Properties

Label 740.4.a.a
Level $740$
Weight $4$
Character orbit 740.a
Self dual yes
Analytic conductor $43.661$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [740,4,Mod(1,740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("740.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 740.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.6614134042\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 8 q^{3} + 5 q^{5} + 4 q^{7} + 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{3} + 5 q^{5} + 4 q^{7} + 37 q^{9} - 20 q^{11} - 10 q^{13} - 40 q^{15} - 62 q^{17} + 8 q^{19} - 32 q^{21} + 192 q^{23} + 25 q^{25} - 80 q^{27} - 154 q^{29} + 124 q^{31} + 160 q^{33} + 20 q^{35} + 37 q^{37} + 80 q^{39} + 186 q^{41} + 92 q^{43} + 185 q^{45} + 476 q^{47} - 327 q^{49} + 496 q^{51} - 258 q^{53} - 100 q^{55} - 64 q^{57} - 176 q^{59} - 458 q^{61} + 148 q^{63} - 50 q^{65} + 336 q^{67} - 1536 q^{69} - 232 q^{71} - 470 q^{73} - 200 q^{75} - 80 q^{77} - 676 q^{79} - 359 q^{81} - 608 q^{83} - 310 q^{85} + 1232 q^{87} - 102 q^{89} - 40 q^{91} - 992 q^{93} + 40 q^{95} - 30 q^{97} - 740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −8.00000 0 5.00000 0 4.00000 0 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 740.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
740.4.a.a 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(740))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 8 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T + 20 \) Copy content Toggle raw display
$13$ \( T + 10 \) Copy content Toggle raw display
$17$ \( T + 62 \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T - 192 \) Copy content Toggle raw display
$29$ \( T + 154 \) Copy content Toggle raw display
$31$ \( T - 124 \) Copy content Toggle raw display
$37$ \( T - 37 \) Copy content Toggle raw display
$41$ \( T - 186 \) Copy content Toggle raw display
$43$ \( T - 92 \) Copy content Toggle raw display
$47$ \( T - 476 \) Copy content Toggle raw display
$53$ \( T + 258 \) Copy content Toggle raw display
$59$ \( T + 176 \) Copy content Toggle raw display
$61$ \( T + 458 \) Copy content Toggle raw display
$67$ \( T - 336 \) Copy content Toggle raw display
$71$ \( T + 232 \) Copy content Toggle raw display
$73$ \( T + 470 \) Copy content Toggle raw display
$79$ \( T + 676 \) Copy content Toggle raw display
$83$ \( T + 608 \) Copy content Toggle raw display
$89$ \( T + 102 \) Copy content Toggle raw display
$97$ \( T + 30 \) Copy content Toggle raw display
show more
show less