# Properties

 Label 7400.2.a.b.1.1 Level $7400$ Weight $2$ Character 7400.1 Self dual yes Analytic conductor $59.089$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7400,2,Mod(1,7400)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7400, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7400.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7400 = 2^{3} \cdot 5^{2} \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7400.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$59.0892974957$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1480) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 7400.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-2.00000 q^{3} +4.00000 q^{7} +1.00000 q^{9} +O(q^{10})$$ $$q-2.00000 q^{3} +4.00000 q^{7} +1.00000 q^{9} +4.00000 q^{11} -2.00000 q^{13} +2.00000 q^{17} -4.00000 q^{19} -8.00000 q^{21} +4.00000 q^{27} -2.00000 q^{31} -8.00000 q^{33} -1.00000 q^{37} +4.00000 q^{39} -10.0000 q^{41} -4.00000 q^{43} -12.0000 q^{47} +9.00000 q^{49} -4.00000 q^{51} -6.00000 q^{53} +8.00000 q^{57} +4.00000 q^{59} -8.00000 q^{61} +4.00000 q^{63} +10.0000 q^{67} -12.0000 q^{71} +16.0000 q^{77} -10.0000 q^{79} -11.0000 q^{81} +6.00000 q^{83} -18.0000 q^{89} -8.00000 q^{91} +4.00000 q^{93} -2.00000 q^{97} +4.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −2.00000 −1.15470 −0.577350 0.816497i $$-0.695913\pi$$
−0.577350 + 0.816497i $$0.695913\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 4.00000 1.51186 0.755929 0.654654i $$-0.227186\pi$$
0.755929 + 0.654654i $$0.227186\pi$$
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ 4.00000 1.20605 0.603023 0.797724i $$-0.293963\pi$$
0.603023 + 0.797724i $$0.293963\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 2.00000 0.485071 0.242536 0.970143i $$-0.422021\pi$$
0.242536 + 0.970143i $$0.422021\pi$$
$$18$$ 0 0
$$19$$ −4.00000 −0.917663 −0.458831 0.888523i $$-0.651732\pi$$
−0.458831 + 0.888523i $$0.651732\pi$$
$$20$$ 0 0
$$21$$ −8.00000 −1.74574
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 4.00000 0.769800
$$28$$ 0 0
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ −2.00000 −0.359211 −0.179605 0.983739i $$-0.557482\pi$$
−0.179605 + 0.983739i $$0.557482\pi$$
$$32$$ 0 0
$$33$$ −8.00000 −1.39262
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −1.00000 −0.164399
$$38$$ 0 0
$$39$$ 4.00000 0.640513
$$40$$ 0 0
$$41$$ −10.0000 −1.56174 −0.780869 0.624695i $$-0.785223\pi$$
−0.780869 + 0.624695i $$0.785223\pi$$
$$42$$ 0 0
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −12.0000 −1.75038 −0.875190 0.483779i $$-0.839264\pi$$
−0.875190 + 0.483779i $$0.839264\pi$$
$$48$$ 0 0
$$49$$ 9.00000 1.28571
$$50$$ 0 0
$$51$$ −4.00000 −0.560112
$$52$$ 0 0
$$53$$ −6.00000 −0.824163 −0.412082 0.911147i $$-0.635198\pi$$
−0.412082 + 0.911147i $$0.635198\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 8.00000 1.05963
$$58$$ 0 0
$$59$$ 4.00000 0.520756 0.260378 0.965507i $$-0.416153\pi$$
0.260378 + 0.965507i $$0.416153\pi$$
$$60$$ 0 0
$$61$$ −8.00000 −1.02430 −0.512148 0.858898i $$-0.671150\pi$$
−0.512148 + 0.858898i $$0.671150\pi$$
$$62$$ 0 0
$$63$$ 4.00000 0.503953
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 10.0000 1.22169 0.610847 0.791748i $$-0.290829\pi$$
0.610847 + 0.791748i $$0.290829\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −12.0000 −1.42414 −0.712069 0.702109i $$-0.752242\pi$$
−0.712069 + 0.702109i $$0.752242\pi$$
$$72$$ 0 0
$$73$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 16.0000 1.82337
$$78$$ 0 0
$$79$$ −10.0000 −1.12509 −0.562544 0.826767i $$-0.690177\pi$$
−0.562544 + 0.826767i $$0.690177\pi$$
$$80$$ 0 0
$$81$$ −11.0000 −1.22222
$$82$$ 0 0
$$83$$ 6.00000 0.658586 0.329293 0.944228i $$-0.393190\pi$$
