Properties

Label 740.4.a.a.1.1
Level $740$
Weight $4$
Character 740.1
Self dual yes
Analytic conductor $43.661$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [740,4,Mod(1,740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("740.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 740.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.6614134042\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 740.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{3} +5.00000 q^{5} +4.00000 q^{7} +37.0000 q^{9} +O(q^{10})\) \(q-8.00000 q^{3} +5.00000 q^{5} +4.00000 q^{7} +37.0000 q^{9} -20.0000 q^{11} -10.0000 q^{13} -40.0000 q^{15} -62.0000 q^{17} +8.00000 q^{19} -32.0000 q^{21} +192.000 q^{23} +25.0000 q^{25} -80.0000 q^{27} -154.000 q^{29} +124.000 q^{31} +160.000 q^{33} +20.0000 q^{35} +37.0000 q^{37} +80.0000 q^{39} +186.000 q^{41} +92.0000 q^{43} +185.000 q^{45} +476.000 q^{47} -327.000 q^{49} +496.000 q^{51} -258.000 q^{53} -100.000 q^{55} -64.0000 q^{57} -176.000 q^{59} -458.000 q^{61} +148.000 q^{63} -50.0000 q^{65} +336.000 q^{67} -1536.00 q^{69} -232.000 q^{71} -470.000 q^{73} -200.000 q^{75} -80.0000 q^{77} -676.000 q^{79} -359.000 q^{81} -608.000 q^{83} -310.000 q^{85} +1232.00 q^{87} -102.000 q^{89} -40.0000 q^{91} -992.000 q^{93} +40.0000 q^{95} -30.0000 q^{97} -740.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.00000 −1.53960 −0.769800 0.638285i \(-0.779644\pi\)
−0.769800 + 0.638285i \(0.779644\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 4.00000 0.215980 0.107990 0.994152i \(-0.465559\pi\)
0.107990 + 0.994152i \(0.465559\pi\)
\(8\) 0 0
\(9\) 37.0000 1.37037
\(10\) 0 0
\(11\) −20.0000 −0.548202 −0.274101 0.961701i \(-0.588380\pi\)
−0.274101 + 0.961701i \(0.588380\pi\)
\(12\) 0 0
\(13\) −10.0000 −0.213346 −0.106673 0.994294i \(-0.534020\pi\)
−0.106673 + 0.994294i \(0.534020\pi\)
\(14\) 0 0
\(15\) −40.0000 −0.688530
\(16\) 0 0
\(17\) −62.0000 −0.884542 −0.442271 0.896882i \(-0.645827\pi\)
−0.442271 + 0.896882i \(0.645827\pi\)
\(18\) 0 0
\(19\) 8.00000 0.0965961 0.0482980 0.998833i \(-0.484620\pi\)
0.0482980 + 0.998833i \(0.484620\pi\)
\(20\) 0 0
\(21\) −32.0000 −0.332522
\(22\) 0 0
\(23\) 192.000 1.74064 0.870321 0.492485i \(-0.163911\pi\)
0.870321 + 0.492485i \(0.163911\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −80.0000 −0.570222
\(28\) 0 0
\(29\) −154.000 −0.986106 −0.493053 0.869999i \(-0.664119\pi\)
−0.493053 + 0.869999i \(0.664119\pi\)
\(30\) 0 0
\(31\) 124.000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 160.000 0.844013
\(34\) 0 0
\(35\) 20.0000 0.0965891
\(36\) 0 0
\(37\) 37.0000 0.164399
\(38\) 0 0
\(39\) 80.0000 0.328468
\(40\) 0 0
\(41\) 186.000 0.708496 0.354248 0.935152i \(-0.384737\pi\)
0.354248 + 0.935152i \(0.384737\pi\)
\(42\) 0 0
\(43\) 92.0000 0.326276 0.163138 0.986603i \(-0.447838\pi\)
0.163138 + 0.986603i \(0.447838\pi\)
\(44\) 0 0
\(45\) 185.000 0.612848
\(46\) 0 0
\(47\) 476.000 1.47727 0.738635 0.674105i \(-0.235471\pi\)
0.738635 + 0.674105i \(0.235471\pi\)
\(48\) 0 0
\(49\) −327.000 −0.953353
\(50\) 0 0
\(51\) 496.000 1.36184
\(52\) 0 0
\(53\) −258.000 −0.668661 −0.334330 0.942456i \(-0.608510\pi\)
−0.334330 + 0.942456i \(0.608510\pi\)
\(54\) 0 0
\(55\) −100.000 −0.245164
\(56\) 0 0
\(57\) −64.0000 −0.148719
\(58\) 0 0
\(59\) −176.000 −0.388360 −0.194180 0.980966i \(-0.562205\pi\)
−0.194180 + 0.980966i \(0.562205\pi\)
\(60\) 0 0
\(61\) −458.000 −0.961326 −0.480663 0.876905i \(-0.659604\pi\)
−0.480663 + 0.876905i \(0.659604\pi\)
\(62\) 0 0
\(63\) 148.000 0.295972
\(64\) 0 0
\(65\) −50.0000 −0.0954113
\(66\) 0 0
\(67\) 336.000 0.612671 0.306335 0.951924i \(-0.400897\pi\)
0.306335 + 0.951924i \(0.400897\pi\)
\(68\) 0 0
\(69\) −1536.00 −2.67989
\(70\) 0 0
\(71\) −232.000 −0.387793 −0.193897 0.981022i \(-0.562113\pi\)
−0.193897 + 0.981022i \(0.562113\pi\)
\(72\) 0 0
\(73\) −470.000 −0.753553 −0.376776 0.926304i \(-0.622967\pi\)
−0.376776 + 0.926304i \(0.622967\pi\)
\(74\) 0 0
\(75\) −200.000 −0.307920
\(76\) 0 0
\(77\) −80.0000 −0.118401
\(78\) 0 0
\(79\) −676.000 −0.962733 −0.481367 0.876519i \(-0.659859\pi\)
