0.130605
\(939\) 0 0
\(940\) 0 0
\(941\) 48.0000 1.56476 0.782378 0.622804i \(-0.214007\pi\)
0.782378 + 0.622804i \(0.214007\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) 0 0
\(949\) 20.0000 0.649227
\(950\) 20.0000 0.648886
\(951\) 0 0
\(952\) −4.00000 −0.129641
\(953\) 56.0000 1.81402 0.907009 0.421111i \(-0.138360\pi\)
0.907009 + 0.421111i \(0.138360\pi\)
\(954\) 36.0000 1.16554
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −16.0000 −0.516937
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 8.00000 0.257930
\(963\) 36.0000 1.16008
\(964\) −28.0000 −0.901819
\(965\) 0 0
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −5.00000 −0.160706
\(969\) 0 0
\(970\) 0 0
\(971\) 28.0000 0.898563 0.449281 0.893390i \(-0.351680\pi\)
0.449281 + 0.893390i \(0.351680\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 0 0
\(977\) 32.0000 1.02377 0.511885 0.859054i \(-0.328947\pi\)
0.511885 + 0.859054i \(0.328947\pi\)
\(978\) 0 0
\(979\) 16.0000 0.511362
\(980\) 0 0
\(981\) 12.0000 0.383131
\(982\) −4.00000 −0.127645
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −8.00000 −0.254772
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 0 0
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) −4.00000 −0.127000
\(993\) 0 0
\(994\) −8.00000 −0.253745
\(995\) 0 0
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) −20.0000 −0.633089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7406.2.a.c.1.1 yes 1
23.22 odd 2 7406.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7406.2.a.b.1.1 1 23.22 odd 2
7406.2.a.c.1.1 yes 1 1.1 even 1 trivial