0.329293 + 0.944228i $$0.393190\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −18.0000 −1.90800 −0.953998 0.299813i $$-0.903076\pi$$
−0.953998 + 0.299813i $$0.903076\pi$$
$$90$$ 0 0
$$91$$ −8.00000 −0.838628
$$92$$ 0 0
$$93$$ 4.00000 0.414781
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −2.00000 −0.203069 −0.101535 0.994832i $$-0.532375\pi$$
−0.101535 + 0.994832i $$0.532375\pi$$
$$98$$ 0 0
$$99$$ 4.00000 0.402015
$$100$$ 0 0
$$101$$ 6.00000 0.597022 0.298511 0.954406i $$-0.403510\pi$$
0.298511 + 0.954406i $$0.403510\pi$$
$$102$$ 0 0
$$103$$ −8.00000 −0.788263 −0.394132 0.919054i $$-0.628955\pi$$
−0.394132 + 0.919054i $$0.628955\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 6.00000 0.580042 0.290021 0.957020i $$-0.406338\pi$$
0.290021 + 0.957020i $$0.406338\pi$$
$$108$$ 0 0
$$109$$ 4.00000 0.383131 0.191565 0.981480i $$-0.438644\pi$$
0.191565 + 0.981480i $$0.438644\pi$$
$$110$$ 0 0
$$111$$ 2.00000 0.189832
$$112$$ 0 0
$$113$$ 18.0000 1.69330 0.846649 0.532152i $$-0.178617\pi$$
0.846649 + 0.532152i $$0.178617\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ −2.00000 −0.184900
$$118$$ 0 0
$$119$$ 8.00000 0.733359
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 20.0000 1.80334
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −4.00000 −0.354943 −0.177471 0.984126i $$-0.556792\pi$$
−0.177471 + 0.984126i $$0.556792\pi$$
$$128$$ 0 0
$$129$$ 8.00000 0.704361
$$130$$ 0 0
$$131$$ −8.00000 −0.698963 −0.349482 0.936943i $$-0.613642\pi$$
−0.349482 + 0.936943i $$0.613642\pi$$
$$132$$ 0 0
$$133$$ −16.0000 −1.38738
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 16.0000 1.36697 0.683486 0.729964i $$-0.260463\pi$$
0.683486 + 0.729964i $$0.260463\pi$$
$$138$$ 0 0
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 0 0
$$141$$ 24.0000 2.02116
$$142$$ 0 0
$$143$$ −8.00000 −0.668994
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −18.0000 −1.48461
$$148$$ 0 0
$$149$$ 6.00000 0.491539 0.245770 0.969328i $$-0.420959\pi$$
0.245770 + 0.969328i $$0.420959\pi$$
$$150$$ 0 0
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ 0 0
$$153$$ 2.00000 0.161690
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 14.0000 1.11732 0.558661 0.829396i $$-0.311315\pi$$
0.558661 + 0.829396i $$0.311315\pi$$
$$158$$ 0 0
$$159$$ 12.0000 0.951662
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −4.00000 −0.313304 −0.156652 0.987654i $$-0.550070\pi$$
−0.156652 + 0.987654i $$0.550070\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −24.0000 −1.85718 −0.928588 0.371113i $$-0.878976\pi$$
−0.928588 + 0.371113i $$0.878976\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ −4.00000 −0.305888
$$172$$ 0 0
$$173$$ 2.00000 0.152057 0.0760286 0.997106i $$-0.475776\pi$$
0.0760286 + 0.997106i $$0.475776\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −8.00000 −0.601317
$$178$$ 0 0
$$179$$ −24.0000 −1.79384 −0.896922 0.442189i $$-0.854202\pi$$
−0.896922 + 0.442189i $$0.854202\pi$$
$$180$$ 0 0
$$181$$ −6.00000 −0.445976 −0.222988 0.974821i $$-0.571581\pi$$
−0.222988 + 0.974821i $$0.571581\pi$$
$$182$$ 0 0
$$183$$ 16.0000 1.18275
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 8.00000 0.585018
$$188$$ 0 0
$$189$$ 16.0000 1.16383
$$190$$ 0 0
$$191$$ 10.0000 0.723575 0.361787 0.932261i $$-0.382167\pi$$
0.361787 + 0.932261i $$0.382167\pi$$
$$192$$ 0 0
$$193$$ −6.00000 −0.431889 −0.215945 0.976406i $$-0.569283\pi$$
−0.215945 + 0.976406i $$0.569283\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 14.0000 0.997459 0.498729 0.866758i $$-0.333800\pi$$
0.498729 + 0.866758i $$0.333800\pi$$
$$198$$ 0 0
$$199$$ −6.00000 −0.425329 −0.212664 0.977125i $$-0.568214\pi$$
−0.212664 + 0.977125i $$0.568214\pi$$
$$200$$ 0 0
$$201$$ −20.0000 −1.41069
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −16.0000 −1.10674
$$210$$ 0 0
$$211$$ 28.0000 1.92760 0.963800 0.266627i $$-0.0859092\pi$$