−0.481367 + 0.876519i \(0.659859\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) −608.000 −0.804056 −0.402028 0.915627i \(-0.631695\pi\)
−0.402028 + 0.915627i \(0.631695\pi\)
\(84\) 0 0
\(85\) −310.000 −0.395579
\(86\) 0 0
\(87\) 1232.00 1.51821
\(88\) 0 0
\(89\) −102.000 −0.121483 −0.0607415 0.998154i \(-0.519347\pi\)
−0.0607415 + 0.998154i \(0.519347\pi\)
\(90\) 0 0
\(91\) −40.0000 −0.0460785
\(92\) 0 0
\(93\) −992.000 −1.10608
\(94\) 0 0
\(95\) 40.0000 0.0431991
\(96\) 0 0
\(97\) −30.0000 −0.0314025 −0.0157012 0.999877i \(-0.504998\pi\)
−0.0157012 + 0.999877i \(0.504998\pi\)
\(98\) 0 0
\(99\) −740.000 −0.751240
\(100\) 0 0
\(101\) −738.000 −0.727067 −0.363533 0.931581i \(-0.618430\pi\)
−0.363533 + 0.931581i \(0.618430\pi\)
\(102\) 0 0
\(103\) −504.000 −0.482142 −0.241071 0.970508i \(-0.577499\pi\)
−0.241071 + 0.970508i \(0.577499\pi\)
\(104\) 0 0
\(105\) −160.000 −0.148709
\(106\) 0 0
\(107\) −848.000 −0.766161 −0.383081 0.923715i \(-0.625137\pi\)
−0.383081 + 0.923715i \(0.625137\pi\)
\(108\) 0 0
\(109\) 230.000 0.202110 0.101055 0.994881i \(-0.467778\pi\)
0.101055 + 0.994881i \(0.467778\pi\)
\(110\) 0 0
\(111\) −296.000 −0.253109
\(112\) 0 0
\(113\) 66.0000 0.0549448 0.0274724 0.999623i \(-0.491254\pi\)
0.0274724 + 0.999623i \(0.491254\pi\)
\(114\) 0 0
\(115\) 960.000 0.778439
\(116\) 0 0
\(117\) −370.000 −0.292363
\(118\) 0 0
\(119\) −248.000 −0.191043
\(120\) 0 0
\(121\) −931.000 −0.699474
\(122\) 0 0
\(123\) −1488.00 −1.09080
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2100.00 −1.46728 −0.733641 0.679537i \(-0.762181\pi\)
−0.733641 + 0.679537i \(0.762181\pi\)
\(128\) 0 0
\(129\) −736.000 −0.502335
\(130\) 0 0
\(131\) −1448.00 −0.965743 −0.482872 0.875691i \(-0.660406\pi\)
−0.482872 + 0.875691i \(0.660406\pi\)
\(132\) 0 0
\(133\) 32.0000 0.0208628
\(134\) 0 0
\(135\) −400.000 −0.255011
\(136\) 0 0
\(137\) 1146.00 0.714667 0.357334 0.933977i \(-0.383686\pi\)
0.357334 + 0.933977i \(0.383686\pi\)
\(138\) 0 0
\(139\) −140.000 −0.0854291 −0.0427146 0.999087i \(-0.513601\pi\)
−0.0427146 + 0.999087i \(0.513601\pi\)
\(140\) 0 0
\(141\) −3808.00 −2.27441
\(142\) 0 0
\(143\) 200.000 0.116957
\(144\) 0 0
\(145\) −770.000 −0.441000
\(146\) 0 0
\(147\) 2616.00 1.46778
\(148\) 0 0
\(149\) −1778.00 −0.977580 −0.488790 0.872401i \(-0.662562\pi\)
−0.488790 + 0.872401i \(0.662562\pi\)
\(150\) 0 0
\(151\) 2224.00 1.19859 0.599293 0.800530i \(-0.295448\pi\)
0.599293 + 0.800530i \(0.295448\pi\)
\(152\) 0 0
\(153\) −2294.00 −1.21215
\(154\) 0 0
\(155\) 620.000 0.321288
\(156\) 0 0
\(157\) 2614.00 1.32879 0.664395 0.747382i \(-0.268689\pi\)
0.664395 + 0.747382i \(0.268689\pi\)
\(158\) 0 0
\(159\) 2064.00 1.02947
\(160\) 0 0
\(161\) 768.000 0.375943
\(162\) 0 0
\(163\) −2308.00 −1.10906 −0.554529 0.832164i \(-0.687102\pi\)
−0.554529 + 0.832164i \(0.687102\pi\)
\(164\) 0 0
\(165\) 800.000 0.377454
\(166\) 0 0
\(167\) −968.000 −0.448539 −0.224270 0.974527i \(-0.572000\pi\)
−0.224270 + 0.974527i \(0.572000\pi\)
\(168\) 0 0
\(169\) −2097.00 −0.954483
\(170\) 0 0
\(171\) 296.000 0.132372
\(172\) 0 0
\(173\) 614.000 0.269836 0.134918 0.990857i \(-0.456923\pi\)
0.134918 + 0.990857i \(0.456923\pi\)
\(174\) 0 0
\(175\) 100.000 0.0431959
\(176\) 0 0
\(177\) 1408.00 0.597920
\(178\) 0 0
\(179\) 528.000 0.220472 0.110236 0.993905i \(-0.464839\pi\)
0.110236 + 0.993905i \(0.464839\pi\)
\(180\) 0 0
\(181\) −2994.00 −1.22952 −0.614758 0.788716i \(-0.710746\pi\)
−0.614758 + 0.788716i \(0.710746\pi\)
\(182\) 0 0
\(183\) 3664.00 1.48006
\(184\) 0 0
\(185\) 185.000 0.0735215
\(186\) 0 0
\(187\) 1240.00 0.484908
\(188\) 0 0
\(189\) −320.000 −0.123156
\(190\) 0 0
\(191\) −2844.00 −1.07741 −0.538703 0.842496i \(-0.681086\pi\)
−0.538703 + 0.842496i \(0.681086\pi\)
\(192\) 0 0
\(193\) −3678.00 −1.37175 −0.685876 0.727718i \(-0.740581\pi\)
−0.685876 + 0.727718i \(0.740581\pi\)
\(194\) 0 0
\(195\) 400.000 0.146895
\(196\) 0 0
\(197\) 318.000 0.115008 0.0575040 0.998345i \(-0.481686\pi\)
0.0575040 + 0.998345i \(0.481686\pi\)
\(198\) 0 0
\(199\) −884.000 −0.314900 −0.157450 0.987527i \(-0.550327\pi\)
−0.157450 + 0.987527i \(0.550327\pi\)