0.963800 + 0.266627i $$0.0859092\pi$$
$$212$$ 0 0
$$213$$ 24.0000 1.64445
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ −8.00000 −0.543075
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −4.00000 −0.269069
$$222$$ 0 0
$$223$$ 16.0000 1.07144 0.535720 0.844396i $$-0.320040\pi$$
0.535720 + 0.844396i $$0.320040\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$228$$ 0 0
$$229$$ 26.0000 1.71813 0.859064 0.511868i $$-0.171046\pi$$
0.859064 + 0.511868i $$0.171046\pi$$
$$230$$ 0 0
$$231$$ −32.0000 −2.10545
$$232$$ 0 0
$$233$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 20.0000 1.29914
$$238$$ 0 0
$$239$$ −18.0000 −1.16432 −0.582162 0.813073i $$-0.697793\pi$$
−0.582162 + 0.813073i $$0.697793\pi$$
$$240$$ 0 0
$$241$$ 10.0000 0.644157 0.322078 0.946713i $$-0.395619\pi$$
0.322078 + 0.946713i $$0.395619\pi$$
$$242$$ 0 0
$$243$$ 10.0000 0.641500
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 8.00000 0.509028
$$248$$ 0 0
$$249$$ −12.0000 −0.760469
$$250$$ 0 0
$$251$$ 12.0000 0.757433 0.378717 0.925513i $$-0.376365\pi$$
0.378717 + 0.925513i $$0.376365\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 10.0000 0.623783 0.311891 0.950118i $$-0.399037\pi$$
0.311891 + 0.950118i $$0.399037\pi$$
$$258$$ 0 0
$$259$$ −4.00000 −0.248548
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 4.00000 0.246651 0.123325 0.992366i $$-0.460644\pi$$
0.123325 + 0.992366i $$0.460644\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 36.0000 2.20316
$$268$$ 0 0
$$269$$ −18.0000 −1.09748 −0.548740 0.835993i $$-0.684892\pi$$
−0.548740 + 0.835993i $$0.684892\pi$$
$$270$$ 0 0
$$271$$ −28.0000 −1.70088 −0.850439 0.526073i $$-0.823664\pi$$
−0.850439 + 0.526073i $$0.823664\pi$$
$$272$$ 0 0
$$273$$ 16.0000 0.968364
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 10.0000 0.600842 0.300421 0.953807i $$-0.402873\pi$$
0.300421 + 0.953807i $$0.402873\pi$$
$$278$$ 0 0
$$279$$ −2.00000 −0.119737
$$280$$ 0 0
$$281$$ 22.0000 1.31241 0.656205 0.754583i $$-0.272161\pi$$
0.656205 + 0.754583i $$0.272161\pi$$
$$282$$ 0 0
$$283$$ −20.0000 −1.18888 −0.594438 0.804141i $$-0.702626\pi$$
−0.594438 + 0.804141i $$0.702626\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −40.0000 −2.36113
$$288$$ 0 0
$$289$$ −13.0000 −0.764706
$$290$$ 0 0
$$291$$ 4.00000 0.234484
$$292$$ 0 0
$$293$$ −34.0000 −1.98630 −0.993151 0.116841i $$-0.962723\pi$$
−0.993151 + 0.116841i $$0.962723\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 16.0000 0.928414
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ −16.0000 −0.922225
$$302$$ 0 0
$$303$$ −12.0000 −0.689382
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −26.0000 −1.48390 −0.741949 0.670456i $$-0.766098\pi$$
−0.741949 + 0.670456i $$0.766098\pi$$
$$308$$ 0 0
$$309$$ 16.0000 0.910208
$$310$$ 0 0
$$311$$ −6.00000 −0.340229 −0.170114 0.985424i $$-0.554414\pi$$
−0.170114 + 0.985424i $$0.554414\pi$$
$$312$$ 0 0
$$313$$ 26.0000 1.46961 0.734803 0.678280i $$-0.237274\pi$$
0.734803 + 0.678280i $$0.237274\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 2.00000 0.112331 0.0561656 0.998421i $$-0.482113\pi$$
0.0561656 + 0.998421i $$0.482113\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ −12.0000 −0.669775
$$322$$ 0 0
$$323$$ −8.00000 −0.445132
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ −8.00000 −0.442401
$$328$$ 0 0
$$329$$ −48.0000 −2.64633
$$330$$ 0 0
$$331$$ −12.0000 −0.659580 −0.329790 0.944054i $$-0.606978\pi$$
−0.329790 + 0.944054i $$0.606978\pi$$
$$332$$ 0 0
$$333$$ −1.00000 −0.0547997
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 8.00000 0.435788 0.217894 0.975972i $$-0.430081\pi$$
0.217894 + 0.975972i $$0.430081\pi$$
$$338$$ 0 0
$$339$$ −36.0000 −1.95525
$$340$$ 0 0
$$341$$ −8.00000 −0.433224
$$342$$ 0 0
$$343$$ 8.00000 0.431959