\(200\) 0 0
\(201\) −2688.00 −0.943268
\(202\) 0 0
\(203\) −616.000 −0.212979
\(204\) 0 0
\(205\) 930.000 0.316849
\(206\) 0 0
\(207\) 7104.00 2.38532
\(208\) 0 0
\(209\) −160.000 −0.0529542
\(210\) 0 0
\(211\) 3292.00 1.07408 0.537039 0.843557i \(-0.319543\pi\)
0.537039 + 0.843557i \(0.319543\pi\)
\(212\) 0 0
\(213\) 1856.00 0.597047
\(214\) 0 0
\(215\) 460.000 0.145915
\(216\) 0 0
\(217\) 496.000 0.155164
\(218\) 0 0
\(219\) 3760.00 1.16017
\(220\) 0 0
\(221\) 620.000 0.188714
\(222\) 0 0
\(223\) 20.0000 0.00600583 0.00300291 0.999995i \(-0.499044\pi\)
0.00300291 + 0.999995i \(0.499044\pi\)
\(224\) 0 0
\(225\) 925.000 0.274074
\(226\) 0 0
\(227\) 1308.00 0.382445 0.191222 0.981547i \(-0.438755\pi\)
0.191222 + 0.981547i \(0.438755\pi\)
\(228\) 0 0
\(229\) −610.000 −0.176026 −0.0880130 0.996119i \(-0.528052\pi\)
−0.0880130 + 0.996119i \(0.528052\pi\)
\(230\) 0 0
\(231\) 640.000 0.182290
\(232\) 0 0
\(233\) 1610.00 0.452681 0.226340 0.974048i \(-0.427324\pi\)
0.226340 + 0.974048i \(0.427324\pi\)
\(234\) 0 0
\(235\) 2380.00 0.660656
\(236\) 0 0
\(237\) 5408.00 1.48223
\(238\) 0 0
\(239\) −1268.00 −0.343180 −0.171590 0.985168i \(-0.554890\pi\)
−0.171590 + 0.985168i \(0.554890\pi\)
\(240\) 0 0
\(241\) 3490.00 0.932824 0.466412 0.884568i \(-0.345546\pi\)
0.466412 + 0.884568i \(0.345546\pi\)
\(242\) 0 0
\(243\) 5032.00 1.32841
\(244\) 0 0
\(245\) −1635.00 −0.426352
\(246\) 0 0
\(247\) −80.0000 −0.0206084
\(248\) 0 0
\(249\) 4864.00 1.23793
\(250\) 0 0
\(251\) −960.000 −0.241413 −0.120706 0.992688i \(-0.538516\pi\)
−0.120706 + 0.992688i \(0.538516\pi\)
\(252\) 0 0
\(253\) −3840.00 −0.954224
\(254\) 0 0
\(255\) 2480.00 0.609034
\(256\) 0 0
\(257\) 6834.00 1.65873 0.829364 0.558708i \(-0.188703\pi\)
0.829364 + 0.558708i \(0.188703\pi\)
\(258\) 0 0
\(259\) 148.000 0.0355068
\(260\) 0 0
\(261\) −5698.00 −1.35133
\(262\) 0 0
\(263\) 4436.00 1.04006 0.520029 0.854148i \(-0.325921\pi\)
0.520029 + 0.854148i \(0.325921\pi\)
\(264\) 0 0
\(265\) −1290.00 −0.299034
\(266\) 0 0
\(267\) 816.000 0.187035
\(268\) 0 0
\(269\) −7434.00 −1.68498 −0.842489 0.538714i \(-0.818910\pi\)
−0.842489 + 0.538714i \(0.818910\pi\)
\(270\) 0 0
\(271\) −704.000 −0.157804 −0.0789021 0.996882i \(-0.525141\pi\)
−0.0789021 + 0.996882i \(0.525141\pi\)
\(272\) 0 0
\(273\) 320.000 0.0709424
\(274\) 0 0
\(275\) −500.000 −0.109640
\(276\) 0 0
\(277\) 7150.00 1.55091 0.775455 0.631403i \(-0.217521\pi\)
0.775455 + 0.631403i \(0.217521\pi\)
\(278\) 0 0
\(279\) 4588.00 0.984503
\(280\) 0 0
\(281\) −4614.00 −0.979531 −0.489765 0.871854i \(-0.662918\pi\)
−0.489765 + 0.871854i \(0.662918\pi\)
\(282\) 0 0
\(283\) −5548.00 −1.16535 −0.582676 0.812705i \(-0.697994\pi\)
−0.582676 + 0.812705i \(0.697994\pi\)
\(284\) 0 0
\(285\) −320.000 −0.0665093
\(286\) 0 0
\(287\) 744.000 0.153021
\(288\) 0 0
\(289\) −1069.00 −0.217586
\(290\) 0 0
\(291\) 240.000 0.0483472
\(292\) 0 0
\(293\) −6626.00 −1.32114 −0.660572 0.750763i \(-0.729686\pi\)
−0.660572 + 0.750763i \(0.729686\pi\)
\(294\) 0 0
\(295\) −880.000 −0.173680
\(296\) 0 0
\(297\) 1600.00 0.312597
\(298\) 0 0
\(299\) −1920.00 −0.371359
\(300\) 0 0
\(301\) 368.000 0.0704690
\(302\) 0 0
\(303\) 5904.00 1.11939
\(304\) 0 0
\(305\) −2290.00 −0.429918
\(306\) 0 0
\(307\) −96.0000 −0.0178469 −0.00892347 0.999960i \(-0.502840\pi\)
−0.00892347 + 0.999960i \(0.502840\pi\)
\(308\) 0 0
\(309\) 4032.00 0.742306
\(310\) 0 0
\(311\) −1372.00 −0.250157 −0.125079 0.992147i \(-0.539918\pi\)
−0.125079 + 0.992147i \(0.539918\pi\)
\(312\) 0 0
\(313\) −214.000 −0.0386454 −0.0193227 0.999813i \(-0.506151\pi\)
−0.0193227 + 0.999813i \(0.506151\pi\)
\(314\) 0 0
\(315\) 740.000 0.132363
\(316\) 0 0
\(317\) −7962.00 −1.41070 −0.705348 0.708861i \(-0.749209\pi\)
−0.705348 + 0.708861i \(0.749209\pi\)
\(318\) 0 0
\(319\) 3080.00 0.540586
\(320\) 0 0
\(321\) 6784.00 1.17958
\(322\) 0 0
\(323\) −496.000 −0.0854433
\(324\) 0 0
\(325\) −250.000 −0.0426692
\(326\) 0 0
\(327\) −1840.00 −0.311169
\(328\) 0 0
\(329\) 1904.00 0.319061
\(330\) 0 0
\(331\) −520.000 −0.0863498 −0.0431749 0.999068i \(-0.513747\pi\)