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 12.0000 0.644194 0.322097 0.946707i $$-0.395612\pi$$
0.322097 + 0.946707i $$0.395612\pi$$
$$348$$ 0 0
$$349$$ 14.0000 0.749403 0.374701 0.927146i $$-0.377745\pi$$
0.374701 + 0.927146i $$0.377745\pi$$
$$350$$ 0 0
$$351$$ −8.00000 −0.427008
$$352$$ 0 0
$$353$$ 14.0000 0.745145 0.372572 0.928003i $$-0.378476\pi$$
0.372572 + 0.928003i $$0.378476\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ −16.0000 −0.846810
$$358$$ 0 0
$$359$$ −36.0000 −1.90001 −0.950004 0.312239i $$-0.898921\pi$$
−0.950004 + 0.312239i $$0.898921\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ −10.0000 −0.524864
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 12.0000 0.626395 0.313197 0.949688i $$-0.398600\pi$$
0.313197 + 0.949688i $$0.398600\pi$$
$$368$$ 0 0
$$369$$ −10.0000 −0.520579
$$370$$ 0 0
$$371$$ −24.0000 −1.24602
$$372$$ 0 0
$$373$$ −18.0000 −0.932005 −0.466002 0.884783i $$-0.654306\pi$$
−0.466002 + 0.884783i $$0.654306\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −20.0000 −1.02733 −0.513665 0.857991i $$-0.671713\pi$$
−0.513665 + 0.857991i $$0.671713\pi$$
$$380$$ 0 0
$$381$$ 8.00000 0.409852
$$382$$ 0 0
$$383$$ −24.0000 −1.22634 −0.613171 0.789950i $$-0.710106\pi$$
−0.613171 + 0.789950i $$0.710106\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −4.00000 −0.203331
$$388$$ 0 0
$$389$$ 8.00000 0.405616 0.202808 0.979219i $$-0.434993\pi$$
0.202808 + 0.979219i $$0.434993\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 16.0000 0.807093
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −38.0000 −1.90717 −0.953583 0.301131i $$-0.902636\pi$$
−0.953583 + 0.301131i $$0.902636\pi$$
$$398$$ 0 0
$$399$$ 32.0000 1.60200
$$400$$ 0 0
$$401$$ −34.0000 −1.69788 −0.848939 0.528490i $$-0.822758\pi$$
−0.848939 + 0.528490i $$0.822758\pi$$
$$402$$ 0 0
$$403$$ 4.00000 0.199254
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −4.00000 −0.198273
$$408$$ 0 0
$$409$$ −2.00000 −0.0988936 −0.0494468 0.998777i $$-0.515746\pi$$
−0.0494468 + 0.998777i $$0.515746\pi$$
$$410$$ 0 0
$$411$$ −32.0000 −1.57844
$$412$$ 0 0
$$413$$ 16.0000 0.787309
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −8.00000 −0.391762
$$418$$ 0 0
$$419$$ −4.00000 −0.195413 −0.0977064 0.995215i $$-0.531151\pi$$
−0.0977064 + 0.995215i $$0.531151\pi$$
$$420$$ 0 0
$$421$$ −4.00000 −0.194948 −0.0974740 0.995238i $$-0.531076\pi$$
−0.0974740 + 0.995238i $$0.531076\pi$$
$$422$$ 0 0
$$423$$ −12.0000 −0.583460
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −32.0000 −1.54859
$$428$$ 0 0
$$429$$ 16.0000 0.772487
$$430$$ 0 0
$$431$$ 30.0000 1.44505 0.722525 0.691345i $$-0.242982\pi$$
0.722525 + 0.691345i $$0.242982\pi$$
$$432$$ 0 0
$$433$$ 24.0000 1.15337 0.576683 0.816968i $$-0.304347\pi$$
0.576683 + 0.816968i $$0.304347\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ −22.0000 −1.05000 −0.525001 0.851101i $$-0.675935\pi$$
−0.525001 + 0.851101i $$0.675935\pi$$
$$440$$ 0 0
$$441$$ 9.00000 0.428571
$$442$$ 0 0
$$443$$ 6.00000 0.285069 0.142534 0.989790i $$-0.454475\pi$$
0.142534 + 0.989790i $$0.454475\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ −12.0000 −0.567581
$$448$$ 0 0
$$449$$ 14.0000 0.660701 0.330350 0.943858i $$-0.392833\pi$$
0.330350 + 0.943858i $$0.392833\pi$$
$$450$$ 0 0
$$451$$ −40.0000 −1.88353
$$452$$ 0 0
$$453$$ 16.0000 0.751746
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −18.0000 −0.842004 −0.421002 0.907060i $$-0.638322\pi$$
−0.421002 + 0.907060i $$0.638322\pi$$
$$458$$ 0 0
$$459$$ 8.00000 0.373408
$$460$$ 0 0
$$461$$ 24.0000 1.11779 0.558896 0.829238i $$-0.311225\pi$$
0.558896 + 0.829238i $$0.311225\pi$$
$$462$$ 0 0
$$463$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −36.0000 −1.66588 −0.832941 0.553362i $$-0.813345\pi$$
−0.832941 + 0.553362i $$0.813345\pi$$
$$468$$ 0 0
$$469$$ 40.0000 1.84703
$$470$$ 0 0
$$471$$ −28.0000 −1.29017
$$472$$ 0 0
$$473$$ −16.0000 −0.735681
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ −6.00000 −0.274721
$$478$$ 0 0
$$479$$ −34.0000 −1.55350 −0.776750 0.629809i $$-0.783133\pi$$
−0.776750 + 0.629809i $$0.783133\pi$$
$$480$$ 0 0
$$481$$ 2.00000 0.0911922
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ −32.0000 −1.45006 −0.725029 0.688718i $$-0.758174\pi$$
−0.725029 + 0.688718i $$0.758174\pi$$
$$488$$ 0 0
$$489$$ 8.00000 0.361773
$$490$$ 0 0
$$491$$ 28.0000 1.26362 0.631811 0.775122i $$-0.282312\pi$$
0.631811 + 0.775122i $$0.282312\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −48.0000 −2.15309
$$498$$ 0 0
$$499$$ −36.0000 −1.61158 −0.805791 0.592200i $$-0.798259\pi$$
−0.805791 + 0.592200i $$0.798259\pi$$
$$500$$ 0 0
$$501$$ 48.0000 2.14448
$$502$$ 0 0
$$503$$ 16.0000 0.713405 0.356702 0.934218i $$-0.383901\pi$$
0.356702 + 0.934218i $$0.383901\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 18.0000 0.799408
$$508$$ 0 0
$$509$$ −2.00000 −0.0886484 −0.0443242 0.999017i $$-0.514113\pi$$
−0.0443242 + 0.999017i $$0.514113\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ −16.0000 −0.706417
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ −48.0000 −2.11104
$$518$$ 0 0
$$519$$ −4.00000 −0.175581
$$520$$ 0 0
$$521$$ −10.0000 −0.438108 −0.219054 0.975713i $$-0.570297\pi$$
−0.219054 + 0.975713i $$0.570297\pi$$
$$522$$ 0 0
$$523$$ −16.0000 −0.699631 −0.349816 0.936819i $$-0.613756\pi$$
−0.349816 + 0.936819i $$0.613756\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −4.00000 −0.174243
$$528$$ 0 0
$$529$$ −23.0000 −1.00000
$$530$$ 0 0
$$531$$ 4.00000 0.173585
$$532$$ 0 0
$$533$$ 20.0000 0.866296
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 48.0000 2.07135
$$538$$ 0 0
$$539$$ 36.0000 1.55063
$$540$$ 0 0
$$541$$ −8.00000 −0.343947 −0.171973 0.985102i $$-0.555014\pi$$
−0.171973 + 0.985102i $$0.555014\pi$$
$$542$$ 0 0
$$543$$ 12.0000 0.514969
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −32.0000 −1.36822 −0.684111 0.729378i $$-0.739809\pi$$
−0.684111 + 0.729378i $$0.739809\pi$$
$$548$$ 0 0
$$549$$ −8.00000 −0.341432
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ −40.0000 −1.70097
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 30.0000 1.27114 0.635570 0.772043i $$-0.280765\pi$$
0.635570 + 0.772043i $$0.280765\pi$$
$$558$$ 0 0
$$559$$ 8.00000 0.338364
$$560$$ 0 0
$$561$$ −16.0000 −0.675521
$$562$$ 0 0
$$563$$ −16.0000 −0.674320 −0.337160 0.941447i $$-0.609466\pi$$
−0.337160 + 0.941447i $$0.609466\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −44.0000 −1.84783
$$568$$ 0 0
$$569$$ 22.0000 0.922288 0.461144 0.887325i $$-0.347439\pi$$
0.461144 + 0.887325i $$0.347439\pi$$
$$570$$ 0 0
$$571$$ 20.0000 0.836974 0.418487 0.908223i $$-0.362561\pi$$
0.418487 + 0.908223i $$0.362561\pi$$
$$572$$ 0 0
$$573$$ −20.0000 −0.835512
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 26.0000 1.08239 0.541197 0.840896i $$-0.317971\pi$$
0.541197 + 0.840896i $$0.317971\pi$$
$$578$$ 0 0
$$579$$ 12.0000 0.498703
$$580$$ 0 0
$$581$$ 24.0000 0.995688
$$582$$ 0 0
$$583$$ −24.0000 −0.993978
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 36.0000 1.48588 0.742940 0.669359i $$-0.233431\pi$$
0.742940 + 0.669359i $$0.233431\pi$$
$$588$$ 0 0
$$589$$ 8.00000 0.329634
$$590$$ 0 0
$$591$$ −28.0000 −1.15177
$$592$$ 0 0
$$593$$ 8.00000 0.328521 0.164260 0.986417i $$-0.447476\pi$$
0.164260 + 0.986417i $$0.447476\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 12.0000 0.491127
$$598$$ 0 0
$$599$$ 48.0000 1.96123 0.980613 0.195952i $$-0.0627798\pi$$
0.980613 + 0.195952i $$0.0627798\pi$$
$$600$$ 0 0
$$601$$ −14.0000 −0.571072 −0.285536 0.958368i $$-0.592172\pi$$
−0.285536 + 0.958368i $$0.592172\pi$$
$$602$$ 0 0