−0.0431749 + 0.999068i \(0.513747\pi\)
\(332\) 0 0
\(333\) 1369.00 0.225288
\(334\) 0 0
\(335\) 1680.00 0.273995
\(336\) 0 0
\(337\) 2930.00 0.473612 0.236806 0.971557i \(-0.423899\pi\)
0.236806 + 0.971557i \(0.423899\pi\)
\(338\) 0 0
\(339\) −528.000 −0.0845930
\(340\) 0 0
\(341\) −2480.00 −0.393840
\(342\) 0 0
\(343\) −2680.00 −0.421885
\(344\) 0 0
\(345\) −7680.00 −1.19848
\(346\) 0 0
\(347\) −8052.00 −1.24569 −0.622844 0.782346i \(-0.714023\pi\)
−0.622844 + 0.782346i \(0.714023\pi\)
\(348\) 0 0
\(349\) −11578.0 −1.77581 −0.887903 0.460031i \(-0.847838\pi\)
−0.887903 + 0.460031i \(0.847838\pi\)
\(350\) 0 0
\(351\) 800.000 0.121655
\(352\) 0 0
\(353\) 6690.00 1.00870 0.504352 0.863498i \(-0.331731\pi\)
0.504352 + 0.863498i \(0.331731\pi\)
\(354\) 0 0
\(355\) −1160.00 −0.173427
\(356\) 0 0
\(357\) 1984.00 0.294130
\(358\) 0 0
\(359\) −2448.00 −0.359890 −0.179945 0.983677i \(-0.557592\pi\)
−0.179945 + 0.983677i \(0.557592\pi\)
\(360\) 0 0
\(361\) −6795.00 −0.990669
\(362\) 0 0
\(363\) 7448.00 1.07691
\(364\) 0 0
\(365\) −2350.00 −0.336999
\(366\) 0 0
\(367\) 3196.00 0.454577 0.227289 0.973827i \(-0.427014\pi\)
0.227289 + 0.973827i \(0.427014\pi\)
\(368\) 0 0
\(369\) 6882.00 0.970901
\(370\) 0 0
\(371\) −1032.00 −0.144417
\(372\) 0 0
\(373\) −7394.00 −1.02640 −0.513199 0.858269i \(-0.671540\pi\)
−0.513199 + 0.858269i \(0.671540\pi\)
\(374\) 0 0
\(375\) −1000.00 −0.137706
\(376\) 0 0
\(377\) 1540.00 0.210382
\(378\) 0 0
\(379\) −10580.0 −1.43393 −0.716963 0.697111i \(-0.754468\pi\)
−0.716963 + 0.697111i \(0.754468\pi\)
\(380\) 0 0
\(381\) 16800.0 2.25903
\(382\) 0 0
\(383\) 9128.00 1.21780 0.608902 0.793245i \(-0.291610\pi\)
0.608902 + 0.793245i \(0.291610\pi\)
\(384\) 0 0
\(385\) −400.000 −0.0529504
\(386\) 0 0
\(387\) 3404.00 0.447119
\(388\) 0 0
\(389\) 2670.00 0.348006 0.174003 0.984745i \(-0.444330\pi\)
0.174003 + 0.984745i \(0.444330\pi\)
\(390\) 0 0
\(391\) −11904.0 −1.53967
\(392\) 0 0
\(393\) 11584.0 1.48686
\(394\) 0 0
\(395\) −3380.00 −0.430547
\(396\) 0 0
\(397\) 2118.00 0.267757 0.133878 0.990998i \(-0.457257\pi\)
0.133878 + 0.990998i \(0.457257\pi\)
\(398\) 0 0
\(399\) −256.000 −0.0321204
\(400\) 0 0
\(401\) 8994.00 1.12005 0.560024 0.828477i \(-0.310792\pi\)
0.560024 + 0.828477i \(0.310792\pi\)
\(402\) 0 0
\(403\) −1240.00 −0.153272
\(404\) 0 0
\(405\) −1795.00 −0.220233
\(406\) 0 0
\(407\) −740.000 −0.0901239
\(408\) 0 0
\(409\) 6026.00 0.728525 0.364262 0.931296i \(-0.381321\pi\)
0.364262 + 0.931296i \(0.381321\pi\)
\(410\) 0 0
\(411\) −9168.00 −1.10030
\(412\) 0 0
\(413\) −704.000 −0.0838779
\(414\) 0 0
\(415\) −3040.00 −0.359585
\(416\) 0 0
\(417\) 1120.00 0.131527
\(418\) 0 0
\(419\) 15876.0 1.85106 0.925529 0.378677i \(-0.123621\pi\)
0.925529 + 0.378677i \(0.123621\pi\)
\(420\) 0 0
\(421\) −2258.00 −0.261397 −0.130699 0.991422i \(-0.541722\pi\)
−0.130699 + 0.991422i \(0.541722\pi\)
\(422\) 0 0
\(423\) 17612.0 2.02441
\(424\) 0 0
\(425\) −1550.00 −0.176908
\(426\) 0 0
\(427\) −1832.00 −0.207627
\(428\) 0 0
\(429\) −1600.00 −0.180067
\(430\) 0 0
\(431\) 5372.00 0.600372 0.300186 0.953881i \(-0.402951\pi\)
0.300186 + 0.953881i \(0.402951\pi\)
\(432\) 0 0
\(433\) 5058.00 0.561367 0.280684 0.959800i \(-0.409439\pi\)
0.280684 + 0.959800i \(0.409439\pi\)
\(434\) 0 0
\(435\) 6160.00 0.678964
\(436\) 0 0
\(437\) 1536.00 0.168139
\(438\) 0 0
\(439\) 7900.00 0.858876 0.429438 0.903096i \(-0.358712\pi\)
0.429438 + 0.903096i \(0.358712\pi\)
\(440\) 0 0
\(441\) −12099.0 −1.30645
\(442\) 0 0
\(443\) 6288.00 0.674384 0.337192 0.941436i \(-0.390523\pi\)
0.337192 + 0.941436i \(0.390523\pi\)
\(444\) 0 0
\(445\) −510.000 −0.0543288
\(446\) 0 0
\(447\) 14224.0 1.50508
\(448\) 0 0
\(449\) 5586.00 0.587126 0.293563 0.955940i \(-0.405159\pi\)
0.293563 + 0.955940i \(0.405159\pi\)
\(450\) 0 0
\(451\) −3720.00 −0.388399
\(452\) 0 0
\(453\) −17792.0 −1.84534
\(454\) 0 0
\(455\) −200.000 −0.0206069
\(456\) 0 0
\(457\) 9370.00 0.959103 0.479552 0.877514i \(-0.340799\pi\)
0.479552 + 0.877514i \(0.340799\pi\)
\(458\) 0 0
\(459\) 4960.00 0.504386
\(460\) 0 0
\(461\) −10330.0 −1.04364 −0.521818 0.853057i \(-0.674746\pi\)
−0.521818 + 0.853057i \(0.674746\pi\)
\(462\) 0 0
\(463\) −10488.0 −1.05274 −0.526370 0.850256i \(-0.676447\pi\)
−0.526370 + 0.850256i \(0.676447\pi\)
\(464\) 0 0
\(465\) −4960.00 −0.494655
\(466\) 0 0
\(467\) 16732.0 1.65795 0.828977 0.559283i \(-0.188923\pi\)
0.828977 + 0.559283i \(0.188923\pi\)
\(468\) 0 0
\(469\) 1344.00 0.132324
\(470\) 0 0
\(471\) −20912.0 −2.04580
\(472\) 0 0
\(473\) −1840.00 −0.178865
\(474\) 0 0
\(475\) 200.000 0.0193192
\(476\) 0 0
\(477\) −9546.00 −0.916313
\(478\) 0 0
\(479\) −884.000 −0.0843236 −0.0421618 0.999111i \(-0.513424\pi\)
−0.0421618 + 0.999111i \(0.513424\pi\)
\(480\) 0 0
\(481\) −370.000 −0.0350739
\(482\) 0 0
\(483\) −6144.00 −0.578803
\(484\) 0 0
\(485\) −150.000 −0.0140436
\(486\) 0 0
\(487\) −17016.0 −1.58330 −0.791652 0.610973i \(-0.790778\pi\)
−0.791652 + 0.610973i \(0.790778\pi\)
\(488\) 0 0
\(489\) 18464.0 1.70751
\(490\) 0 0
\(491\) −6892.00 −0.633466 −0.316733 0.948515i \(-0.602586\pi\)
−0.316733 + 0.948515i \(0.602586\pi\)
\(492\) 0 0
\(493\) 9548.00 0.872252
\(494\) 0 0
\(495\) −3700.00 −0.335965
\(496\) 0 0
\(497\) −928.000 −0.0837555
\(498\) 0 0
\(499\) −1616.00 −0.144974 −0.0724871 0.997369i \(-0.523094\pi\)
−0.0724871 + 0.997369i \(0.523094\pi\)
\(500\) 0 0
\(501\) 7744.00 0.690572
\(502\) 0 0
\(503\) −6144.00 −0.544627 −0.272314 0.962209i \(-0.587789\pi\)
−0.272314 + 0.962209i \(0.587789\pi\)
\(504\) 0 0
\(505\) −3690.00 −0.325154
\(506\) 0 0
\(507\) 16776.0 1.46952
\(508\) 0 0
\(509\) 13926.0 1.21269 0.606345 0.795202i \(-0.292635\pi\)
0.606345 + 0.795202i \(0.292635\pi\)
\(510\) 0 0
\(511\) −1880.00 −0.162752
\(512\) 0 0
\(513\) −640.000 −0.0550813
\(514\) 0 0
\(515\) −2520.00 −0.215620
\(516\) 0 0
\(517\) −9520.00 −0.809844
\(518\) 0 0
\(519\) −4912.00 −0.415439
\(520\) 0 0
\(521\) 14922.0 1.25479 0.627394 0.778702i \(-0.284122\pi\)
0.627394 + 0.778702i \(0.284122\pi\)
\(522\) 0 0
\(523\) 572.000 0.0478237 0.0239119 0.999714i \(-0.492388\pi\)
0.0239119 + 0.999714i \(0.492388\pi\)
\(524\) 0 0
\(525\) −800.000 −0.0665045
\(526\) 0 0
\(527\) −7688.00 −0.635474
\(528\) 0 0
\(529\) 24697.0 2.02983
\(530\) 0 0
\(531\) −6512.00 −0.532197
\(532\) 0 0
\(533\) −1860.00 −0.151155
\(534\) 0 0
\(535\) −4240.00 −0.342638
\(536\) 0 0
\(537\) −4224.00 −0.339440
\(538\) 0 0
\(539\) 6540.00 0.522630
\(540\) 0 0
\(541\) −14794.0 −1.17568 −0.587841 0.808977i \(-0.700022\pi\)
−0.587841 + 0.808977i \(0.700022\pi\)
\(542\) 0 0
\(543\) 23952.0 1.89296
\(544\) 0 0
\(545\) 1150.00 0.0903864
\(546\) 0 0
\(547\) −2204.00 −0.172278 −0.0861392 0.996283i \(-0.527453\pi\)
−0.0861392 + 0.996283i \(0.527453\pi\)
\(548\) 0 0
\(549\) −16946.0 −1.31737
\(550\) 0 0
\(551\) −1232.00 −0.0952540
\(552\) 0 0
\(553\) −2704.00 −0.207931
\(554\) 0 0
\(555\) −1480.00 −0.113194
\(556\) 0 0
\(557\) −1546.00 −0.117605 −0.0588026 0.998270i \(-0.518728\pi\)
−0.0588026 + 0.998270i \(0.518728\pi\)
\(558\) 0 0
\(559\) −920.000 −0.0696098
\(560\) 0 0
\(561\) −9920.00 −0.746565
\(562\) 0 0
\(563\) −3212.00 −0.240443 −0.120222 0.992747i \(-0.538361\pi\)
−0.120222 + 0.992747i \(0.538361\pi\)
\(564\) 0 0
\(565\) 330.000 0.0245720
\(566\) 0 0
\(567\) −1436.00 −0.106360
\(568\) 0 0
\(569\) −4790.00 −0.352913 −0.176456 0.984308i \(-0.556463\pi\)
−0.176456 + 0.984308i \(0.556463\pi\)
\(570\) 0 0
\(571\) 356.000 0.0260913 0.0130457 0.999915i \(-0.495847\pi\)
0.0130457 + 0.999915i \(0.495847\pi\)
\(572\) 0 0
\(573\) 22752.0 1.65878
\(574\) 0 0
\(575\) 4800.00 0.348128
\(576\) 0 0
\(577\) −1102.00 −0.0795093 −0.0397546 0.999209i \(-0.512658\pi\)
−0.0397546 + 0.999209i \(0.512658\pi\)
\(578\) 0 0
\(579\) 29424.0 2.11195
\(580\) 0 0
\(581\) −2432.00 −0.173660
\(582\) 0 0
\(583\) 5160.00 0.366562
\(584\) 0 0
\(585\) −1850.00 −0.130749
\(586\) 0 0
\(587\) 652.000 0.0458448 0.0229224 0.999737i \(-0.492703\pi\)
0.0229224 + 0.999737i \(0.492703\pi\)
\(588\) 0 0
\(589\) 992.000 0.0693967
\(590\) 0 0
\(591\) −2544.00 −0.177066
\(592\) 0 0
\(593\) −23662.0 −1.63859 −0.819293 0.573375i \(-0.805634\pi\)
−0.819293 + 0.573375i \(0.805634\pi\)
\(594\) 0 0
\(595\) −1240.00 −0.0854370
\(596\) 0 0
\(597\) 7072.00 0.484820