$$603$$ 10.0000 0.407231
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ −8.00000 −0.324710 −0.162355 0.986732i $$-0.551909\pi$$
−0.162355 + 0.986732i $$0.551909\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 24.0000 0.970936
$$612$$ 0 0
$$613$$ −38.0000 −1.53481 −0.767403 0.641165i $$-0.778451\pi$$
−0.767403 + 0.641165i $$0.778451\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 4.00000 0.161034 0.0805170 0.996753i $$-0.474343\pi$$
0.0805170 + 0.996753i $$0.474343\pi$$
$$618$$ 0 0
$$619$$ 28.0000 1.12542 0.562708 0.826656i $$-0.309760\pi$$
0.562708 + 0.826656i $$0.309760\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −72.0000 −2.88462
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 32.0000 1.27796
$$628$$ 0 0
$$629$$ −2.00000 −0.0797452
$$630$$ 0 0
$$631$$ 34.0000 1.35352 0.676759 0.736204i $$-0.263384\pi$$
0.676759 + 0.736204i $$0.263384\pi$$
$$632$$ 0 0
$$633$$ −56.0000 −2.22580
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −18.0000 −0.713186
$$638$$ 0 0
$$639$$ −12.0000 −0.474713
$$640$$ 0 0
$$641$$ −46.0000 −1.81689 −0.908445 0.418004i $$-0.862730\pi$$
−0.908445 + 0.418004i $$0.862730\pi$$
$$642$$ 0 0
$$643$$ −40.0000 −1.57745 −0.788723 0.614749i $$-0.789257\pi$$
−0.788723 + 0.614749i $$0.789257\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 32.0000 1.25805 0.629025 0.777385i $$-0.283454\pi$$
0.629025 + 0.777385i $$0.283454\pi$$
$$648$$ 0 0
$$649$$ 16.0000 0.628055
$$650$$ 0 0
$$651$$ 16.0000 0.627089
$$652$$ 0 0
$$653$$ 14.0000 0.547862 0.273931 0.961749i $$-0.411676\pi$$
0.273931 + 0.961749i $$0.411676\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 12.0000 0.467454 0.233727 0.972302i $$-0.424908\pi$$
0.233727 + 0.972302i $$0.424908\pi$$
$$660$$ 0 0
$$661$$ −4.00000 −0.155582 −0.0777910 0.996970i $$-0.524787\pi$$
−0.0777910 + 0.996970i $$0.524787\pi$$
$$662$$ 0 0
$$663$$ 8.00000 0.310694
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ −32.0000 −1.23719
$$670$$ 0 0
$$671$$ −32.0000 −1.23535
$$672$$ 0 0
$$673$$ 20.0000 0.770943 0.385472 0.922720i $$-0.374039\pi$$
0.385472 + 0.922720i $$0.374039\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 14.0000 0.538064 0.269032 0.963131i $$-0.413296\pi$$
0.269032 + 0.963131i $$0.413296\pi$$
$$678$$ 0 0
$$679$$ −8.00000 −0.307012
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −4.00000 −0.153056 −0.0765279 0.997067i $$-0.524383\pi$$
−0.0765279 + 0.997067i $$0.524383\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ −52.0000 −1.98392
$$688$$ 0 0
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ 4.00000 0.152167 0.0760836 0.997101i $$-0.475758\pi$$
0.0760836 + 0.997101i $$0.475758\pi$$
$$692$$ 0 0
$$693$$ 16.0000 0.607790
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −20.0000 −0.757554
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −12.0000 −0.453234 −0.226617 0.973984i $$-0.572767\pi$$
−0.226617 + 0.973984i $$0.572767\pi$$
$$702$$ 0 0
$$703$$ 4.00000 0.150863
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 24.0000 0.902613
$$708$$ 0 0
$$709$$ 8.00000 0.300446 0.150223 0.988652i $$-0.452001\pi$$
0.150223 + 0.988652i $$0.452001\pi$$
$$710$$ 0 0
$$711$$ −10.0000 −0.375029
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 36.0000 1.34444
$$718$$ 0 0
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ −32.0000 −1.19174
$$722$$ 0 0
$$723$$ −20.0000 −0.743808
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 8.00000 0.296704 0.148352 0.988935i $$-0.452603\pi$$
0.148352 + 0.988935i $$0.452603\pi$$
$$728$$ 0 0
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ −8.00000 −0.295891
$$732$$ 0 0
$$733$$ −14.0000 −0.517102 −0.258551 0.965998i $$-0.583245\pi$$
−0.258551 + 0.965998i $$0.583245\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 40.0000 1.47342
$$738$$ 0 0
$$739$$ −12.0000 −0.441427 −0.220714 0.975339i $$-0.570839\pi$$
−0.220714 + 0.975339i $$0.570839\pi$$
$$740$$ 0 0
$$741$$ −16.0000 −0.587775
$$742$$ 0 0
$$743$$ 24.0000 0.880475 0.440237 0.897881i $$-0.354894\pi$$
0.440237 + 0.897881i $$0.354894\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 6.00000 0.219529
$$748$$ 0 0
$$749$$ 24.0000 0.876941
$$750$$ 0 0
$$751$$ 20.0000 0.729810 0.364905 0.931045i $$-0.381101\pi$$
0.364905 + 0.931045i $$0.381101\pi$$
$$752$$ 0 0
$$753$$ −24.0000 −0.874609
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −34.0000 −1.23575 −0.617876 0.786276i $$-0.712006\pi$$
−0.617876 + 0.786276i $$0.712006\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −30.0000 −1.08750 −0.543750 0.839248i $$-0.682996\pi$$
−0.543750 + 0.839248i $$0.682996\pi$$
$$762$$ 0 0
$$763$$ 16.0000 0.579239
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −8.00000 −0.288863
$$768$$ 0 0
$$769$$ −22.0000 −0.793340 −0.396670 0.917961i $$-0.629834\pi$$
−0.396670 + 0.917961i $$0.629834\pi$$
$$770$$ 0 0
$$771$$ −20.0000 −0.720282
$$772$$ 0 0
$$773$$ 18.0000 0.647415 0.323708 0.946157i $$-0.395071\pi$$
0.323708 + 0.946157i $$0.395071\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 8.00000 0.286998
$$778$$ 0 0
$$779$$ 40.0000 1.43315
$$780$$ 0 0
$$781$$ −48.0000 −1.71758
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 22.0000 0.784215 0.392108 0.919919i $$-0.371746\pi$$
0.392108 + 0.919919i $$0.371746\pi$$
$$788$$ 0 0
$$789$$ −8.00000 −0.284808
$$790$$ 0 0
$$791$$ 72.0000 2.56003
$$792$$ 0 0
$$793$$ 16.0000 0.568177
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 2.00000 0.0708436 0.0354218 0.999372i $$-0.488723\pi$$
0.0354218 + 0.999372i $$0.488723\pi$$
$$798$$ 0 0
$$799$$ −24.0000 −0.849059
$$800$$ 0 0
$$801$$ −18.0000 −0.635999
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 36.0000 1.26726
$$808$$ 0 0
$$809$$ −30.0000 −1.05474 −0.527372 0.849635i $$-0.676823\pi$$
−0.527372 + 0.849635i $$0.676823\pi$$
$$810$$ 0 0
$$811$$ 12.0000 0.421377 0.210688 0.977553i $$-0.432429\pi$$
0.210688 + 0.977553i $$0.432429\pi$$
$$812$$ 0 0
$$813$$ 56.0000 1.96401
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 16.0000 0.559769
$$818$$ 0 0
$$819$$ −8.00000 −0.279543
$$820$$ 0 0
$$821$$ 46.0000 1.60541 0.802706 0.596376i $$-0.203393\pi$$
0.802706 + 0.596376i $$0.203393\pi$$
$$822$$ 0 0
$$823$$ 8.00000 0.278862 0.139431 0.990232i $$-0.455473\pi$$
0.139431 + 0.990232i $$0.455473\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −56.0000 −1.94731 −0.973655 0.228024i $$-0.926773\pi$$
−0.973655 + 0.228024i $$0.926773\pi$$
$$828$$ 0 0
$$829$$ −52.0000 −1.80603 −0.903017 0.429604i $$-0.858653\pi$$
−0.903017 + 0.429604i $$0.858653\pi$$
$$830$$ 0 0
$$831$$ −20.0000 −0.693792
$$832$$ 0 0
$$833$$ 18.0000 0.623663
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ −8.00000 −0.276520
$$838$$ 0 0
$$839$$ 32.0000 1.10476 0.552381 0.833592i $$-0.313719\pi$$
0.552381 + 0.833592i $$0.313719\pi$$
$$840$$ 0 0
$$841$$ −29.0000 −1.00000
$$842$$ 0 0
$$843$$ −44.0000 −1.51544
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 20.0000 0.687208
$$848$$ 0 0
$$849$$ 40.0000 1.37280
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 14.0000 0.479351 0.239675 0.970853i $$-0.422959\pi$$
0.239675 + 0.970853i $$0.422959\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −42.0000 −1.43469 −0.717346 0.696717i $$-0.754643\pi$$
−0.717346 + 0.696717i $$0.754643\pi$$
$$858$$ 0 0
$$859$$ 4.00000 0.136478 0.0682391 0.997669i $$-0.478262\pi$$
0.0682391 + 0.997669i $$0.478262\pi$$
$$860$$ 0 0
$$861$$ 80.0000 2.72639
$$862$$ 0 0
$$863$$ −20.0000 −0.680808 −0.340404 0.940279i $$-0.610564\pi$$
−0.340404 + 0.940279i $$0.610564\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 26.0000 0.883006
$$868$$ 0 0
$$869$$ −40.0000 −1.35691
$$870$$ 0 0