\(598\) 0 0
\(599\) −3952.00 −0.269573 −0.134787 0.990875i \(-0.543035\pi\)
−0.134787 + 0.990875i \(0.543035\pi\)
\(600\) 0 0
\(601\) −14726.0 −0.999478 −0.499739 0.866176i \(-0.666571\pi\)
−0.499739 + 0.866176i \(0.666571\pi\)
\(602\) 0 0
\(603\) 12432.0 0.839586
\(604\) 0 0
\(605\) −4655.00 −0.312814
\(606\) 0 0
\(607\) −17896.0 −1.19667 −0.598333 0.801248i \(-0.704170\pi\)
−0.598333 + 0.801248i \(0.704170\pi\)
\(608\) 0 0
\(609\) 4928.00 0.327903
\(610\) 0 0
\(611\) −4760.00 −0.315170
\(612\) 0 0
\(613\) −8562.00 −0.564137 −0.282068 0.959394i \(-0.591021\pi\)
−0.282068 + 0.959394i \(0.591021\pi\)
\(614\) 0 0
\(615\) −7440.00 −0.487821
\(616\) 0 0
\(617\) −4886.00 −0.318805 −0.159403 0.987214i \(-0.550957\pi\)
−0.159403 + 0.987214i \(0.550957\pi\)
\(618\) 0 0
\(619\) 23316.0 1.51397 0.756986 0.653431i \(-0.226671\pi\)
0.756986 + 0.653431i \(0.226671\pi\)
\(620\) 0 0
\(621\) −15360.0 −0.992553
\(622\) 0 0
\(623\) −408.000 −0.0262378
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 1280.00 0.0815284
\(628\) 0 0
\(629\) −2294.00 −0.145418
\(630\) 0 0
\(631\) 852.000 0.0537521 0.0268761 0.999639i \(-0.491444\pi\)
0.0268761 + 0.999639i \(0.491444\pi\)
\(632\) 0 0
\(633\) −26336.0 −1.65365
\(634\) 0 0
\(635\) −10500.0 −0.656189
\(636\) 0 0
\(637\) 3270.00 0.203394
\(638\) 0 0
\(639\) −8584.00 −0.531421
\(640\) 0 0
\(641\) 14482.0 0.892363 0.446181 0.894943i \(-0.352784\pi\)
0.446181 + 0.894943i \(0.352784\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.000245326 0 −0.000122663 1.00000i \(-0.500039\pi\)
−0.000122663 1.00000i \(0.500039\pi\)
\(644\) 0 0
\(645\) −3680.00 −0.224651
\(646\) 0 0
\(647\) 7808.00 0.474442 0.237221 0.971456i \(-0.423763\pi\)
0.237221 + 0.971456i \(0.423763\pi\)
\(648\) 0 0
\(649\) 3520.00 0.212900
\(650\) 0 0
\(651\) −3968.00 −0.238891
\(652\) 0 0
\(653\) −28714.0 −1.72077 −0.860387 0.509641i \(-0.829778\pi\)
−0.860387 + 0.509641i \(0.829778\pi\)
\(654\) 0 0
\(655\) −7240.00 −0.431893
\(656\) 0 0
\(657\) −17390.0 −1.03265
\(658\) 0 0
\(659\) 26172.0 1.54707 0.773533 0.633756i \(-0.218488\pi\)
0.773533 + 0.633756i \(0.218488\pi\)
\(660\) 0 0
\(661\) −14978.0 −0.881357 −0.440678 0.897665i \(-0.645262\pi\)
−0.440678 + 0.897665i \(0.645262\pi\)
\(662\) 0 0
\(663\) −4960.00 −0.290544
\(664\) 0 0
\(665\) 160.000 0.00933013
\(666\) 0 0
\(667\) −29568.0 −1.71646
\(668\) 0 0
\(669\) −160.000 −0.00924657
\(670\) 0 0
\(671\) 9160.00 0.527001
\(672\) 0 0
\(673\) −3886.00 −0.222577 −0.111288 0.993788i \(-0.535498\pi\)
−0.111288 + 0.993788i \(0.535498\pi\)
\(674\) 0 0
\(675\) −2000.00 −0.114044
\(676\) 0 0
\(677\) −12866.0 −0.730400 −0.365200 0.930929i \(-0.618999\pi\)
−0.365200 + 0.930929i \(0.618999\pi\)
\(678\) 0 0
\(679\) −120.000 −0.00678229
\(680\) 0 0
\(681\) −10464.0 −0.588813
\(682\) 0 0
\(683\) −6996.00 −0.391939 −0.195970 0.980610i \(-0.562785\pi\)
−0.195970 + 0.980610i \(0.562785\pi\)
\(684\) 0 0
\(685\) 5730.00 0.319609
\(686\) 0 0
\(687\) 4880.00 0.271010
\(688\) 0 0
\(689\) 2580.00 0.142656
\(690\) 0 0
\(691\) −10108.0 −0.556478 −0.278239 0.960512i \(-0.589751\pi\)
−0.278239 + 0.960512i \(0.589751\pi\)
\(692\) 0 0
\(693\) −2960.00 −0.162253
\(694\) 0 0
\(695\) −700.000 −0.0382051
\(696\) 0 0
\(697\) −11532.0 −0.626694
\(698\) 0 0
\(699\) −12880.0 −0.696948
\(700\) 0 0
\(701\) 12822.0 0.690842 0.345421 0.938448i \(-0.387736\pi\)
0.345421 + 0.938448i \(0.387736\pi\)
\(702\) 0 0
\(703\) 296.000 0.0158803
\(704\) 0 0
\(705\) −19040.0 −1.01715
\(706\) 0 0
\(707\) −2952.00 −0.157032
\(708\) 0 0
\(709\) −27650.0 −1.46462 −0.732311 0.680970i \(-0.761558\pi\)
−0.732311 + 0.680970i \(0.761558\pi\)
\(710\) 0 0
\(711\) −25012.0 −1.31930
\(712\) 0 0
\(713\) 23808.0 1.25051
\(714\) 0 0
\(715\) 1000.00 0.0523047
\(716\) 0 0
\(717\) 10144.0 0.528361
\(718\) 0 0
\(719\) 9448.00 0.490057 0.245028 0.969516i \(-0.421203\pi\)
0.245028 + 0.969516i \(0.421203\pi\)
\(720\) 0 0
\(721\) −2016.00 −0.104133
\(722\) 0 0
\(723\) −27920.0 −1.43618
\(724\) 0 0
\(725\) −3850.00 −0.197221
\(726\) 0 0
\(727\) 7248.00 0.369757 0.184879 0.982761i \(-0.440811\pi\)
0.184879 + 0.982761i \(0.440811\pi\)
\(728\) 0 0
\(729\) −30563.0 −1.55276
\(730\) 0 0
\(731\) −5704.00 −0.288605
\(732\) 0 0
\(733\) −13498.0 −0.680164 −0.340082 0.940396i \(-0.610455\pi\)
−0.340082 + 0.940396i \(0.610455\pi\)
\(734\) 0 0
\(735\) 13080.0 0.656412
\(736\) 0 0
\(737\) −6720.00 −0.335868
\(738\) 0 0
\(739\) 7516.00 0.374128 0.187064 0.982348i \(-0.440103\pi\)
0.187064 + 0.982348i \(0.440103\pi\)
\(740\) 0 0
\(741\) 640.000 0.0317287
\(742\) 0 0
\(743\) 34068.0 1.68214 0.841072 0.540922i \(-0.181925\pi\)
0.841072 + 0.540922i \(0.181925\pi\)
\(744\) 0 0
\(745\) −8890.00 −0.437187
\(746\) 0 0
\(747\) −22496.0 −1.10185
\(748\) 0 0
\(749\) −3392.00 −0.165475
\(750\) 0 0
\(751\) −1608.00 −0.0781315 −0.0390657 0.999237i \(-0.512438\pi\)
−0.0390657 + 0.999237i \(0.512438\pi\)
\(752\) 0 0
\(753\) 7680.00 0.371680
\(754\) 0 0
\(755\) 11120.0 0.536024
\(756\) 0 0
\(757\) 7278.00 0.349436 0.174718 0.984618i \(-0.444099\pi\)
0.174718 + 0.984618i \(0.444099\pi\)
\(758\) 0 0
\(759\) 30720.0 1.46912
\(760\) 0 0
\(761\) 874.000 0.0416327 0.0208163 0.999783i \(-0.493373\pi\)
0.0208163 + 0.999783i \(0.493373\pi\)
\(762\) 0 0
\(763\) 920.000 0.0436517
\(764\) 0 0
\(765\) −11470.0 −0.542090
\(766\) 0 0
\(767\) 1760.00 0.0828552
\(768\) 0 0
\(769\) −13006.0 −0.609894 −0.304947 0.952369i \(-0.598639\pi\)
−0.304947 + 0.952369i \(0.598639\pi\)
\(770\) 0 0
\(771\) −54672.0 −2.55378
\(772\) 0 0
\(773\) −25506.0 −1.18679 −0.593394 0.804912i \(-0.702212\pi\)
−0.593394 + 0.804912i \(0.702212\pi\)
\(774\) 0 0
\(775\) 3100.00 0.143684
\(776\) 0 0
\(777\) −1184.00 −0.0546664
\(778\) 0 0
\(779\) 1488.00 0.0684379
\(780\) 0 0
\(781\) 4640.00 0.212589
\(782\) 0 0
\(783\) 12320.0 0.562300
\(784\) 0 0
\(785\) 13070.0 0.594253
\(786\) 0 0
\(787\) −14216.0 −0.643895 −0.321948 0.946757i \(-0.604338\pi\)
−0.321948 + 0.946757i \(0.604338\pi\)
\(788\) 0 0
\(789\) −35488.0 −1.60128
\(790\) 0 0
\(791\) 264.000 0.0118670
\(792\) 0 0
\(793\) 4580.00 0.205095
\(794\) 0 0
\(795\) 10320.0 0.460393
\(796\) 0 0
\(797\) 16518.0 0.734125 0.367062 0.930196i \(-0.380364\pi\)
0.367062 + 0.930196i \(0.380364\pi\)
\(798\) 0 0
\(799\) −29512.0 −1.30671
\(800\) 0 0
\(801\) −3774.00 −0.166477
\(802\) 0 0
\(803\) 9400.00 0.413099
\(804\) 0 0
\(805\) 3840.00 0.168127
\(806\) 0 0
\(807\) 59472.0 2.59419
\(808\) 0 0
\(809\) −20486.0 −0.890296 −0.445148 0.895457i \(-0.646849\pi\)
−0.445148 + 0.895457i \(0.646849\pi\)
\(810\) 0 0
\(811\) −9100.00 −0.394013 −0.197006 0.980402i \(-0.563122\pi\)
−0.197006 + 0.980402i \(0.563122\pi\)
\(812\) 0 0
\(813\) 5632.00 0.242956
\(814\) 0 0
\(815\) −11540.0 −0.495986
\(816\) 0 0
\(817\) 736.000 0.0315170
\(818\) 0 0
\(819\) −1480.00 −0.0631445
\(820\) 0 0
\(821\) 36622.0 1.55678 0.778390 0.627781i \(-0.216037\pi\)
0.778390 + 0.627781i \(0.216037\pi\)
\(822\) 0 0
\(823\) 20572.0 0.871318 0.435659 0.900112i \(-0.356515\pi\)
0.435659 + 0.900112i \(0.356515\pi\)
\(824\) 0 0
\(825\) 4000.00 0.168803
\(826\) 0 0
\(827\) 35060.0 1.47419 0.737095 0.675789i \(-0.236197\pi\)
0.737095 + 0.675789i \(0.236197\pi\)
\(828\) 0 0
\(829\) −5850.00 −0.245089 −0.122545 0.992463i \(-0.539105\pi\)
−0.122545 + 0.992463i \(0.539105\pi\)
\(830\) 0 0
\(831\) −57200.0 −2.38778
\(832\) 0 0
\(833\) 20274.0 0.843280
\(834\) 0 0
\(835\) −4840.00 −0.200593
\(836\) 0 0
\(837\) −9920.00 −0.409660
\(838\) 0 0
\(839\) −33720.0 −1.38754 −0.693769 0.720198i \(-0.744051\pi\)
−0.693769 + 0.720198i \(0.744051\pi\)
\(840\) 0 0
\(841\) −673.000 −0.0275944
\(842\) 0 0
\(843\) 36912.0 1.50809
\(844\) 0 0
\(845\) −10485.0 −0.426858
\(846\) 0 0
\(847\) −3724.00 −0.151072
\(848\) 0 0
\(849\) 44384.0 1.79418
\(850\) 0 0
\(851\) 7104.00 0.286160
\(852\) 0 0
\(853\) −28562.0 −1.14648 −0.573238 0.819389i \(-0.694313\pi\)
−0.573238 + 0.819389i \(0.694313\pi\)
\(854\) 0 0
\(855\) 1480.00 0.0591988
\(856\) 0 0
\(857\) 33994.0 1.35497 0.677487 0.735535i \(-0.263069\pi\)
0.677487 + 0.735535i \(0.263069\pi\)
\(858\) 0 0
\(859\) 18176.0 0.721952 0.360976 0.932575i \(-0.382444\pi\)
0.360976 + 0.932575i \(0.382444\pi\)
\(860\) 0 0
\(861\) −5952.00 −0.235591
\(862\) 0 0