$$871$$ −20.0000 −0.677674
$$872$$ 0 0
$$873$$ −2.00000 −0.0676897
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 22.0000 0.742887 0.371444 0.928456i $$-0.378863\pi$$
0.371444 + 0.928456i $$0.378863\pi$$
$$878$$ 0 0
$$879$$ 68.0000 2.29358
$$880$$ 0 0
$$881$$ −34.0000 −1.14549 −0.572745 0.819734i $$-0.694121\pi$$
−0.572745 + 0.819734i $$0.694121\pi$$
$$882$$ 0 0
$$883$$ −40.0000 −1.34611 −0.673054 0.739594i $$-0.735018\pi$$
−0.673054 + 0.739594i $$0.735018\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −24.0000 −0.805841 −0.402921 0.915235i $$-0.632005\pi$$
−0.402921 + 0.915235i $$0.632005\pi$$
$$888$$ 0 0
$$889$$ −16.0000 −0.536623
$$890$$ 0 0
$$891$$ −44.0000 −1.47406
$$892$$ 0 0
$$893$$ 48.0000 1.60626
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ −12.0000 −0.399778
$$902$$ 0 0
$$903$$ 32.0000 1.06489
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −24.0000 −0.796907 −0.398453 0.917189i $$-0.630453\pi$$
−0.398453 + 0.917189i $$0.630453\pi$$
$$908$$ 0 0
$$909$$ 6.00000 0.199007
$$910$$ 0 0
$$911$$ 22.0000 0.728893 0.364446 0.931224i $$-0.381258\pi$$
0.364446 + 0.931224i $$0.381258\pi$$
$$912$$ 0 0
$$913$$ 24.0000 0.794284
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ −32.0000 −1.05673
$$918$$ 0 0
$$919$$ 38.0000 1.25350 0.626752 0.779219i $$-0.284384\pi$$
0.626752 + 0.779219i $$0.284384\pi$$
$$920$$ 0 0
$$921$$ 52.0000 1.71346
$$922$$ 0 0
$$923$$ 24.0000 0.789970
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ −8.00000 −0.262754
$$928$$ 0 0
$$929$$ −18.0000 −0.590561 −0.295280 0.955411i $$-0.595413\pi$$
−0.295280 + 0.955411i $$0.595413\pi$$
$$930$$ 0 0
$$931$$ −36.0000 −1.17985
$$932$$ 0 0
$$933$$ 12.0000 0.392862
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 12.0000 0.392023 0.196011 0.980602i $$-0.437201\pi$$
0.196011 + 0.980602i $$0.437201\pi$$
$$938$$ 0 0
$$939$$ −52.0000 −1.69696
$$940$$ 0 0
$$941$$ 42.0000 1.36916 0.684580 0.728937i $$-0.259985\pi$$
0.684580 + 0.728937i $$0.259985\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −36.0000 −1.16984 −0.584921 0.811090i $$-0.698875\pi$$
−0.584921 + 0.811090i $$0.698875\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ −4.00000 −0.129709
$$952$$ 0 0
$$953$$ −40.0000 −1.29573 −0.647864 0.761756i $$-0.724337\pi$$
−0.647864 + 0.761756i $$0.724337\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 64.0000 2.06667
$$960$$ 0 0
$$961$$ −27.0000 −0.870968
$$962$$ 0 0
$$963$$ 6.00000 0.193347
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 48.0000 1.54358 0.771788 0.635880i $$-0.219363\pi$$
0.771788 + 0.635880i $$0.219363\pi$$
$$968$$ 0 0
$$969$$ 16.0000 0.513994
$$970$$ 0 0
$$971$$ 60.0000 1.92549 0.962746 0.270408i $$-0.0871586\pi$$
0.962746 + 0.270408i $$0.0871586\pi$$
$$972$$ 0 0
$$973$$ 16.0000 0.512936
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 26.0000 0.831814 0.415907 0.909407i $$-0.363464\pi$$
0.415907 + 0.909407i $$0.363464\pi$$
$$978$$ 0 0
$$979$$ −72.0000 −2.30113
$$980$$ 0 0
$$981$$ 4.00000 0.127710
$$982$$ 0 0
$$983$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 96.0000 3.05571
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ −38.0000 −1.20711 −0.603555 0.797321i $$-0.706250\pi$$
−0.603555 + 0.797321i $$0.706250\pi$$
$$992$$ 0 0
$$993$$ 24.0000 0.761617
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 6.00000 0.190022 0.0950110 0.995476i $$-0.469711\pi$$
0.0950110 + 0.995476i $$0.469711\pi$$
$$998$$ 0 0
$$999$$ −4.00000 −0.126554
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7400.2.a.b.1.1 1
5.2 odd 4 1480.2.d.a.889.2 yes 2
5.3 odd 4 1480.2.d.a.889.1 2
5.4 even 2 7400.2.a.h.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
1480.2.d.a.889.1 2 5.3 odd 4
1480.2.d.a.889.2 yes 2 5.2 odd 4
7400.2.a.b.1.1 1 1.1 even 1 trivial
7400.2.a.h.1.1 1 5.4 even 2