\(863\) 38116.0 1.50346 0.751729 0.659472i \(-0.229220\pi\)
0.751729 + 0.659472i \(0.229220\pi\)
\(864\) 0 0
\(865\) 3070.00 0.120674
\(866\) 0 0
\(867\) 8552.00 0.334996
\(868\) 0 0
\(869\) 13520.0 0.527773
\(870\) 0 0
\(871\) −3360.00 −0.130711
\(872\) 0 0
\(873\) −1110.00 −0.0430330
\(874\) 0 0
\(875\) 500.000 0.0193178
\(876\) 0 0
\(877\) 36742.0 1.41470 0.707348 0.706865i \(-0.249891\pi\)
0.707348 + 0.706865i \(0.249891\pi\)
\(878\) 0 0
\(879\) 53008.0 2.03403
\(880\) 0 0
\(881\) 38498.0 1.47223 0.736113 0.676859i \(-0.236659\pi\)
0.736113 + 0.676859i \(0.236659\pi\)
\(882\) 0 0
\(883\) −37060.0 −1.41242 −0.706211 0.708002i \(-0.749597\pi\)
−0.706211 + 0.708002i \(0.749597\pi\)
\(884\) 0 0
\(885\) 7040.00 0.267398
\(886\) 0 0
\(887\) 16988.0 0.643068 0.321534 0.946898i \(-0.395802\pi\)
0.321534 + 0.946898i \(0.395802\pi\)
\(888\) 0 0
\(889\) −8400.00 −0.316903
\(890\) 0 0
\(891\) 7180.00 0.269965
\(892\) 0 0
\(893\) 3808.00 0.142699
\(894\) 0 0
\(895\) 2640.00 0.0985983
\(896\) 0 0
\(897\) 15360.0 0.571745
\(898\) 0 0
\(899\) −19096.0 −0.708440
\(900\) 0 0
\(901\) 15996.0 0.591458
\(902\) 0 0
\(903\) −2944.00 −0.108494
\(904\) 0 0
\(905\) −14970.0 −0.549856
\(906\) 0 0
\(907\) −19676.0 −0.720321 −0.360160 0.932890i \(-0.617278\pi\)
−0.360160 + 0.932890i \(0.617278\pi\)
\(908\) 0 0
\(909\) −27306.0 −0.996351
\(910\) 0 0
\(911\) −20668.0 −0.751659 −0.375830 0.926689i \(-0.622642\pi\)
−0.375830 + 0.926689i \(0.622642\pi\)
\(912\) 0 0
\(913\) 12160.0 0.440786
\(914\) 0 0
\(915\) 18320.0 0.661902
\(916\) 0 0
\(917\) −5792.00 −0.208581
\(918\) 0 0
\(919\) −33444.0 −1.20045 −0.600226 0.799830i \(-0.704923\pi\)
−0.600226 + 0.799830i \(0.704923\pi\)
\(920\) 0 0
\(921\) 768.000 0.0274772
\(922\) 0 0
\(923\) 2320.00 0.0827343
\(924\) 0 0
\(925\) 925.000 0.0328798
\(926\) 0 0
\(927\) −18648.0 −0.660713
\(928\) 0 0
\(929\) −6430.00 −0.227084 −0.113542 0.993533i \(-0.536220\pi\)
−0.113542 + 0.993533i \(0.536220\pi\)
\(930\) 0 0
\(931\) −2616.00 −0.0920902
\(932\) 0 0
\(933\) 10976.0 0.385143
\(934\) 0 0
\(935\) 6200.00 0.216857
\(936\) 0 0
\(937\) 4586.00 0.159891 0.0799456 0.996799i \(-0.474525\pi\)
0.0799456 + 0.996799i \(0.474525\pi\)
\(938\) 0 0
\(939\) 1712.00 0.0594984
\(940\) 0 0
\(941\) 17078.0 0.591633 0.295817 0.955245i \(-0.404408\pi\)
0.295817 + 0.955245i \(0.404408\pi\)
\(942\) 0 0
\(943\) 35712.0 1.23324
\(944\) 0 0
\(945\) −1600.00 −0.0550773
\(946\) 0 0
\(947\) 15804.0 0.542303 0.271152 0.962537i \(-0.412596\pi\)
0.271152 + 0.962537i \(0.412596\pi\)
\(948\) 0 0
\(949\) 4700.00 0.160768
\(950\) 0 0
\(951\) 63696.0 2.17191
\(952\) 0 0
\(953\) 24426.0 0.830258 0.415129 0.909763i \(-0.363736\pi\)
0.415129 + 0.909763i \(0.363736\pi\)
\(954\) 0 0
\(955\) −14220.0 −0.481831
\(956\) 0 0
\(957\) −24640.0 −0.832286
\(958\) 0 0
\(959\) 4584.00 0.154354
\(960\) 0 0
\(961\) −14415.0 −0.483871
\(962\) 0 0
\(963\) −31376.0 −1.04992
\(964\) 0 0
\(965\) −18390.0 −0.613466
\(966\) 0 0
\(967\) 6872.00 0.228530 0.114265 0.993450i \(-0.463549\pi\)
0.114265 + 0.993450i \(0.463549\pi\)
\(968\) 0 0
\(969\) 3968.00 0.131549
\(970\) 0 0
\(971\) −3708.00 −0.122549 −0.0612747 0.998121i \(-0.519517\pi\)
−0.0612747 + 0.998121i \(0.519517\pi\)
\(972\) 0 0
\(973\) −560.000 −0.0184510
\(974\) 0 0
\(975\) 2000.00 0.0656936
\(976\) 0 0
\(977\) 42194.0 1.38168 0.690842 0.723006i \(-0.257240\pi\)
0.690842 + 0.723006i \(0.257240\pi\)
\(978\) 0 0
\(979\) 2040.00 0.0665972
\(980\) 0 0
\(981\) 8510.00 0.276966
\(982\) 0 0
\(983\) −14444.0 −0.468659 −0.234330 0.972157i \(-0.575290\pi\)
−0.234330 + 0.972157i \(0.575290\pi\)
\(984\) 0 0
\(985\) 1590.00 0.0514331
\(986\) 0 0
\(987\) −15232.0 −0.491226
\(988\) 0 0
\(989\) 17664.0 0.567930
\(990\) 0 0
\(991\) 38620.0 1.23795 0.618973 0.785412i \(-0.287549\pi\)
0.618973 + 0.785412i \(0.287549\pi\)
\(992\) 0 0
\(993\) 4160.00 0.132944
\(994\) 0 0
\(995\) −4420.00 −0.140828
\(996\) 0 0
\(997\) 8574.00 0.272358 0.136179 0.990684i \(-0.456518\pi\)
0.136179 + 0.990684i \(0.456518\pi\)
\(998\) 0 0
\(999\) −2960.00 −0.0937440
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.4.a.a.1.1 1 1.1 even 1 trivial